1
|
Cai L, Ke M, Wang H, Wu W, Lin R, Huang P, Lin C. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus. Arch Toxicol 2023; 97:2659-2673. [PMID: 37572130 DOI: 10.1007/s00204-023-03576-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nephrotoxicity is the most common side effect that severely limits the clinical application of tacrolimus (TAC), an immunosuppressive agent used in kidney transplant patients. This study aimed to explore the tolerated dose of nephrotoxicity of TAC in individuals with different CYP3A5 genotypes and liver conditions. We established a human whole-body physiological pharmacokinetic (WB-PBPK) model and validated it using data from previous clinical studies. Following the injection of 1 mg/kg TAC into the tail veins of male rats, we developed a rat PBPK model utilizing the drug concentration-time curve obtained by LC-MS/MS. Next, we converted the established rat PBPK model into the human kidney PBPK model. To establish renal concentrations, the BMCL5 of the in vitro CCK-8 toxicity response curve (drug concentration range: 2-80 mol/L) was extrapolated. To further investigate the acceptable levels of nephrotoxicity for several distinct CYP3A5 genotypes and varied hepatic function populations, oral dosing regimens were extrapolated utilizing in vitro-in vivo extrapolation (IVIVE). The PBPK model indicated the tolerated doses of nephrotoxicity were 0.14-0.185 mg/kg (CYP3A5 expressors) and 0.13-0.155 mg/kg (CYP3A5 non-expressors) in normal healthy subjects and 0.07-0.09 mg/kg (CYP3A5 expressors) and 0.06-0.08 mg/kg (CYP3A5 non-expressors) in patients with mild hepatic insufficiency. Further, patients with moderate hepatic insufficiency tolerated doses of 0.045-0.06 mg/kg (CYP3A5 expressors) and 0.04-0.05 mg/kg (CYP3A5 non-expressors), while in patients with moderate hepatic insufficiency, doses of 0.028-0.04 mg/kg (CYP3A5 expressors) and 0.022-0.03 mg/kg (CYP3A5 non-expressors) were tolerated. Overall, our study highlights the combined usage of the PBPK model and the IVIVE approach as a valuable tool for predicting toxicity tolerated doses of a drug in a specific group.
Collapse
Affiliation(s)
- Limin Cai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Meng Ke
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Han Wang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wanhong Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfang Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pinfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Cuihong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong M. Rd, Fuzhou, 350005, People's Republic of China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
2
|
Prediction models for voriconazole pharmacokinetics based on pharmacogenetics: AN exploratory study in a Spanish population. Int J Antimicrob Agents 2019; 54:463-470. [PMID: 31279853 DOI: 10.1016/j.ijantimicag.2019.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023]
Abstract
Individualisation of the therapeutic strategy for the oral antifungal agent voriconazole (VCZ) is extremely important for treatment optimisation. To date, regulatory agencies include CYP2C19 as the only major pharmacogenetic (PGx) biomarker in their dosing guidelines; however, the effect of other genes might be important for VCZ dosing prediction. We developed an exploratory PGx study to identify new biomarkers related to VCZ pharmacokinetics. We first designed a 'clinical practice VCZ-AUC prediction model' based on CYP2C19 to be used as a reference model in this study. We then designed a multifactorial polygenic prediction model and found that genetic variability in FMO3, NR1I2, POR, CYP2C9 and CYP3A4 partially contributes to VCZ total area under the concentration-time curve (AUC0-∞) interindividual variability, and its inclusion in VCZ AUC0-∞ prediction algorithms improves model precision. To our knowledge, there are no PGx studies specifically relating POR, FMO3 and NR1I2 polymorphisms to VCZ pharmacokinetic variability. Further research is needed in order to test the model proposed here.
Collapse
|
3
|
Whole exome sequencing for the identification of CYP3A7 variants associated with tacrolimus concentrations in kidney transplant patients. Sci Rep 2018; 8:18064. [PMID: 30584253 PMCID: PMC6305386 DOI: 10.1038/s41598-018-36085-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify genotypes associated with dose-adjusted tacrolimus trough concentrations (C0/D) in kidney transplant recipients using whole-exome sequencing (WES). This study included 147 patients administered tacrolimus, including seventy-five patients in the discovery set and seventy-two patients in the replication set. The patient genomes in the discovery set were sequenced using WES. Also, known tacrolimus pharmacokinetics-related intron variants were genotyped. Tacrolimus C0/D was log-transformed. Sixteen variants were identified including novel CYP3A7 rs12360 and rs10211 by ANOVA. CYP3A7 rs2257401 was found to be the most significant variant among the periods by ANOVA. Seven variants including CYP3A7 rs2257401, rs12360, and rs10211 were analyzed by SNaPshot in the replication set and the effects on tacrolimus C0/D were verified. A linear mixed model (LMM) was further performed to account for the effects of the variants and clinical factors. The combined set LMM showed that only CYP3A7 rs2257401 was associated with tacrolimus C0/D after adjusting for patient age, albumin, and creatinine. The CYP3A7 rs2257401 genotype variant showed a significant difference on the tacrolimus C0/D in those expressing CYP3A5, showing its own effect. The results suggest that CYP3A7 rs2257401 may serve as a significant genetic marker for tacrolimus pharmacokinetics in kidney transplantation.
Collapse
|
4
|
Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, Mannon RB, Matas AJ, Israni AK, Jacobson PA. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics 2018; 19:175-184. [PMID: 29318894 PMCID: PMC6021962 DOI: 10.2217/pgs-2017-0187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
AIM Multiple genetic variants have been associated with variation in tacrolimus (TAC) trough concentrations. Unfortunately, additional studies do not confirm these associations, leading one to question if a reported association is accurate and reliable. We attempted to validate 44 published variants associated with TAC trough concentrations. MATERIALS & METHODS Genotypes of the variants in our cohort of 1923 kidney allograft recipients were associated with TAC trough concentrations. RESULTS Only variants in CYP3A4 and CYP3A5 were significantly associated with variation in TAC trough concentrations in our validation. CONCLUSION There is no evidence that common variants outside the CYP3A4 and CYP3A5 loci are associated with variation in TAC trough concentrations. In the future rare variants may be important and identified using DNA sequencing.
Collapse
Affiliation(s)
- William S Oetting
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baolin Wu
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David P Schladt
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roslyn B Mannon
- Division of Nephrology, University of Alabama, Birmingham, AL 35233, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ajay K Israni
- Minneapolis Medical Research Foundation, Minneapolis, MN 55404, USA
- Department of Medicine, Hennepin County Medical Center, Minneapolis, MN 55415, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|