1
|
Becchetti A, Crescioli S, Zanieri F, Petroni G, Mercatelli R, Coppola S, Gasparoli L, D'Amico M, Pillozzi S, Crociani O, Stefanini M, Fiore A, Carraresi L, Morello V, Manoli S, Brizzi MF, Ricci D, Rinaldi M, Masi A, Schmidt T, Quercioli F, Defilippi P, Arcangeli A. The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 2017; 10:10/473/eaaf3236. [PMID: 28377405 DOI: 10.1126/scisignal.aaf3236] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels regulate cell proliferation, differentiation, and migration in normal and neoplastic cells through cell-cell and cell-extracellular matrix (ECM) transmembrane receptors called integrins. K+ flux through the human ether-à-go-go-related gene 1 (hERG1) channel shapes action potential firing in excitable cells such as cardiomyocytes. Its abundance is often aberrantly high in tumors, where it modulates integrin-mediated signaling. We found that hERG1 interacted with the β1 integrin subunit at the plasma membrane of human cancer cells. This interaction was not detected in cardiomyocytes because of the presence of the hERG1 auxiliary subunit KCNE1 (potassium voltage-gated channel subfamily E regulatory subunit 1), which blocked the β1 integrin-hERG1 interaction. Although open hERG1 channels did not interact as strongly with β1 integrins as did closed channels, current flow through hERG1 channels was necessary to activate the integrin-dependent phosphorylation of Tyr397 in focal adhesion kinase (FAK) in both normal and cancer cells. In immunodeficient mice, proliferation was inhibited in breast cancer cells expressing forms of hERG1 with impaired K+ flow, whereas metastasis of breast cancer cells was reduced when the hERG1/β1 integrin interaction was disrupted. We conclude that the interaction of β1 integrins with hERG1 channels in cancer cells stimulated distinct signaling pathways that depended on the conformational state of hERG1 and affected different aspects of tumor progression.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Silvia Crescioli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Francesca Zanieri
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Raffaella Mercatelli
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Luca Gasparoli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Massimo D'Amico
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Matteo Stefanini
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonella Fiore
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Laura Carraresi
- Di.V.A.L. Toscana SRL, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Virginia Morello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Sagar Manoli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Davide Ricci
- Department of Surgical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Mauro Rinaldi
- Department of Surgical Sciences, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Alessio Masi
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Franco Quercioli
- Consiglio Nazionale delle Ricerche-Istituto Nazionale di Ottica, Via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Paola Defilippi
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy.
| |
Collapse
|
2
|
Gentile S. hERG1 potassium channel in cancer cells: a tool to reprogram immortality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:649-655. [PMID: 27649700 DOI: 10.1007/s00249-016-1169-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.
Collapse
|