Eisele F, Owen DJ, Waldmann H. Peptide conjugates as tools for the study of biological signal transduction.
Bioorg Med Chem 1999;
7:193-224. [PMID:
10218812 DOI:
10.1016/s0968-0896(98)00204-1]
[Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Today, many biological phenomena are being investigated and understood in molecular detail, and organic chemistry is increasingly being directed towards biological phenomena. This review is intended to highlight this interplay of organic chemistry and biology, using biological signal transduction as an example. Lipo-, glyco-, phospho- and nucleoproteins play key roles in the processes whereby chemical signals are passed across cell membranes and further to the cell nucleus. For the study of the biological phenomena associated with these protein conjugates, structurally well-defined peptides containing the characteristic linkage region of the peptide backbone with the lipid, the carbohydrate or the phosphoric acid ester can provide valuable tools. The multi-functionality and pronounced acid- and base-lability of such compounds renders their synthesis a formidable challenge to conventional organic synthesis. However, the recent development of enzymatic protecting groups, provides one of the central techniques which, when coupled with classic chemical synthesis, can provide access to these complex and sensitive biologically relevant peptide conjugates under particularly mild conditions and with high selectivity.
Collapse