Subach F, Kirsanova O, Liquier J, Gromova ES. Resolution of the EcoRII restriction endonuclease-DNA complex structure in solution using fluorescence spectroscopy.
Biophys Chem 2008;
138:107-14. [PMID:
18814946 DOI:
10.1016/j.bpc.2008.09.002]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/06/2008] [Accepted: 09/07/2008] [Indexed: 11/27/2022]
Abstract
The X-ray structure for the type IIE EcoRII restriction endonuclease has been resolved [X.E. Zhou, Y. Wang, M. Reuter, M. Mucke, D.H. Kruger, E.J. Meehan and L. Chen. Crystal structure of type IIE restriction endonuclease EcoRII reveals an autoinhibition mechanism by a novel effector-binding fold. J. Mol. Biol. 335 (2004) 307-319.], but the structure of the R.EcoRII-DNA complex is still unknown. The aim of this article was to examine the structure of the pre-reactive R.EcoRII-DNA complex in solution by fluorescence spectroscopy. The structure for the R.EcoRII-DNA complex was resolved by determining the fluorescence resonance energy transfer (FRET) between two fluorescent dyes, covalently attached near the EcoRII recognition sites, that were located at opposite ends of a lengthy two-site DNA molecule. Analysis of the FRET data from the two-site DNA revealed a likely model for the arrangement of the two EcoRII recognition sites relative to each other in the R.EcoRII-DNA complex in the presence of Ca(2+) ions. According to this model, the R.EcoRII binds the two-site DNA and forms a DNA loop in which the EcoRII recognition sites are 20+/-10 A distant to each other and situated at an angle of 70+/-10 degrees.
Collapse