1
|
Mailig M, Liu F. The Application of Isoacyl Structural Motifs in Prodrug Design and Peptide Chemistry. Chembiochem 2019; 20:2017-2031. [DOI: 10.1002/cbic.201900260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Melrose Mailig
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| | - Fa Liu
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| |
Collapse
|
2
|
Cytlak T, Skibińska M, Kaczmarek P, Kaźmierczak M, Rapp M, Kubicki M, Koroniak H. Functionalization of α-hydroxyphosphonates as a convenient route to N-tosyl-α-aminophosphonates. RSC Adv 2018; 8:11957-11974. [PMID: 35539392 PMCID: PMC9079259 DOI: 10.1039/c8ra01656a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
Direct conversion of the α-hydroxyl group by para-toluenesulfonamide to yield α-(N-tosyl)aminophosphonates is reported. α-Aminophosphonates 23a,b-37a,b were obtained from the corresponding α-hydroxyphosphonates 6a,b-21a,b in the presence of K2CO3, via the retro-Abramov reaction of the appropriate aldehydes, 1-5. The subsequent formation of imines with simultaneous addition of diethyl phosphite provided access to the α-sulfonamide phosphonates 23a,b-37a,b with better diastereoselectivity than in the case of the Pudovik reaction. The mechanism for this transformation is proposed herein. When Cbz N-protected aziridine 9a,b and phenylalanine analogue 12a,b were exploited, intramolecular substitution was observed, leading to the corresponding epoxide 38 as the sole product, or oxazolidin-2-one 39 as a minor product. Analogous substitution was not observed in the case of proline 18a,b and serine 21a,b derivatives.
Collapse
Affiliation(s)
- Tomasz Cytlak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań Umultowska 89c 61-614 Poznań Poland
| | - Monika Skibińska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Patrycja Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznań Umultowska 89c 61-614 Poznań Poland
| | - Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89b 61-614 Poznań Poland
| |
Collapse
|
3
|
Tamamura H, Kobayakawa T, Ohashi N. Introduction to Mid-size Drugs and Peptidomimetics. MID-SIZE DRUGS BASED ON PEPTIDES AND PEPTIDOMIMETICS 2018. [DOI: 10.1007/978-981-10-7691-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Fernandes RA, Kattanguru P, Gholap SP, Chaudhari DA. Recent advances in the Overman rearrangement: synthesis of natural products and valuable compounds. Org Biomol Chem 2017; 15:2672-2710. [DOI: 10.1039/c6ob02625g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review documents the reports since 2005 on the Overman rearrangement, an important C–N bond forming reaction that has been profoundly used in the synthesis of natural products, synthetic intermediates, building blocks and valuable compounds.
Collapse
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Pullaiah Kattanguru
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Sachin P. Gholap
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Dipali A. Chaudhari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
5
|
Yan R. Stepping closer to treating Alzheimer's disease patients with BACE1 inhibitor drugs. Transl Neurodegener 2016; 5:13. [PMID: 27418961 PMCID: PMC4944430 DOI: 10.1186/s40035-016-0061-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-dependent neurodegenerative disease which impairs cognitive function and gradually causes patients to be unable to lead normal daily lives. While the etiology of AD remains an enigma, excessive accumulation of β-amyloid peptide (Aβ) is widely believed to induce pathological changes and cause dementia in brains of AD patients. BACE1 was discovered to initiate the cleavage of amyloid precursor protein (APP) at the β-secretase site. Only after this cleavage does γ-secretase further cleave the BACE1-cleaved C-terminal APP fragment to release Aβ. Hence, blocking BACE1 proteolytic activity will suppress Aβ generation. Due to the linkage of Aβ to the potential cause of AD, extensive discovery and development efforts have been directed towards potent BACE1 inhibitors for AD therapy. With the recent breakthrough in developing brain-penetrable BACE1 inhibitors, targeting amyloid deposition-mediated pathology for AD therapy has now become more practical. This review will summarize various strategies that have successfully led to the discovery of BACE1 drugs, such as MK8931, AZD-3293, JNJ-54861911, E2609 and CNP520. These drugs are currently in clinical trials and their updated states will be discussed. With the promise of reducing Aβ generation and deposition with no alarming safety concerns, the amyloid cascade hypothesis in AD therapy may finally become validated.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
6
|
Wyss DF, Cumming JN, Strickland CO, Stamford AW. BACE Inhibitors. FRAGMENT-BASED DRUG DISCOVERY LESSONS AND OUTLOOK 2016. [DOI: 10.1002/9783527683604.ch14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Ghosh AK, Cárdenas EL, Osswald HL. The Design, Development, and Evaluation of BACE1 Inhibitors for the Treatment of Alzheimer’s Disease. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Stach M, Weidkamp AJ, Yang SH, Hung KY, Furkert DP, Harris PWR, Smaill JB, Patterson AV, Brimble MA. Improved Strategy for the Synthesis of the Anticancer Agent Culicinin D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 2015; 43:6765-813. [PMID: 24691405 DOI: 10.1039/c3cs60460h] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
10
|
Hamada Y, Suzuki K, Nakanishi T, Sarma D, Ohta H, Yamaguchi R, Yamasaki M, Hidaka K, Ishiura S, Kiso Y. Structure-activity relationship study of BACE1 inhibitors possessing a chelidonic or 2,6-pyridinedicarboxylic scaffold at the P(2) position. Bioorg Med Chem Lett 2013; 24:618-23. [PMID: 24360554 DOI: 10.1016/j.bmcl.2013.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 11/16/2022]
Abstract
We have previously reported potent substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. While these inhibitors exhibited potent activities in enzymatic and cellular assays (KMI-429 in particular inhibited Aβ production in vivo), these inhibitors contained some natural amino acids that seemed to be required to improve enzymatic stability in vivo and permeability across the blood-brain barrier, so as to be practical drug. Recently, we synthesized non-peptidic and small-sized BACE1 inhibitors possessing a heterocyclic scaffold at the P2 position. Herein we report the SAR study of BACE1 inhibitors possessing this heterocyclic scaffold, a chelidonic or 2,6-pyridinedicarboxylic moiety.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586, Japan; Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Kenji Suzuki
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Tomoya Nakanishi
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Diganta Sarma
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroko Ohta
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Ryoji Yamaguchi
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Moe Yamasaki
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Koushi Hidaka
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshiaki Kiso
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586, Japan; Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan; Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Tamura-cho, Nagahama 526-0829, Japan
| |
Collapse
|
11
|
Prats-Alfonso E, Oberhansl S, Lagunas A, Martínez E, Samitier J, Albericio F. Effective and Versatile Strategy for the Total Solid-Phase Synthesis of Alkanethiols for Biological Applications. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Optimized synthesis and characterization of N-acylethanolamines and O-acylethanolamines, important family of lipid-signalling molecules. Chem Phys Lipids 2012; 165:705-11. [PMID: 22850591 DOI: 10.1016/j.chemphyslip.2012.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 11/21/2022]
Abstract
The endocannabinoid anandamide (N-arachidonoylethanolamine, AEA), a physiologically occurring bioactive compound on CB1 and CB2 receptors, has multiple physiological functions. Since the discovery of AEA additional non-cannabinoid endogenous compounds such as N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) have been identified from mammalian tissues. Virodhamine (O-arachidonoylethanolamine, VA) is the only identified new member of the endocannabinoid family that is characterised by an ester linkage between acylic acid and ethanolamine instead of the amide linkage found in AEA and others non-cannabinoid N-acylethanolamines. It has been reported, as a cautionary note for lipid analyses, that VA can be produced nonenzymatically from AEA (and vice versa) as consequence of O,N-acyl migrations. O,N-acyl migrations are well documented in synthetic organic chemistry literature, but are not well described or recognized with regard to methods in lipid isolation or lipid enzyme studies. We here report an economical and effective protocol for large scale synthesis and characterization of some N- and O-acylethanolamines that could be useful as reference standards in order to investigate their possible formation in biological membranes, with potentially interesting biological properties.
Collapse
|
13
|
Hamada Y, Nakanishi T, Suzuki K, Yamaguchi R, Hamada T, Hidaka K, Ishiura S, Kiso Y. Novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P2 position. Bioorg Med Chem Lett 2012; 22:4640-4. [PMID: 22726930 DOI: 10.1016/j.bmcl.2012.05.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Recently, we reported substrate-based pentapeptidic BACE1 inhibitors possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays. We also designed and synthesized non-peptidic and small-sized inhibitors possessing a heterocyclic scaffold at the P(2) position. By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition mechanism. Hence, we optimized the inhibitors with a focus on their P(2) regions. In this Letter, a series of novel BACE1 inhibitors possessing a 5-nitroisophthalic scaffold at the P(2) position are described along with the results of the related structure-activity relationship study. These small-sized inhibitors are expected improved membrane permeability and bioavailability.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hamada Y, Ishiura S, Kiso Y. BACE1 Inhibitor Peptides: Can an Infinitely Small k cat Value Turn the Substrate of an Enzyme into Its Inhibitor? ACS Med Chem Lett 2012; 3:193-7. [PMID: 24900449 DOI: 10.1021/ml2002373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/26/2011] [Indexed: 11/28/2022] Open
Abstract
Recently, we reported substrate-based pentapeptidic β-secretase (BACE1) inhibitors with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent BACE1 inhibitory activity in enzyme and cell assays, with KMI-429 showing in vivo inhibition of Aβ production. We also designed and synthesized nonpeptidic and small-sized BACE1 inhibitors using "in-silico conformational structure-based design". By studying the structure-activity relationship of these inhibitors, we found that the σ-π interaction of an inhibitor with the BACE1-Arg235 side chain played a key role in the inhibition of BACE1. We speculated that a peptide capable of binding to the BACE1-Arg235 side chain via the σ-π interaction might exhibit BACE1 inhibitory activity. Hence, we designed and synthesized a series of peptides that were modified at the P2 position and found that some of these peptides exhibited a potent BACE1 inhibitory activity despite their structural similarity to the BACE1 substrate.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586,
Japan
- Center for Frontier
Research
in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate
School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshiaki Kiso
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586,
Japan
- Center for Frontier
Research
in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Tamura-cho,
Nagahama 526-0829, Japan
| |
Collapse
|
15
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Hamada Y, Tagad HD, Nishimura Y, Ishiura S, Kiso Y. Tripeptidic BACE1 inhibitors devised by in-silico conformational structure-based design. Bioorg Med Chem Lett 2011; 22:1130-5. [PMID: 22178553 DOI: 10.1016/j.bmcl.2011.11.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022]
Abstract
Previously reported pentapeptidic BACE1 inhibitors, designed using a substrate-based approach, were used as lead compounds for the further design of non-peptidic BACE1 inhibitors. Although these peptidic and non-peptidic inhibitors, with a hydroxymethylcarbonyl isostere as a substrate transition-state mimic, exhibited potent BACE1 inhibitory activities, their molecular-sizes appeared a little too big (molecular weight of >600daltons) for developing practical anti-Alzheimer's disease drugs. To develop lower weight BACE1 inhibitors, a series of tripeptidic BACE1 inhibitors were devised using a design approach based on the conformation of a virtual inhibitor bound to the BACE1 active site, also called 'in-silico conformational structure-based design'. Although these tripeptidic BACE1 inhibitors contained some natural amino acid residues, they are expected to be useful as lead compounds for developing the next generation BACE1 inhibitors, due to their low molecular size and unique structural features compared with previously reported inhibitors.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima, Chuo-ku, Kobe 650-8586, Japan; Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Ma L, Yang Z, Li C, Zhu Z, Shen X, Hu L. Design, synthesis and SAR study of hydroxychalcone inhibitors of human β-secretase (BACE1). J Enzyme Inhib Med Chem 2011; 26:643-8. [PMID: 21222511 DOI: 10.3109/14756366.2010.543420] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
According to the structural characteristics of isoliquiritigenin from Glycyrrhiza uralensis, a series of hydroxychalcones has been designed, synthesized and evaluated for their in vitro inhibitory activities of β-secretase (BACE1). Structure-activity relationship study suggested that inhibitory activity against BACE1 was governed to a greater extent by the hydroxyl substituent on A- and B-ring of the chalcone, and the most active compound was substituted with four hydroxyl group (17, IC(50) = 0.27 μM).
Collapse
Affiliation(s)
- Lei Ma
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
19
|
Hernández D, Lindsay KB, Nielsen L, Mittag T, Bjerglund K, Friis S, Mose R, Skrydstrup T. Further studies toward the stereocontrolled synthesis of silicon-containing peptide mimics. J Org Chem 2010; 75:3283-93. [PMID: 20423092 DOI: 10.1021/jo100301n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Further studies are reported on the utilization of the versatile reaction between chiral sulfinimines and alkyldiphenylsilyl lithium reagents with the goal of preparing a wide range of silanediol-based protease inhibitors. In particular, focus has been placed to demonstrate how a number of genetically encoded amino acid side chains such as serine, threonine, tyrosine, lysine, proline, arginine, aspartate and asparagine might be incorporated into the overall approach. Efforts to apply this synthetic methodology for accessing biologically relevant silanediol dipeptide mimics are also described. This includes the synthesis of a potential inhibitor of the human neutrophil elastase, as well as a diphenylsilane mimic of a hexapeptide fragment of the human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Dácil Hernández
- Center for Insoluble Protein Structures, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 2009; 37:217-22. [PMID: 19804894 DOI: 10.1016/j.bioorg.2009.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
Enzymes involved in the biosynthesis of bacterial peptidoglycan represent important targets for development of new antibacterial drugs. Among them, Mur ligases (MurC to MurF) catalyze the formation of the final cytoplasmic precursor UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid. We present the design, synthesis and biological evaluation of a series of phosphorylated hydroxyethylamines as new type of small-molecule inhibitors of Mur ligases. We show that the phosphate group attached to the hydroxyl moiety of the hydroxyethylamine core is essential for good inhibitory activity. The IC(50) values of these inhibitors were in the micromolar range, which makes them a promising starting point for the development of multiple inhibitors of Mur ligases as potential antibacterial agents. In addition, 1-(4-methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate 7a was discovered as one of the best inhibitors of MurE described so far.
Collapse
Affiliation(s)
- Matej Sova
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
21
|
Huber T, Manzenrieder F, Kuttruff CA, Dorner-Ciossek C, Kessler H. Prolonged stability by cyclization: Macrocyclic phosphino dipeptide isostere inhibitors of β-secretase (BACE1). Bioorg Med Chem Lett 2009; 19:4427-31. [DOI: 10.1016/j.bmcl.2009.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/25/2022]
|
22
|
Significance of interactions of BACE1–Arg235 with its ligands and design of BACE1 inhibitors with P2 pyridine scaffold. Bioorg Med Chem Lett 2009; 19:2435-9. [DOI: 10.1016/j.bmcl.2009.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 03/13/2009] [Indexed: 11/19/2022]
|
23
|
Hamada Y, Kiso Y. Recent progress in the drug discovery of non-peptidic BACE1 inhibitors. Expert Opin Drug Discov 2009; 4:391-416. [DOI: 10.1517/17460440902806377] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Ebina M, Futai E, Tanabe C, Sasagawa N, Kiso Y, Ishiura S. Inhibition by KMI-574 leads to dislocalization of BACE1 from lipid rafts. J Neurosci Res 2009; 87:360-8. [PMID: 18798280 DOI: 10.1002/jnr.21858] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACE1 initiates processing of the amyloid precursor protein (APP) in the production of amyloid beta (Abeta) peptide. After beta-cleavage by BACE1, the C-terminal stub of the APP fragment is further processed by the gamma-secretase complex to produce Abeta. Because APP, Abeta, the gamma-secretase complex, and BACE1 are found in lipid raft membranes, Abeta production is widely accepted to occur in lipid rafts. However, whether BACE1 is activated within the rafts is unclear. To analyze the relationship between the activity and the localization of BACE1, we used a new BACE1 inhibitor, KMI-574, and separated raft membranes on sucrose density gradients. In the presence of KMI-574, the localization of BACE1 shifted from the rafts to nonraft membranes in HEK293 cells. We also analyzed the proteolytically inactive mutants, D93A, D289A, and D93A/D289A, of BACE1. These mutants also moved from rafts to nonrafts, and the D93A/D289A double-mutant localized exclusively to nonraft membranes. The mutants were defective in maturation by glynosylation and formed hyperoligomers, suggesting that the BACE1 oligomers could not exit from the ER and be transported to the Golgi apparatus. Our findings suggest that the activated conformation of BACE1 is important for protein transport and localization to lipid rafts.
Collapse
Affiliation(s)
- Maiko Ebina
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. Controlled Production of Amyloid β Peptide from a Photo-Triggered, Water-Soluble Precursor “Click Peptide“. Chembiochem 2008; 9:3055-65. [DOI: 10.1002/cbic.200800503] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Nguyen JT, Hamada Y, Kimura T, Kiso Y. Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm (Weinheim) 2008; 341:523-35. [PMID: 18763714 DOI: 10.1002/ardp.200700267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this retrospective, personal review covering our research from the late 1980s until 2007, we outline nearly two-decade worth of our own work on several aspartic protease inhibitors including those affecting renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease and we report on aspartic protease inhibitors as potential drugs to treat hypertension, AIDS, malaria, Alzheimer's disease and adult T-cell leukemia, HTLV-I associated myelopathy / tropical spastic paraparesis, and various, respectively, associated diseases. Herein, we describe our methods for rational substrate-based drug design of peptidomimetics that potently inhibit the activity of renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease accordingly, using an appropriately selected inhibitory residue that contained a hydroxymethylcarbonyl isostere. Although this non-hydrolyzable isostere mimics the transition state that is formed during protein cleavage of a substrate, the isostere-containing inhibitor is not cleaved. We highlight our optimization studies in which we used various techniques and tools such as truncation studies, natural and non-natural amino acid substitution studies, various moieties to promote chemical and pharmacological stability, X-ray crystallography, computer-assisted docking and dynamic simulations, quantitative structure-activity relationship studies, and various other methods that this review can barely mention.
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
27
|
Novel non-peptidic and small-sized BACE1 inhibitors. Bioorg Med Chem Lett 2008; 18:1643-7. [DOI: 10.1016/j.bmcl.2008.01.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/08/2008] [Accepted: 01/15/2008] [Indexed: 11/20/2022]
|
28
|
Hamada Y, Abdel-Rahman H, Yamani A, Nguyen JT, Stochaj M, Hidaka K, Kimura T, Hayashi Y, Saito K, Ishiura S, Kiso Y. BACE1 inhibitors: optimization by replacing the P1' residue with non-acidic moiety. Bioorg Med Chem Lett 2008; 18:1649-53. [PMID: 18249539 DOI: 10.1016/j.bmcl.2008.01.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/08/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
Recently, we reported potent BACE1 inhibitors KMI-429, -684, and -574 possessing a hydroxymethylcarbonyl isostere as a substrate transition-state mimic. These inhibitors showed potent inhibitory activities in enzymatic and cell assays, especially, KMI-429 was confirmed to significantly inhibit Abeta production in vivo. However, acidic moieties at the P(4) and P(1)' positions of KMI-compounds were thought to be unfavorable for membrane permeability across the blood-brain barrier. Herein, we replaced acidic moieties at the P(4) position with other hydrogen bond acceptor groups, and these inhibitors exhibited improved BACE1 inhibitory activities in cultured cells. In this study, we replaced the acidic moieties at the P(1)' position with non-acidic and low molecular sized moieties.
Collapse
Affiliation(s)
- Yoshio Hamada
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sankaranarayanan S, Price EA, Wu G, Crouthamel MC, Shi XP, Tugusheva K, Tyler KX, Kahana J, Ellis J, Jin L, Steele T, Stachel S, Coburn C, Simon AJ. In Vivo β-Secretase 1 Inhibition Leads to Brain Aβ Lowering and Increased α-Secretase Processing of Amyloid Precursor Protein without Effect on Neuregulin-1. J Pharmacol Exp Ther 2007; 324:957-69. [DOI: 10.1124/jpet.107.130039] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
30
|
Lamy C, Hofmann J, Parrot-Lopez H, Goekjian P. Synthesis of a fluoroalkene peptidomimetic precursor of N-acetyl-l-glutamyl-l-alanine. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.06.154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Yang X, Zou X, Fu Y, Mou K, Fu G, Ma C, Xu P. Synthesis of β‐Secretase Inhibitors Containing a Hydroxyethylene Dipeptide Isostere. SYNTHETIC COMMUN 2007. [DOI: 10.1080/00397910600977509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiaoming Yang
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Xiaomin Zou
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Yiqiu Fu
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Ke Mou
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Gang Fu
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Chao Ma
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| | - Ping Xu
- a Department of Medicinal Chemistry , School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University , Beijing, China
| |
Collapse
|
32
|
Sohma Y, Kiso Y. "Click peptides"--chemical biology-oriented synthesis of Alzheimer's disease-related amyloid beta peptide (abeta) analogues based on the "O-acyl isopeptide method". Chembiochem 2007; 7:1549-57. [PMID: 16915597 DOI: 10.1002/cbic.200600112] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A clear understanding of the pathological mechanism of amyloid beta peptide (Abeta) 1-42, a currently unexplained process, would be of great significance for the discovery of novel drug targets for Alzheimer's disease (AD) therapy. To date, though, the elucidation of these Abeta1-42 dynamic events has been a difficult issue because of uncontrolled polymerization, which also poses a significant obstacle in establishing experimental systems with which to clarify the pathological function of Abeta1-42. We have recently developed chemical biology-oriented pH- or phototriggered "click peptide" isoform precursors of Abeta1-42, based on the "O-acyl isopeptide method", in which a native amide bond at a hydroxyamino acid residue, such as Ser, is isomerized to an ester bond, the target peptide subsequently being generated by an O-N intramolecular acyl migration reaction. These click peptide precursors did not exhibit any self-assembling character under physiological conditions, thanks to the presence of the one single ester bond, and were able to undergo migration to give the target Abeta1-42 in a quick and easy, one-way (so-called "click")conversion reaction. The use of click peptides could be a useful strategy to investigate the biological functions of Abeta1-42 in AD through inducible activation of Abeta1-42 self-assembly.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry Center for Frontier Research in Medicinal Science 21st Century COE Program, Kyoto Pharmaceutical University Yamashina-ku, Kyoto 607-8412, Japan
| | | |
Collapse
|
33
|
Manzenrieder F, Frank AO, Huber T, Dorner-Ciossek C, Kessler H. Synthesis and biological evaluation of phosphino dipeptide isostere inhibitor of human β-secretase (BACE1). Bioorg Med Chem 2007; 15:4136-43. [PMID: 17433698 DOI: 10.1016/j.bmc.2007.03.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
Phosphino dipeptide (PDP) isosteres are known to be useful analogues of the transition state of metalloprotease substrates. Here we describe the use of this unit for the design of aspartic protease inhibitors. A PDP analogue of OM00-3, a potent BACE1 inhibitor, was synthesized and exhibited high biological activity (IC50 approximately 12 nM).
Collapse
Affiliation(s)
- Florian Manzenrieder
- Department Chemie, Lehrstuhl II für Organische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
34
|
Hu B, Xiong B, Qiu BY, Li X, Yu HP, Xiao K, Wang X, Li J, Shen JK. Construction of a small peptide library related to inhibitor OM99-2 and its structure-activity relationship to beta-secretase. Acta Pharmacol Sin 2006; 27:1586-93. [PMID: 17112413 DOI: 10.1111/j.1745-7254.2006.00432.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To develop probes for detecting the binding specificity between beta-secretase and substrate, and provide reliable biological activity data for further researching encircling substrate-based inhibitors. METHODS To prepare the inhibitors, the hydroxyethylene (HE) segment including P1 and P1'was synthesized after multi-step reactions; the combination of all segments was then completed through solid phase synthesis. Recombinant human beta-secretase ectodomain (amino acid residues 1-460) was expressed as a secreted protein with a C-terminal His tag in insect cells using baculovirus infection, and all compounds were evaluated in this beta-secretase enzyme assay. In order to understand the interaction in detail, the theoretical methods, namely molecular dynamics (MD) simulation and molecular mechanics-generalized-born surface area (MM-GBSA) analysis, were performed on the complex of beta-secretase and OM99-2 to obtain the geometrical and energetical information. RESULTS We designed and constructed a positional scanning combinatorial library including 16 compounds; all members of the library were synthesized based on HE dipeptide isostere. Structure-activity relationship studies at the P4-P1 and P1' -P4'positions led to the discoveries of P and P'sides binding specificity and potent inhibitors 14, 18, and 22. The binding free energy on the whole system and every residue were compared to the biological assay result. CONCLUSION The removal of P4' yielded inhibitor 22 (A3 *B2) with high potency; further truncation of P3'gave inhibitor 18 (A3 *B1) with equal activity, implying that the right side of the inhibitors play a less important role and could be easily simplified, while change on the P side may cause substantial results.
Collapse
Affiliation(s)
- Bin Hu
- State Key Laboratory of Drug Research and National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hamada Y, Igawa N, Ikari H, Ziora Z, Nguyen JT, Yamani A, Hidaka K, Kimura T, Saito K, Hayashi Y, Ebina M, Ishiura S, Kiso Y. β-Secretase inhibitors: Modification at the P4 position and improvement of inhibitory activity in cultured cells. Bioorg Med Chem Lett 2006; 16:4354-9. [PMID: 16757166 DOI: 10.1016/j.bmcl.2006.05.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-570 and KMI-684 in which we replaced carboxylic acid groups at the P(1)(') position of KMI-420 and KMI-429, respectively, with tetrazole derivatives as carboxylic acid bioisosteres. These modifications improved significantly BACE1 inhibitory activity and chemical stability. In this study, the acidic tetrazole ring of the P(4) position of KMI-420 and KMI-570, respectively, was replaced with various hydrogen bond acceptor groups. We found BACE1 inhibitor KMI-574 that exhibited potent inhibitory activity in cultured cells as well as in vitro enzymatic assay.
Collapse
Affiliation(s)
- Yoshio Hamada
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiao K, Li X, Li J, Ma L, Hu B, Yu H, Fu Y, Wang R, Ma Z, Qiu B, Li J, Hu D, Wang X, Shen J. Design, synthesis, and evaluation of Leu∗Ala hydroxyethylene-based non-peptide β-secretase (BACE) inhibitors. Bioorg Med Chem 2006; 14:4535-51. [PMID: 16510290 DOI: 10.1016/j.bmc.2006.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 02/10/2006] [Accepted: 02/11/2006] [Indexed: 11/25/2022]
Abstract
With the aim of developing small molecular non-peptide beta-secretase (BACE) inhibitors, Leu*Ala hydroxyethylene (HE) was investigated as a scaffold to design and synthesize a series of compounds. Taking advantage of efficient combinatorial synthesis approaches and molecular modeling, extensive structure-activity relationship (SAR) studies were carried out on the N- and C-terminal residues of the Leu*Ala HE scaffold. Isobutyl amine was found to be an optimal C-cap, and suitable hydroxylalkylamines at the 3-position and nitro or methyl(methylsulfonyl)amine at the 5-position of isophthalamide as the N-terminus could form additional hydrogen bonds with BACE active sites and help improve potency. Many new potent non-peptide BACE inhibitors were identified in this study. Among them, compounds 37 and 44 exhibited excellent enzyme-inhibiting potency, comparable to that of OM99-2, and obvious inhibitory effects in cell-based assay with low molecular weights (<600).
Collapse
Affiliation(s)
- Kun Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sohma Y, Taniguchi A, Skwarczynski M, Yoshiya T, Fukao F, Kimura T, Hayashi Y, Kiso Y. ‘O-Acyl isopeptide method’ for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit’. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Kimura T, Hamada Y, Stochaj M, Ikari H, Nagamine A, Abdel-Rahman H, Igawa N, Hidaka K, Nguyen JT, Saito K, Hayashi Y, Kiso Y. Design and synthesis of potent β-secretase (BACE1) inhibitors with carboxylic acid bioisosteres. Bioorg Med Chem Lett 2006; 16:2380-6. [PMID: 16481167 DOI: 10.1016/j.bmcl.2006.01.108] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 10/25/2022]
Abstract
Recently, we reported potent and small-sized beta-secretase (BACE1) inhibitors KMI-420 and KMI-429 in which we replaced the Glu residue at the P4 position of KMI-260 and KMI-360, respectively, with a 1H-tetrazole-5-carbonyl DAP (L-alpha,beta-diaminopropionic acid) residue. At the P1' position, these compounds contain one or two carboxylic acid groups, which are unfavorable for crossing the blood-brain barrier. Herein, we report BACE1 inhibitors with P1' carboxylic acid bioisosteres in order to develop practical anti-Alzheimer's disease drugs. Among them, tetrazole ring-containing compounds, KMI-570 (IC50=4.8 nM) and KMI-684 (IC50=1.2 nM), exhibited significantly potent BACE1 inhibitory activities.
Collapse
Affiliation(s)
- Tooru Kimura
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tounge BA, Rajamani R, Baxter EW, Reitz AB, Reynolds CH. Linear interaction energy models for β-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms. J Mol Graph Model 2006; 24:475-84. [PMID: 16293430 DOI: 10.1016/j.jmgm.2005.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 11/24/2022]
Abstract
Computing the binding affinity of a protein-ligand complex is one of the most fundamental and difficult tasks in computer-aided drug design. Many approaches for computing binding affinities can be classified as linear interaction energy (LIE) models as they rely on some type of linear fit of computed interaction energies between ligand and protein. We have examined the computed interaction energies of a series of beta-secretase (BACE) inhibitors in terms of van der Waals, coulombic, and continuum-solvation contributions to ligand binding. We have also systematically examined the effect of different protonation states of the protein and ligands. We find that the binding affinities are relatively insensitive to the protonation state of the protein when neutral ligands are considered. Inclusion of charged ligands leads to large deviations in the coulomb, solvation, and even van der Waals terms. The latter is due to increased repulsive van der Waals interactions in the complex due to the strong coulomb attraction found between oppositely charged functional groups in the protein and ligand. In general, we find that the best models are obtained when the protein is judiciously charged (e.g. Asp32-, Arg235+) and the potentially charged ligands are treated as neutral.
Collapse
Affiliation(s)
- Brett A Tounge
- Drug Discovery, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., P.O. Box 776, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | | | | | | | | |
Collapse
|
40
|
Asai M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabó B, Hashimoto Y, Maruyama K, Tanuma SI, Kiso Y, Ishiura S. The novel beta-secretase inhibitor KMI-429 reduces amyloid beta peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem 2005; 96:533-40. [PMID: 16336629 DOI: 10.1111/j.1471-4159.2005.03576.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Masashi Asai
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sohma Y, Chiyomori Y, Kimura M, Fukao F, Taniguchi A, Hayashi Y, Kimura T, Kiso Y. ‘O-Acyl isopeptide method’ for the efficient preparation of amyloid β peptide 1–42 mutants. Bioorg Med Chem 2005; 13:6167-74. [PMID: 16040249 DOI: 10.1016/j.bmc.2005.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Novel water-soluble isopeptides of Abeta1-42 mutants, '26-O-acyl isoAbeta1-42 (26-AIAbeta42) mutants', which were efficiently converted to intact Abeta1-42 mutants with no byproduct formation under physiological conditions, were synthesized. These isopeptides provide a new system useful for investigating the biological function of Abeta1-42 mutants.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Application of divergent multi-component reactions in the synthesis of a library of peptidomimetics based on γ-amino-α,β-cyclopropyl acids. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Irie K, Murakami K, Masuda Y, Morimoto A, Ohigashi H, Ohashi R, Takegoshi K, Nagao M, Shimizu T, Shirasawa T. Structure of β-amyloid fibrils and its relevance to their neurotoxicity: Implications for the pathogenesis of Alzheimer’s disease. J Biosci Bioeng 2005; 99:437-47. [PMID: 16233815 DOI: 10.1263/jbb.99.437] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 02/14/2005] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease and cerebral amyloid angiopathy are characterized by the deposition of beta-amyloid fibrils consisting of 40- and 42-mer peptides (A beta 40 and A beta 42). Since the aggregation (fibrilization) of these peptides is closely related to the pathogenesis of these diseases, numerous structural analyses of A beta 40 and A beta 42 fibrils have been carried out. A beta 42 plays a more important role in the pathogenesis of these diseases since its aggregative ability and neurotoxicity are considerably greater than those of A beta 40. This review summarizes mainly our own recent findings from the structural analysis of A beta 42 fibrils and discusses its relevance to their neurotoxicity in vitro.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Larner AJ. Secretases as therapeutic targets in Alzheimer’s disease: patents 2000 – 2004. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.10.1403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Kimura T, Shuto D, Hamada Y, Igawa N, Kasai S, Liu P, Hidaka K, Hamada T, Hayashi Y, Kiso Y. Design and synthesis of highly active Alzheimer’s β-secretase (BACE1) inhibitors, KMI-420 and KMI-429, with enhanced chemical stability. Bioorg Med Chem Lett 2005; 15:211-5. [PMID: 15582441 DOI: 10.1016/j.bmcl.2004.09.090] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
Recently, we reported potent and small-sized BACE1 inhibitors KMI-358 and KMI-370 in which the Glu residue is replaced by a beta-N-oxalyl-DAP (l-alpha,beta-diaminopropionyl) residue at the P(4) position. The beta-N-oxalyl-DAP group is important for enhancing BACE1 inhibitory activity, but these inhibitors isomerized to alpha-N-oxalyl-DAP derivatives in solvents. Hence, we used a tetrazole moiety as a bioisostere of the free carboxylic acid of the oxalyl group. KMI-420 and KMI-429, containing a tetrazole ring, showed improved stability and potent enzyme inhibitory activity.
Collapse
Affiliation(s)
- Tooru Kimura
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sohma Y, Hayashi Y, Kimura M, Chiyomori Y, Taniguchi A, Sasaki M, Kimura T, Kiso Y. The ‘O-acyl isopeptide method’ for the synthesis of difficult sequence-containing peptides: application to the synthesis of Alzheimer's disease-related amyloid β peptide (Aβ) 1-42. J Pept Sci 2005; 11:441-51. [PMID: 15761877 DOI: 10.1002/psc.649] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-Ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Trisubstituted (E)-alkene isosteres (TEADIs) and novel cyclopropane amide bond isosteres (CPDIs) were synthesized by aldimine addition and three-component aldimine addition-cyclopropanation methodologies, respectively. These new peptide mimetics can serve as beta-turn promoters.
Collapse
Affiliation(s)
- Peter Wipf
- Department of Chemistry and Center for Chemical Methodologies & Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
48
|
Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y. Design and synthesis of a novel water-soluble Aβ1-42 isopeptide: an efficient strategy for the preparation of Alzheimer's disease-related peptide, Aβ1-42, via O–N intramolecular acyl migration reaction. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.06.059] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Kimura T, Shuto D, Kasai S, Liu P, Hidaka K, Hamada T, Hayashi Y, Hattori C, Asai M, Kitazume S, Saido TC, Ishiura S, Kiso Y. KMI-358 and KMI-370, highly potent and small-sized BACE1 inhibitors containing phenylnorstatine. Bioorg Med Chem Lett 2004; 14:1527-31. [PMID: 15006396 DOI: 10.1016/j.bmcl.2003.12.088] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 12/26/2003] [Indexed: 11/26/2022]
Abstract
Recently, we reported a novel substrate-based octapeptide BACE1 inhibitor KMI-008 containing hydroxymethylcarbonyl (HMC) isostere as a transition-state mimic. Using KMI-008 as a lead compound, a small-sized and highly potent BACE1 inhibitor KMI-370 (IC(50)=3.4 nM) was designed and synthesized.
Collapse
Affiliation(s)
- Tooru Kimura
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sohma Y, Hayashi Y, Skwarczynski M, Hamada Y, Sasaki M, Kimura T, Kiso Y. O?N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides. Biopolymers 2004; 76:344-56. [PMID: 15386265 DOI: 10.1002/bip.20136] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | |
Collapse
|