1
|
Caster KL, Selby TM, Osborn DL, Le Picard SD, Goulay F. Product Detection of the CH(X 2Π) Radical Reaction with Cyclopentadiene: A Novel Route to Benzene. J Phys Chem A 2021; 125:6927-6939. [PMID: 34374546 DOI: 10.1021/acs.jpca.1c03517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of the methylidyne radical (CH(X2Π)) with cyclopentadiene (c-C5H6) is studied in the gas phase at 4 Torr and 373 K using a multiplexed photoionization mass spectrometer. Under multiple collision conditions, the dominant product channel observed is the formation of C6H6 + H. Fitting the photoionization spectrum using reference spectra allows for isomeric resolution of C6H6 isomers, where benzene is the largest contributor with a relative branching fraction of 90 (±5)%. Several other C6H6 isomers are found to have smaller contributions, including fulvene with a branching fraction of 8 (±5)%. Master Equation calculations for four different entrance channels on the C6H7 potential energy surface are performed to explore the competition between CH cycloaddition to a C═C bond vs CH insertion into C-H bonds of cyclopentadiene. Previous studies on CH addition to unsaturated hydrocarbons show little evidence for the C-H insertion pathway. The present computed branching fractions support benzene as the sole cyclic product from CH cycloaddition, whereas fulvene is the dominant product from two of the three pathways for CH insertion into the C-H bonds of cyclopentadiene. The combination of experiment with Master Equation calculations implies that insertion must account for ∼10 (±5)% of the overall CH + cyclopentadiene mechanism.
Collapse
Affiliation(s)
- Kacee L Caster
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Talitha M Selby
- Department of Mathematics and Natural Sciences, University of Wisconsin-Milwaukee, West Bend, Wisconsin 53095, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Mail Stop 9055, Livermore, California 94551, United States
| | - Sebastien D Le Picard
- IPR (Institut de Physique de Rennes), UMR 6251, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
2
|
Zhao L, Lu W, Ahmed M, Zagidullin MV, Azyazov VN, Morozov AN, Mebel AM, Kaiser RI. Gas-phase synthesis of benzene via the propargyl radical self-reaction. SCIENCE ADVANCES 2021; 7:7/21/eabf0360. [PMID: 34020951 PMCID: PMC8139581 DOI: 10.1126/sciadv.abf0360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/31/2021] [Indexed: 06/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been invoked in fundamental molecular mass growth processes in our galaxy. We provide compelling evidence of the formation of the very first ringed aromatic and building block of PAHs-benzene-via the self-recombination of two resonantly stabilized propargyl (C3H3) radicals in dilute environments using isomer-selective synchrotron-based mass spectrometry coupled to theoretical calculations. Along with benzene, three other structural isomers (1,5-hexadiyne, fulvene, and 2-ethynyl-1,3-butadiene) and o-benzyne are detected, and their branching ratios are quantified experimentally and verified with the aid of computational fluid dynamics and kinetic simulations. These results uncover molecular growth pathways not only in interstellar, circumstellar, and solar systems environments but also in combustion systems, which help us gain a better understanding of the hydrocarbon chemistry of our universe.
Collapse
Affiliation(s)
- Long Zhao
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | - Valeriy N Azyazov
- Lebedev Physical Institute, Samara 443011, Russian Federation
- Samara National Research University, Samara 443086, Russian Federation
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Matsugi A. Thermal Decomposition of Benzyl Radicals: Kinetics and Spectroscopy in a Shock Tube. J Phys Chem A 2020; 124:824-835. [PMID: 31917568 DOI: 10.1021/acs.jpca.9b10705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the mechanism of high-temperature reactions of aromatic hydrocarbons and radicals is essential for the modeling of hydrocarbon growth processes in combustion environments. In this study, the thermal decomposition reaction of benzyl radicals was investigated using time-resolved broadband cavity-enhanced absorption spectroscopy behind reflected shock waves at a postshock pressure of 100 kPa and temperatures of 1530, 1630, and 1740 K. The transient absorption spectra during the decomposition were recorded over the spectral range of 282-410 nm. The spectra were contributed by the absorption of benzyl radicals and some transient and residual absorbing species. The temporal behavior of the absorption was analyzed using a kinetic model to determine the rate constant for benzyl decomposition. The obtained rate constants can be represented by the Arrhenius expression k1 = 1.1 × 1012 exp(-30 500 K/T) s-1 with an estimated logarithmic uncertainty of Δlog10 k = ±0.2. Kinetic simulation of the secondary reactions indicated that fulvenallenyl radicals are potentially responsible for the transient absorption that appeared around 400 nm. This assignment is consistent with the available spectroscopic information of this radical. Possible candidates for the residual absorbing species are presented, suggesting the potential importance of ortho-benzyne as a reactive intermediate.
Collapse
Affiliation(s)
- Akira Matsugi
- National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa , Tsukuba , Ibaraki 305-8569 , Japan
| |
Collapse
|
4
|
Fischer KH, Herterich J, Fischer I, Jaeqx S, Rijs AM. Phenylpropargyl Radicals and Their Dimerization Products: An IR/UV Double Resonance Study. J Phys Chem A 2012; 116:8515-22. [PMID: 22830569 DOI: 10.1021/jp306075a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kathrin H. Fischer
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jörg Herterich
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute
of Physical and Theoretical
Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sander Jaeqx
- FOM institute for plasma physics Rijnhuizen, Edisonbaan 14, 3934 MN Nieuwegein,
The Netherlands
| | - Anouk M. Rijs
- Radboud University Nijmegen, Institute for Molecules and Materials, Toernooiveld
7, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
5
|
Matsugi A, Suma K, Miyoshi A. Kinetics and Mechanisms of the Allyl + Allyl and Allyl + Propargyl Recombination Reactions. J Phys Chem A 2011; 115:7610-24. [DOI: 10.1021/jp203520j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Matsugi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohsuke Suma
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Miyoshi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Castiglioni L, Vukovic S, Crider PE, Lester WA, Neumark DM. Intramolecular competition in the photodissociation of C3D3 radicals at 248 and 193 nm. Phys Chem Chem Phys 2010; 12:10714-22. [DOI: 10.1039/c0cp00380h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Vázquez J, Harding ME, Gauss J, Stanton JF. High-Accuracy Extrapolated ab Initio Thermochemistry of the Propargyl Radical and the Singlet C3H2 Carbenes. J Phys Chem A 2009; 113:12447-53. [DOI: 10.1021/jp9029908] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juana Vázquez
- Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| | - Michael E. Harding
- Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| | - Jürgen Gauss
- Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| | - John F. Stanton
- Center for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, and Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
8
|
Zheng X, Song Y, Zhang J. Ultraviolet Photodissociation Dynamics of the Propargyl Radical. J Phys Chem A 2009; 113:4604-12. [DOI: 10.1021/jp8113336] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xianfeng Zheng
- Department of Chemistry, University of California at Riverside, Riverside, California 92521
| | - Yu Song
- Department of Chemistry, University of California at Riverside, Riverside, California 92521
| | - Jingsong Zhang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
9
|
Crider PE, Castiglioni L, Kautzman KE, Neumark DM. Photodissociation of the propargyl and propynyl (C3D3) radicals at 248 and 193 nm. J Chem Phys 2009; 130:044310. [DOI: 10.1063/1.3067705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Newby JJ, Liu CP, Müller CW, Zwier TS. Jet-cooled vibronic spectroscopy of potential intermediates along the pathway to PAH: phenylcyclopenta-1,3-diene. Phys Chem Chem Phys 2009; 11:8316-29. [DOI: 10.1039/b903827b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
Tranter RS, Giri BR, Kiefer JH. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:034101. [PMID: 17411196 DOI: 10.1063/1.2437150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr.
Collapse
Affiliation(s)
- Robert S Tranter
- Chemistry Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4831, USA.
| | | | | |
Collapse
|
13
|
Georgievskii Y, Miller JA, Klippenstein SJ. Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Phys Chem Chem Phys 2007; 9:4259-68. [PMID: 17687474 DOI: 10.1039/b703261g] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this paper direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicals is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all pi-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C(6)H(5) + H --> C(6)H(6) exit channel of the C(3)H(3) + C(3)H(3) reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH(3) + H reference system. For the C(3)H(3) + C(3)H(3) reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C(6)H(5) + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C(3)H(3) + C(3)H(3) and C(3)H(5) + C(3)H(5) self-reactions compare favorably with the available experimental data. To our knowledge there are no experimental rate data for the C(3)H(3) + C(3)H(5) reaction.
Collapse
Affiliation(s)
- Yuri Georgievskii
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969, USA
| | | | | |
Collapse
|
14
|
Miller CH, Tang W, Tranter RS, Brezinsky K. Shock tube pyrolysis of 1,2,4,5-hexatetraene. J Phys Chem A 2006; 110:3605-13. [PMID: 16526641 DOI: 10.1021/jp055990v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1,2,4,5-Hexatetraene (1245HT) is, according to theory, a key intermediate to benzene from propargyl radicals in a variety of flames; however, it has only been experimentally observed once in previous studies of the C3H3 + C3H3 reaction. To determine if it is indeed an intermediate to benzene formation, 1245HT was synthesized, via a Grignard reaction, and pyrolysized in a single-pulse shock tube at two nominal pressures of 22 and 40 bar over a temperature range from 540 to 1180 K. At temperatures T < 700 K, 1245HT converts efficiently to 3,4-dimethylenecyclobutene (34DMCB) with a rate constant of k = 10(10.16) x exp(-23.4 kcal/RT), which is in good agreement with the one calculated by Miller and Klippenstein. At higher temperatures, various C6H6 isomers were generated, which is consistent with theory and earlier experimental studies. Thus, the current work strongly supports the theory that 1245HT plays a bridging role in forming benzene from propargyl radicals. RRKM modeling of the current data set has also been carried out with the Miller-Klippenstein potential. It was found that the theory gives reasonably good predictions of the experimental observations of 1245HT, 1,5-hexadiyne (15HD), and 34DMCB in the current study and in our earlier studies of 15HD pyrolysis and propargyl recombination; however, there is considerable discrepancy between experiment and theory for the isomerization route of 1,2-hexadien-5-yne (12HD5Y) --> 2-ethynyl-1,3-butadiene (2E13BD) --> fulvene.
Collapse
Affiliation(s)
- Cheryl H Miller
- Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, M/C 251, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
15
|
McCunn LR, Bennett DIG, Butler LJ, Fan H, Aguirre F, Pratt ST. Photodissociation of Propargyl Chloride at 193 nm. J Phys Chem A 2005; 110:843-50. [PMID: 16419980 DOI: 10.1021/jp058148y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photodissociation of propargyl chloride (C3H3Cl) has been studied at 193 nm. Ion imaging experiments with state-selective detection of the Cl atoms and single-photon ionization of the C3H3 radicals were performed, along with measurements of the Cl + C3H3 and HCl + C3H2 recoil kinetic energy distributions, using a scattering apparatus with electron bombardment ionization detection to resolve the competing Cl and HCl elimination channels. The experiments allow the determination of the Cl (2P3/2) and Cl (2P1/2) (hereafter Cl) branching fractions associated with the C-Cl bond fission, which are determined to be 0.5 +/- 0.1 for both channels. Although prior translational spectroscopy studies by others had concluded that the low velocity signal at the Cl+ mass was due to daughter fragments of the HCl elimination products, the present work shows that Cl atoms are produced with a bimodal recoil kinetic energy distribution. The major C-Cl bond fission channel, with a narrow recoil kinetic energy distribution peaking near 40 kcal/mol, produces both Cl and Cl, whereas the minor (5%) channel, partitioning much less energy to relative kinetic energy, produces only ground spin-orbit state Cl atoms. The maximum internal energy of the radicals produced in the low-recoil-kinetic-energy channel is consistent with this channel producing electronically excited propargyl radicals. Finally, in contrast to previous studies, the present work determines the HCl recoil kinetic energy distribution and identifies the possible contribution to this spectrum from propargyl radicals cracking to C3+ ions in the mass spectrometer.
Collapse
Affiliation(s)
- Laura R McCunn
- James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
16
|
Tang W, Tranter RS, Brezinsky K. Isomeric Product Distributions from the Self-Reaction of Propargyl Radicals. J Phys Chem A 2005; 109:6056-65. [PMID: 16833941 DOI: 10.1021/jp050640u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated the isomeric C6H6 product distributions of the self-reaction of propargyl (C3H3) radicals at two nominal pressures of 25 and 50 bar over the temperature range 720-1350 K. Experiments were performed using propargyl iodide as the radical precursor in a high-pressure single-pulse shock tube with a residence time of 1.6-2.0 ms. The relative yields of the C6H6 products are strongly temperature dependent, and the main products are 1,5-hexadiyne (15HD), 1,2-hexadiene-5-yne (12HD5Y), 3,4-dimethylenecyclobutene (34DMCB), 2-ethynyl-1,3-butadiene (2E13BD), fulvene, and benzene, with the minor products being cis- and trans-1,3-hexadiene-5-yne (13HD5Y). 1,2,4,5-Hexatetraene (1245HT) was observed below 750 K but the concentrations were too low to be quantified. The experimentally determined entry branching ratios are: 44% 15HD, 38% 12HD5Y, and 18% 1245HT, which is efficiently converted to 34DMCB. Following the initial recombination step, various C6H6 isomers are formed by thermal rearrangement. The experimentally observed concentrations for the C6H6 species are in good agreement with earlier experiments on 15HD thermal rearrangement.
Collapse
Affiliation(s)
- Weiyong Tang
- Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, M/C 251, Chicago, Illinois, 60607, USA
| | | | | |
Collapse
|
17
|
Eisfeld W. Ab initio calculation of electronic absorption spectra and ionization potentials of C3H3 radicals. Phys Chem Chem Phys 2005; 7:3924-32. [DOI: 10.1039/b511343a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|