1
|
Ganegamage SK, Zou Y, Heagy MD. Dual and Panchromatic Emission from N-Aryl-phenanthridinones: Extension of the Seesaw Photophysical Model with a Slight Twist. J Org Chem 2023; 88:11424-11433. [PMID: 37399167 DOI: 10.1021/acs.joc.2c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
White-light emission from a single organic molecule, known as a single white-light emitter, is a rare phenomenon and desirable property for a class of materials with potential future applications in white lighting. Since N-aryl-naphthalimides (NANs) have been shown to follow excited state behavior and unique dual or panchromatic emission through a substituent pattern prescribed via a seesaw photophysical model, this study investigates the substituent effects on the fluorescence emission of structurally related N-aryl-phenanthridinones (NAPs) dyes. Following a similar placement prescription of an electron-releasing group (ERG) and electron-withdrawing group (EWG) at the phenanthridinone core and N-aryl moiety, we discovered from time-dependent density functional theory (TD-DFT) results that NAPs show a substitution pattern opposite to NANs in order to promote S2 and higher excited states. Interestingly, 2-methoxy-5-[4-nitro-3(trifluoromethyl)phenyl]phenanthridin-6(5H)-one 6e displayed a pronounced dual and panchromatic fluorescence dye depending on the solvent. For the six dyes included in the study, full spectral information in a variety of solvents, as well as fluorescence quantum yield and lifetime are reported. TD-DFT calculations support the predicted optical behavior via mixing of S2 and S6 excited states via anti-Kasha type of emission behavior.
Collapse
Affiliation(s)
- Susantha K Ganegamage
- Department of Chemistry, The New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Yan Zou
- Department of Chemistry, The New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Michael D Heagy
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
2
|
Behera SK, Park SY, Gierschner J. Duale Emission: Klassen, Mechanismen und Bedingungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM) Department of Materials Science and Engineering Seoul National University ENG 445 Seoul 08826 Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| |
Collapse
|
3
|
Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020; 60:22624-22638. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Indexed: 12/28/2022]
Abstract
There has been much interest in dual-emission materials in the past few years for materials and life science applications; however, a systematic overview of the underlying processes is so-far missing. We resolve this issue herein by classifying dual-emission (DE) phenomena as relying on one emitter with two emitting states (DE1), two independent emitters (DE2), or two correlated emitters (DE3). Relevant DE mechanisms for materials science are then briefly described together with the electronic and/or geometrical conditions under which they occur. For further reading, references are given that offer detailed insight into the complex mechanistic aspects of the various DE processes or provide overviews on materials families or their applications. By avoiding ambiguities and misinterpretations, this systematic, insightful Review might inspire future targeted designs of DE materials.
Collapse
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| |
Collapse
|
4
|
Bao L, Zou Y, Kirk A, Heagy MD. Electronic Properties and Electroluminescent OLED Performance of Panchromatic Emissive N-Aryl-2,3-naphthalimides. J Phys Chem A 2017; 121:9708-9719. [DOI: 10.1021/acs.jpca.7b08110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lili Bao
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | - Yan Zou
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | - Allison Kirk
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | - Michael D. Heagy
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
5
|
Faulhaber K, Granzhan A, Ihmels H, Otto D, Thomas L, Wells S. Studies of the fluorescence light-up effect of amino-substituted benzo[b]quinolizinium derivatives in the presence of biomacromolecules. Photochem Photobiol Sci 2011; 10:1535-45. [PMID: 21720633 DOI: 10.1039/c1pp05106g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A comparative study of the ability of amino-substituted benzo[b]quinolizinium derivatives to act as DNA- or protein-sensitive fluorescent probes is presented. Spectrophotometric titrations, DNA denaturation studies and viscometric titrations showed that all tested aminobenzo[b]quinolizinium derivatives intercalate into DNA with binding constants K(b) = 10(4)-10(5) M(-1). The intense fluorescence of the 9-aminobenzo[b]quinolizinium (Φ(fl) = 0.41) as well as the intrinsically very weak emission of the 7-aminobenzo[b]quinolizinium (Φ(fl) < 0.005) are quenched by the addition of DNA, most likely caused by a photoinduced electron transfer (PET) between the excited intercalated ligand and the DNA bases. The 6-aminobenzo[b]quinolizinium (1b) and the 6-amino-9-bromobenzo[b]quinolizinium (1c) exhibit very low fluorescence intensity in water (Φ(fl) < 0.005). However, in water-glycerol mixtures the emission intensity increases by factors of 56 (1b) and 27 (1c) with increasing glycerol content of the solution (0-100 wt%), which indicates the radiationless deactivation of the excited state of 1b and 1c due to a torsional relaxation, i.e. rotation about the exocyclic C(ar)-NH(2) bond. In the case of the bromo-substituted derivative 1c, a viscosity-independent heavy-atom-effect of the bromo substituent leads to additional quenching. The association of 1b and 1c with ds DNA leads to a restricted conformational flexibility of the intercalated ligand and results in an increase of fluorescence intensity. This effect is particularly strong in the presence of poly[dA-dT]-poly[dA-dT]. Upon association with ct DNA or poly[dG-dC]-poly[dG-dC] only very small enhancement of emission intensity (1b) or even a slight quenching (1c) of the fluorescence was observed because of the interfering PET reaction with the guanine residues. Preliminary experiments reveal that the 6-aminobenzo[b]quinolizinium derivatives 1b and 1c may also be employed as protein-sensitive probes, because their emission intensity increases upon association with selected albumins.
Collapse
Affiliation(s)
- Katja Faulhaber
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, 94047, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Matsubayashi K, Kajimura C, Kubo Y, Yoshihara T, Tobita S. Control of Photophysical Properties of 1,8-Naphthalimides by Electron-Withdrawing Substituents Introduced into N-Alkyl Side Chains. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Kuroda S, Oda M, Tamura N, Miyatake R, Matsumoto N, Horino Y, Miyawaki D. Synthesis and Emission Properties of 1,6-Methano[10]annulene-3,4-dicarboximides. HETEROCYCLES 2011. [DOI: 10.3987/com-11-12135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Oelgemöller M, Kramer WH. Synthetic photochemistry of naphthalimides and related compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2011.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Matsubayashi K, Shiratori H, Kubo Y. Effect of addition of trifluoroacetic acid on the photophysical properties and photoreactions of aromatic imides. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Paudel S, Nandhikonda P, Heagy MD. A comparative study into two dual fluorescent mechanisms via positional isomers of N-hydroxyarene-1,8-naphthalimides. J Fluoresc 2009; 19:681-91. [PMID: 19191013 DOI: 10.1007/s10895-009-0462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 01/16/2009] [Indexed: 11/28/2022]
Abstract
Three isomers of hydroxy substituted N-aryl-1, 8-naphthalimides based on N-aryl naphthalic anhydride fluorophore have been synthesized. The decrease in fluorescence intensity from ortho to para substitution of hydroxy group on N-aryl reveals that para substituted isomer undergoes ESEC (Excited State with Extended Conjugation) mechanism which is proved by low quantum yield and appearance of dual emission. The ortho isomer, however, has high quantum yield and no tautomer emission, indicating ESIPT (Excited State Intramolecular Proton Transfer) mechanism is not operating. Similarly, all these isomers show strong fluorescence quenching in presence of strong H-bonding solvents like DMSO and pyridine, but there was neither the shift of emission bands nor the appearance of new bands for proton transfer to these solvents. Thus, it also indicates the absence of excited state proton transfer mechanism. Both the ortho isomer, and to a greater degree the meta isomer, showed larger quenching constants (Kapp) with pyridine than DMSO. This trend opposes the hydrogen-bond affinity for these solvents with phenol and points to a 2-point recognition interaction. In addition, a naphthalimide derivative using 2-aminoimidazole was prepared and examined for optimal positioning of a six-membered ring hydrogen bond pattern. No dual fluorescence was observed for this compound either.
Collapse
Affiliation(s)
- Sangita Paudel
- Department of Chemistry, New Mexico Institute of Mining & Technology, 801 Leroy Avenue, Socorro, NM 87801, USA
| | | | | |
Collapse
|
11
|
|