1
|
Outzen L, Münzmay M, Frangioni JV, Maison W. Synthesis of Modular Desferrioxamine Analogues and Evaluation of Zwitterionic Derivatives for Zirconium Complexation. ChemMedChem 2023; 18:e202300112. [PMID: 37057615 DOI: 10.1002/cmdc.202300112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
The natural siderophore desferrioxamine B (DFOB) has been used for targeted PET imaging with 89 Zr before. However, Zr-DFOB has a limited stability and a number of derivatives have been developed with improved chelation properties for zirconium. We describe the synthesis of pseudopeptidic analogues of DFOB with azido side chains. These are termed AZA-DFO (hexadentate) and AZA-DFO* (octadentate) and are assembled via a modular synthesis from Orn-β-Ala and Lys-β-Ala. Nine different chelators have been conjugated to zwitterionic moieties by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The resulting water-soluble chelators form Zr complexes under mild conditions (room temperature for 90 min). Transchelation assays with 1000-fold excess of EDTA and 300-fold excess of DFOB revealed that a short spacing of hydroxamates in (Orn-β-Ala)3-4 leads to improved complex stability compared to a longer spacing in (Lys-β-Ala)3-4 . We found that the alignment of amide groups in the pseudopeptide backbone and the presence of zwitterionic sidechains did not compromise the stability of the Zr-complexes with our chelators. We believe that the octadentate derivative AZA-DFO* is particularly valuable for the preparation of new Zr-chelators for targeted imaging which combine tunable pharmacokinetic properties with high complex stability and fast Zr-complexation kinetics.
Collapse
Affiliation(s)
- Lasse Outzen
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | - Moritz Münzmay
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| | | | - Wolfgang Maison
- Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146, Hamburg, Germany
| |
Collapse
|
2
|
Lukács M, Csilla Pálinkás D, Szunyog G, Várnagy K. Metal Binding Ability of Small Peptides Containing Cysteine Residues. ChemistryOpen 2021; 10:451-463. [PMID: 33830669 PMCID: PMC8028610 DOI: 10.1002/open.202000304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
The Cd(II)-, Pb(II)-, Ni(II)- and Zn(II)-complexes of small terminally protected peptides containing CXXX, XXXC, XCCX, CXn C (n=1-3) sequences have been studied with potentiometric, UV/Vis and CD spectroscopic techniques. The cysteine thiolate group is the primary binding site for all studied metal ions, but the presence of a histidyl or aspartyl side chain in the molecule contributes to the stability of the complexes. For two-cysteine containing peptides the (S- ,S- ) coordinated species are formed in the physiological pH range and the stability increases in the Ni(II)
Collapse
Affiliation(s)
- Márton Lukács
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Dóra Csilla Pálinkás
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Györgyi Szunyog
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
3
|
Szunyog G, Várnagy K. Lead(II) complexes of oligopeptides containing two cysteine residues. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Lihi N, Lukács M, Raics M, Szunyog G, Várnagy K, Kállay C. The effect of carboxylate groups on the complexation of metal ion with oligopeptides – Potentiometric investigation. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Kocyła A, Pomorski A, Krężel A. Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications. J Inorg Biochem 2017; 176:53-65. [PMID: 28863280 DOI: 10.1016/j.jinorgbio.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
Zincon (ZI) is one of the most common chromophoric chelating probes for the determination of Zn2+ and Cu2+ ions. It is also known to bind other metal ions. However, literature data on its binding properties and molar absorption coefficients are rather poor, varying among publications or determined only in certain conditions. There are no systematic studies on Zn2+ and Cu2+ affinities towards ZI performed under various conditions. However, this widely commercially available and inexpensive agent is frequently the first choice probe for the measurement of metal binding and release as well as determination of affinity constants of other ligands/macromolecules of interest. Here, we establish the spectral properties and the stability of ZI and its complexes with Zn2+, Cu2+, Cd2+, Hg2+, Co2+, Ni2+ and Pb2+ at multiple pH values from 6 to 9.9. The obtained results show that in water solution the MZI complex is predominant, but in the case of Co2+ and Ni2+, M(ZI)2 complexes are also formed. The molar absorption coefficient at 618 nm for ZnZI and 599nm for CuZI complexes at pH7.4 in buffered (I=0.1M) water solutions are 24,200 and 26,100M-1cm-1, respectively. Dissociation constants of those complexes are 2.09×10-6 and 4.68×10-17M. We also characterized the metal-assisted Zincon decomposition. Our results provide new and reassessed optical and stability data that are applicable to a wide range of chemical and bioinorganic applications including metal ion detection, and quantification and affinity studies of ligands of interest. SYNOPSIS Accurate values of molar absorption coefficients of Zincon complex with Zn2+, Cd2+, Hg2+, Co2+, Ni2+, Cu2+, and Pb2+ for rapid metal ion quantification are provided. Zincon stability constants with Zn2+ and Cu2+ in a wide pH range were determined.
Collapse
Affiliation(s)
- Anna Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
6
|
N,N′-Dihydroxy-N,N′-diisopropylhexanediamide, a siderophore analogue, as a possible iron chelating agent for hydroponic conditions: metal equilibrium studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1057-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Buglyó P, Bíró L, Nagy I, Szőcs B, Farkas E. Hydroxypyronate, thiohydroxypyronate and hydroxypyridinonate derivatives as potential Pb2+ sequestering agents. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Farkas E, Bóka B, Szőcs B, Godó AJ, Sóvágó I. Effect of the types and arrangements of donor atoms on Pb(II) versus Zn(II) binding preference of selected amino acids, peptides and derivatives. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Pakchung AAH, Lifa T, Codd R. Solution species of Fe(iii), Ga(iii), In(iii) or Ln(iii) and suberodihydroxamic acid from electrospray ionization mass spectrometry. RSC Adv 2013. [DOI: 10.1039/c3ra40437d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Farkas E, Szabó O. Co(II) and Co(III) hydroxamate systems: A solution equilibrium study. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Szabó O, Farkas E. Characterization of Mn(II) and Mn(III) binding capability of natural siderophores desferrioxamine B and desferricoprogen as well as model hydroxamic acids. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Pakchung AAH, Soe CZ, Lifa T, Codd R. Complexes formed in solution between vanadium(IV)/(V) and the cyclic dihydroxamic acid putrebactin or linear suberodihydroxamic acid. Inorg Chem 2011; 50:5978-89. [PMID: 21627146 PMCID: PMC3124108 DOI: 10.1021/ic1025119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Indexed: 01/25/2023]
Abstract
An aerobic solution prepared from V(IV) and the cyclic dihydroxamic acid putrebactin (pbH(2)) in 1:1 H(2)O/CH(3)OH at pH = 2 turned from blue to orange and gave a signal in the positive ion electrospray ionization mass spectrometry (ESI-MS) at m/z(obs) 437.0 attributed to the monooxoV(V) species [V(V)O(pb)](+) ([C(16)H(26)N(4)O(7)V](+), m/z(calc) 437.3). A solution prepared as above gave a signal in the (51)V NMR spectrum at δ(V )= -443.3 ppm (VOCl(3), δ(V) = 0 ppm) and was electron paramagnetic resonance silent, consistent with the presence of [V(V)O(pb)](+). The formation of [V(V)O(pb)](+) was invariant of [V(IV)]:[pbH(2)] and of pH values over pH = 2-7. In contrast, an aerobic solution prepared from V(IV) and the linear dihydroxamic acid suberodihydroxamic acid (sbhaH(4)) in 1:1 H(2)O/CH(3)OH at pH values of 2, 5, or 7 gave multiple signals in the positive and negative ion ESI-MS, which were assigned to monomeric or dimeric V(V)- or V(IV)-sbhaH(4) complexes or mixed-valence V(V)/(IV)-sbhaH(4) complexes. The complexity of the V-sbhaH(4) system has been attributed to dimerization (2[V(V)O(sbhaH(2))](+) ↔ [(V(V)O)(2)(sbhaH(2))(2)](2+)), deprotonation ([V(V)O(sbhaH(2))](+) - H(+) ↔ [V(V)O(sbhaH)](0)), and oxidation ([V(IV)O(sbhaH(2))](0) -e(-) ↔ [V(V)O(sbhaH(2))](+)) phenomena and could be described as the sum of two pH-dependent vectors, the first comprising the deprotonation of hydroxamate (low pH) to hydroximate (high pH) and the second comprising the oxidation of V(IV) (low pH) to V(V) (high pH). Macrocyclic pbH(2) was preorganized to form [V(V)O(pb)](+), which would provide an entropy-based increase in its thermodynamic stability compared to V(V)-sbhaH(4) complexes. The half-wave potentials from solutions of [V(IV)]:[pbH(2)] (1:1) or [V(IV)]:[sbhaH(4)] (1:2) at pH = 2 were E(1/2) -335 or -352 mV, respectively, which differed from the expected trend (E(1/2) [VO(pb)](+/0) < V(V/IV)-sbhaH(4)). The complex solution speciation of the V(V)/(IV)-sbhaH(4) system prevented the determination of half-wave potentials for single species. The characterization of [V(V)O(pb)](+) expands the small family of documented V-siderophore complexes relevant to understanding V transport and assimilation in the biosphere.
Collapse
Affiliation(s)
- Amalie A. H. Pakchung
- Center for Heavy Metals Research, School of Chemistry and School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Cho Zin Soe
- Center for Heavy Metals Research, School of Chemistry and School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Tulip Lifa
- Center for Heavy Metals Research, School of Chemistry and School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- Center for Heavy Metals Research, School of Chemistry and School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
13
|
Metal complexes of cyclic hydroxamates. Synthesis and crystal structures of 3-hydroxy-2-methyl-3H-quinazolin-4-one (ChaH) and of its Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.12.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Farkas E, Bátka D, Kremper G, Pócsi I. Structure-based differences between the metal ion selectivity of two siderophores desferrioxamine B (DFB) and desferricoprogen (DFC): Why DFC is much better Pb(II) sequestering agent than DFB? J Inorg Biochem 2008; 102:1654-9. [DOI: 10.1016/j.jinorgbio.2008.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/21/2008] [Indexed: 11/16/2022]
|
15
|
Di Marco VB, Bombi GG. Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. MASS SPECTROMETRY REVIEWS 2006; 25:347-79. [PMID: 16369936 DOI: 10.1002/mas.20070] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the 20 years, since the introduction of electrospray mass spectrometry (ESI-MS), the use of this technique in various fields of inorganic, organometallic, and analytical chemistry has been steadily increasing. In this study, the application of ESI-MS to the study of metal-ligand solution equilibria is reviewed (till 2004 included). In a first section, advantages and drawbacks of ESI-MS in this type of application are described. Subsequently, a list of ca. 300 studies is reported, in which ESI-MS was used to give number and stoichiometry of the species at equilibrium, or also to estimate their stability constants. All studies are classified according to the metal ions under examination. Other related applications, such as host-guest interactions and metal ion-protein binding studies, are briefly reviewed as well.
Collapse
|
16
|
Enyedy EA, Pócsi I, Farkas E. Complexation of desferricoprogen with trivalent Fe, Al, Ga, In and divalent Fe, Ni, Cu, Zn metal ions: effects of the linking chain structure on the metal binding ability of hydroxamate based siderophores. J Inorg Biochem 2005; 98:1957-66. [PMID: 15522421 DOI: 10.1016/j.jinorgbio.2004.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/10/2004] [Accepted: 08/24/2004] [Indexed: 11/17/2022]
Abstract
Complexes of the natural siderophore, desferricoprogen (DFC), with several trivalent and divalent metal ions in aqueous solution were studied by pH-potentiometry, UV-Vis spectrophotometry and cyclic voltammetry. DFC was found to be an effective metal binding ligand, which, in addition to Fe(III), forms complexes of high stability with Ga(III), Al(III), In(III), Cu(II), Ni(II) and Zn(II). Fe(II), however, is oxidized by DFC under anaerobic conditions and Fe(III) complexes are formed. By comparing the results with those of desferrioxamine B (DFB), it can be concluded that the conjugated beta-double bond slightly increases the stability of the hydroxamate chelates, consequently increases the stability of mono-chelated complexes of DFC. Any steric effect by the connecting chains arises only in the bis- and tris-chelated complexes. With metal ions possessing a relatively big ionic radius (Cu(II), Ni(II), Zn(II), In(III)) DFC, containing a bit longer chains than DFB, forms slightly more stable complexes. With smaller metal ions the trend is the opposite. Also a notable difference is that stable trinuclear complex, [Cu(3)L(2)], is formed with DFC but not with DFB. Possible bio-relevance of the Fe(II)/Fe(III) results is also discussed in the paper.
Collapse
Affiliation(s)
- Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem ter 1, P.O. Box 21, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|