1
|
Bosman R, Ortolani G, Ghosh S, James D, Norder P, Hammarin G, Úlfarsdóttir TB, Ostojić L, Weinert T, Dworkowski F, Tomizaki T, Standfuss J, Brändén G, Neutze R. Structural basis for the prolonged photocycle of sensory rhodopsin II revealed by serial synchrotron crystallography. Nat Commun 2025; 16:3460. [PMID: 40216733 PMCID: PMC11992208 DOI: 10.1038/s41467-025-58263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/15/2025] [Indexed: 04/14/2025] Open
Abstract
Microbial rhodopsins form a diverse family of light-sensitive seven-transmembrane helix retinal proteins that function as active proton or ion pumps, passive light-gated ion channels, and photosensors. To understand how light-sensing in archaea is initiated by sensory rhodopsins, we perform serial synchrotron X-ray crystallography (SSX) studies of light induced conformational changes in sensory rhodopsin II (NpSRII) from the archaea Natronomonas pharaonis, both collecting time-resolved SSX data and collecting SSX data during continuous illumination. Comparing light-induced electron density changes in NpSRII with those reported for bacteriorhodopsin (bR) reveals several common light-induced structural perturbations. Unlike bR, however, helix G of NpSRII does not unwind near the conserved lysine residue to which retinal is covalently bound and therefore transient water molecule binding sites do not arise immediately to the cytoplasmic side of retinal. These structural differences prolong the duration of the NpSRII photocycle relative to bR, allowing time for the light-initiated sensory signal to be amplified.
Collapse
Affiliation(s)
- Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Daniel James
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Per Norder
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Florian Dworkowski
- Laboratory of Femtochemistry, Center for Photon Science, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Takashi Tomizaki
- Laboratory of Macromolecules and Bioimaging, Center for Photon Science, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Center for Life Sciences, Paul Scherrer Institut, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
2
|
Matsunami-Nakamura R, Tamogami J, Takeguchi M, Ishikawa J, Kikukawa T, Kamo N, Nara T. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. FEBS Lett 2023; 597:2334-2344. [PMID: 37532685 DOI: 10.1002/1873-3468.14711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.
Collapse
Affiliation(s)
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Miki Takeguchi
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Junya Ishikawa
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Japan
| |
Collapse
|
3
|
Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv 2023; 13:5367-5381. [PMID: 36793294 PMCID: PMC9923458 DOI: 10.1039/d2ra07073a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/15/2023] Open
Abstract
Rhodopsins, a family of photoreceptive membrane proteins, contain retinal as a chromophore and were firstly identified as reddish pigments from frog retina in 1876. Since then, rhodopsin-like proteins have been identified mainly from animal eyes. In 1971, a rhodopsin-like pigment was discovered from the archaeon Halobacterium salinarum and named bacteriorhodopsin. While it was believed that rhodopsin- and bacteriorhodopsin-like proteins were expressed only in animal eyes and archaea, respectively, before the 1990s, a variety of rhodopsin-like proteins (called animal rhodopsins or opsins) and bacteriorhodopsin-like proteins (called microbial rhodopsins) have been progressively identified from various tissues of animals and microorganisms, respectively. Here, we comprehensively introduce the research conducted on animal and microbial rhodopsins. Recent analysis has revealed that the two rhodopsin families have common molecular properties, such as the protein structure (i.e., 7-transmembrane structure), retinal structure (i.e., binding ability to cis- and trans-retinal), color sensitivity (i.e., UV- and visible-light sensitivities), and photoreaction (i.e., triggering structural changes by light and heat), more than what was expected at the early stages of rhodopsin research. Contrastingly, their molecular functions are distinctively different (e.g., G protein-coupled receptors and photoisomerases for animal rhodopsins and ion transporters and phototaxis sensors for microbial rhodopsins). Therefore, based on their similarities and dissimilarities, we propose that animal and microbial rhodopsins have convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism.
Collapse
Affiliation(s)
- Keiichi Kojima
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Japan
| |
Collapse
|
4
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
5
|
Abstract
Research on type 1 rhodopsins spans now a history of 50 years. Originally, just archaeal ion pumps and sensors have been discovered. However, with modern genetic techniques and gene sequencing tools, more and more proteins were identified in all kingdoms of life. Spectroscopic and other biophysical studies revealed quite diverse functions. Ion pumps, sensors, and channels are imprinted in the same seven-helix transmembrane protein scaffold carrying a retinal prosthetic group. In this review, molecular biology methods are described, which enabled the elucidation of their function and structure leading to optogenetic applications.
Collapse
Affiliation(s)
- Martin Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
6
|
Lipid Dynamics in Diisobutylene-Maleic Acid (DIBMA) Lipid Particles in Presence of Sensory Rhodopsin II. Int J Mol Sci 2021; 22:ijms22052548. [PMID: 33806280 PMCID: PMC7961963 DOI: 10.3390/ijms22052548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein–protein interaction and oligomerization in a constraining environment.
Collapse
|
7
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
8
|
Shalaeva DN, Cherepanov DA, Galperin MY, Vriend G, Mulkidjanian AY. G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183051. [PMID: 31449800 DOI: 10.1016/j.bbamem.2019.183051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Dmitry A Cherepanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6525 HP Nijmegen, the Netherlands.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069 Osnabrück, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
9
|
Mosslehy W, Voskoboynikova N, Colbasevici A, Ricke A, Klose D, Klare JP, Mulkidjanian AY, Steinhoff HJ. Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene-Maleic Acid Lipid Particles. Photochem Photobiol 2019; 95:1195-1204. [PMID: 30849183 DOI: 10.1111/php.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/03/2019] [Indexed: 02/01/2023]
Abstract
Styrene-maleic acid lipid particles (SMALPs) provide stable water-soluble nanocontainers for lipid-encased membrane proteins. Possible effects of the SMA-stabilized lipid environment on the interaction dynamics between functionally coupled membrane proteins remain to be elucidated. The photoreceptor sensory rhodopsin II, NpSRII and its cognate transducer, NpHtrII, of Natronomonas pharaonis form a transmembrane complex, NpSRII2 /NpHtrII2 that plays a key role in negative phototaxis and provides a unique model system to study the light-induced transfer of a conformational signal between two integral membrane proteins. Photon absorption induces transient structural changes in NpSRII comprising an outward movement of helix F that cause further conformational alterations in NpHtrII. We applied site-directed spin labeling and time-resolved optical and EPR spectroscopy to compare the conformational dynamics of NpSRII2 /NpHtrII2 reconstituted in SMALPs with that of nanolipoprotein particle and liposome preparations. NpSRII and NpSRII2 /NpHtrII2 show similar photocycles in liposomes and nanolipoprotein particles. An accelerated decay of the M photointermediate found for SMALPs can be explained by a high local proton concentration provided by the carboxylic groups of the SMA polymer. Light-induced large-scale conformational changes of NpSRII2 /NpHtrII2 observed in liposomes and nanolipoprotein particles are affected in SMALPs, indicating restrictions of the protein's conformational freedom.
Collapse
Affiliation(s)
- Wageiha Mosslehy
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | | | | | - Adrian Ricke
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Daniel Klose
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Osnabrück, Germany.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
10
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
12
|
Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. J Mol Biol 2017; 429:1903-1920. [DOI: 10.1016/j.jmb.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
|
13
|
Yoshida K, Tsunoda SP, Brown LS, Kandori H. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J Biol Chem 2017; 292:7531-7541. [PMID: 28302718 DOI: 10.1074/jbc.m117.775569] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Indexed: 12/28/2022] Open
Abstract
Photoactivated adenylyl cyclase (PAC) and guanylyl cyclase rhodopsin increase the concentrations of intracellular cyclic nucleotides upon illumination, serving as promising second-generation tools in optogenetics. To broaden the arsenal of such tools, it is desirable to have light-activatable enzymes that can decrease cyclic nucleotide concentrations in cells. Here, we report on an unusual microbial rhodopsin that may be able to meet the demand. It is found in the choanoflagellate Salpingoeca rosetta and contains a C-terminal cyclic nucleotide phosphodiesterase (PDE) domain. We examined the enzymatic activity of the protein (named Rh-PDE) both in HEK293 membranes and whole cells. Although Rh-PDE was constitutively active in the dark, illumination increased its hydrolytic activity 1.4-fold toward cGMP and 1.6-fold toward cAMP, as measured in isolated crude membranes. Purified full-length Rh-PDE displayed maximal light absorption at 492 nm and formed the M intermediate with the deprotonated Schiff base upon illumination. The M state decayed to the parent spectral state in 7 s, producing long-lasting activation of the enzyme domain with increased activity. We discuss a possible mechanism of the Rh-PDE activation by light. Furthermore, Rh-PDE decreased cAMP concentration in HEK293 cells in a light-dependent manner and could do so repeatedly without losing activity. Thus, Rh-PDE may hold promise as a potential optogenetic tool for light control of intracellular cyclic nucleotides (e.g. to study cyclic nucleotide-associated signal transduction cascades).
Collapse
Affiliation(s)
- Kazuho Yoshida
- From the Department of Life Science and Applied Chemistry and
| | - Satoshi P Tsunoda
- From the Department of Life Science and Applied Chemistry and .,JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan, and.,the OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Leonid S Brown
- the Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- From the Department of Life Science and Applied Chemistry and .,the OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
14
|
Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 2017; 7:41811. [PMID: 28165484 PMCID: PMC5292967 DOI: 10.1038/srep41811] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel (“U”-shaped) contrary to the gusset-like (“V”-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained “V”- and “U”-shaped structures revealed that only the “U”-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the “U” shape in the ground state. We suggest that the “V”-shaped structure may correspond to the active state of the complex and transition from the “U” to the “V”-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.
Collapse
Affiliation(s)
- A Ishchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany
| | - E Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - V Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - S Grudinin
- CNRS, Laboratoire Jean Kuntzmann, BP 53, Grenoble Cedex 9, France.,NANO-D, INRIA Grenoble-Rhone-Alpes Research Center, 38334 Saint Ismier Cedex, Montbonnot, France
| | - I Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - J P Klare
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.,Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | - A Remeeva
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - V Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - P Utrobin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - T Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - M Engelhard
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - G Büldt
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - V Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| |
Collapse
|
15
|
Voskoboynikova N, Mosslehy W, Colbasevici A, Ismagulova TT, Bagrov DV, Akovantseva AA, Timashev PS, Mulkidjanian AY, Bagratashvili VN, Shaitan KV, Kirpichnikov MP, Steinhoff HJ. Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Adv 2017. [DOI: 10.1039/c7ra10756k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The archaeal receptor/transducer complex NpSRII/NpHtrII retains its integrity upon reconstitution in styrene–maleic acid lipid particles.
Collapse
Affiliation(s)
| | - W. Mosslehy
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - A. Colbasevici
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - T. T. Ismagulova
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - D. V. Bagrov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - A. A. Akovantseva
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - P. S. Timashev
- Institute for Regenerative Medicine of I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
| | | | - V. N. Bagratashvili
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - K. V. Shaitan
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - M. P. Kirpichnikov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| |
Collapse
|
16
|
Mohrmann H, Kube I, Lórenz-Fonfría VA, Engelhard M, Heberle J. Transient Conformational Changes of Sensory Rhodopsin II Investigated by Vibrational Stark Effect Probes. J Phys Chem B 2016; 120:4383-7. [DOI: 10.1021/acs.jpcb.6b01900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hendrik Mohrmann
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ines Kube
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Víctor A. Lórenz-Fonfría
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Martin Engelhard
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Joachim Heberle
- Department
of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
17
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
18
|
Zhang Z, Jin Z, Zhao Y, Zhang Z, Li R, Xiao J, Wu J. Systematic study on G-protein couple receptor prototypes: did they really evolve from prokaryotic genes? IET Syst Biol 2014; 8:154-61. [PMID: 25075528 PMCID: PMC8687355 DOI: 10.1049/iet-syb.2013.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
G‐protein couple receptor (GPCR) is one of the most striking examples of signalling proteins and it is only observed in eukaryotes. Based on various GPCR identification methods and classification systems, several evolutionary presumptions of different GPCR families have been reported. However, the prototype of GPCR still limits our knowledge. By investigating its structure and domain variance, the authors propose that GPCR might be evolved from prokaryotic world. The results given by the authors indicate that metabotropic glutamate receptor family would be the ancestor of GPCR. Phylogenetic analysis hints that one of metabotropic glutamate receptor GABA is possibly formed and evolved from the ancient chemical union of bacteriorhodopsin and periplasmic binding protein. The results obtained by the authors also unprecedentedly demonstrate that specific domains and identical structures are shown in each type of GPCR, which provides unique opportunities for future strategies on GPCR orphans’ prediction and classification.
Collapse
Affiliation(s)
- Zaichao Zhang
- College of Life Science, Graduate University of Chinese Academy of Sciences, No.9A Yuquan Rd, Shijingshan District, Beijing 100049, People's Republic of China
| | - Zhong Jin
- Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, No.4, South Four Street Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yongbing Zhao
- College of Life Science, Graduate University of Chinese Academy of Sciences, No.9A Yuquan Rd, Shijingshan District, Beijing 100049, People's Republic of China
| | - Zhewen Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Rujiao Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, No.1-7, Beichen W Rd, Chaoyang District, Beijing, People's Republic of China, 100101.
| |
Collapse
|
19
|
Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PLoS One 2014; 9:e91323. [PMID: 24621599 PMCID: PMC3951393 DOI: 10.1371/journal.pone.0091323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/10/2014] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit stimuli to intracellular signaling systems. Rhodopsin (Rh), which is a prototypical GPCR, possesses an 11-cis retinal. Photoisomerization of 11-cis to all-trans leads to structural changes in the protein of cytoplasmic loops, activating G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. They possess an all-trans retinal, and photoisomerization to 13-cis triggers structural changes in protein. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. In this study, new chimeric proton-pumping rhodopsins, proteorhodopsin (PR) and Gloeobacter rhodopsin (GR) were designed by replacing cytoplasmic loops with bovine Rh loops. Although G-protein was not activated by the PR chimeras, all 12 GR chimeras activated G-protein. The GR chimera containing the second cytoplasmic loop of bovine Rh did not activate G-protein. However, the chimera with a second and third double-loop further enhanced G-protein activation. Introduction of an E132Q mutation slowed the photocycle 30-fold and enhanced activation. The highest catalytic activity of the GR chimera was still 3,200 times lower than bovine Rh but only 64 times lower than amphioxus Go-rhodopsin. This GR chimera showed a strong absorption change of the amide-I band on a light-minus-dark difference FTIR spectrum which could represent a larger helical opening, important for G-protein activation. The light-dependent catalytic activity of this GR chimera makes it a potential optogenetic tool for enzymatic activation by light.
Collapse
Affiliation(s)
- Kengo Sasaki
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazuho Yoshida
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
20
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 836] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
21
|
Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 2013; 587:3309-13. [DOI: 10.1016/j.febslet.2013.08.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/13/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
|
22
|
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C. Light-Induced Movement of the Transmembrane Helix B in Channelrhodopsin-2. Angew Chem Int Ed Engl 2013; 52:9705-8. [DOI: 10.1002/anie.201301698] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/12/2013] [Indexed: 11/06/2022]
|
23
|
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C. Light-Induced Movement of the Transmembrane Helix B in Channelrhodopsin-2. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Brown LS. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:553-61. [PMID: 23748216 DOI: 10.1016/j.bbabio.2013.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
25
|
Hussain S, Franck JM, Han S. Transmembrane Protein Activation Refined by Site-Specific Hydration Dynamics. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Hussain S, Franck JM, Han S. Transmembrane protein activation refined by site-specific hydration dynamics. Angew Chem Int Ed Engl 2013; 52:1953-8. [PMID: 23307344 DOI: 10.1002/anie.201206147] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93016, USA
| | | | | |
Collapse
|
27
|
Nishikata K, Ikeguchi M, Kidera A. Comparative simulations of the ground state and the M-intermediate state of the sensory rhodopsin II-transducer complex with a HAMP domain model. Biochemistry 2012; 51:5958-66. [PMID: 22757657 DOI: 10.1021/bi300696b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRII-HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1-136) of Natronomonas pharaonis linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures. Helix F of SRII showed an outward motion, and the C-terminal end of transmembrane domain 2 (TM2) in HtrII rotated by ∼10°. The most significant structural changes were observed in the overall orientations of the two SRII molecules, closed in the ground state and open in the M-state. This change was attributed to substantial differences in the structure of the four-helix bundle of the HtrII dimer causing the apparent rotation of TM2. These simulation results established the structural basis for the various experimental observations explaining the structural differences between the ground state and the M-intermediate state.
Collapse
Affiliation(s)
- Koro Nishikata
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
28
|
Klare JP, Bordignon E, Engelhard M, Steinhoff HJ. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy. Eur J Cell Biol 2012; 90:731-9. [PMID: 21684631 DOI: 10.1016/j.ejcb.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Archaeal photoreceptors, together with their cognate transducer proteins, mediate phototaxis by regulating cell motility through two-component signal transduction pathways. This sensory pathway is closely related to the bacterial chemotactic system, which has been studied in detail during the past 40 years. Structural and functional studies applying site-directed spin labelling and electron paramagnetic resonance spectroscopy on the sensory rhodopsin II/transducer (NpSRII/NpHtrII) complex of Natronomonas pharaonis have yielded insights into the structure, the mechanisms of signal perception, the signal transduction across the membrane and provided information about the subsequent information transfer within the transducer protein towards the components of the intracellular signalling pathway. Here, we provide an overview about the findings of the last decade, which, combined with the wealth of data from research on the Escherichia coli chemotaxis system, served to understand the basic principles microorganisms use to adapt to their environment. We document the time course of a signal being perceived at the membrane, transferred across the membrane and, for the first time, how this signal modulates the dynamic properties of a HAMP domain, a ubiquitous signal transduction module found in various protein classes.
Collapse
Affiliation(s)
- Johann P Klare
- Faculty of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | |
Collapse
|
29
|
Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V. Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys J 2011; 101:L23-5. [PMID: 21806918 DOI: 10.1016/j.bpj.2011.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/18/2011] [Accepted: 06/23/2011] [Indexed: 10/17/2022] Open
Abstract
Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific detection of light-induced hydrogen-deuterium exchange in the lipid-embedded heptahelical transmembrane photosensor Anabaena sensory rhodopsin to pinpoint the location of its conformational changes upon activation. We show that the light-induced conformational changes result in a dramatic, but localized, increase in the exchange in the transmembrane regions. Most notably, the cytoplasmic half of helix G and the cytoplasmic ends of helices B and C exchange more extensively, probably as a result of their relative displacement in the activated state, allowing water to penetrate into the core of the protein. These light-induced rearrangements must provide the structural basis for the photosensory function of Anabaena sensory rhodopsin.
Collapse
Affiliation(s)
- Shenlin Wang
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Holterhues J, Bordignon E, Klose D, Rickert C, Klare JP, Martell S, Li L, Engelhard M, Steinhoff HJ. The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation. Biophys J 2011; 100:2275-82. [PMID: 21539797 DOI: 10.1016/j.bpj.2011.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/17/2011] [Accepted: 03/16/2011] [Indexed: 11/28/2022] Open
Abstract
Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.
Collapse
|
32
|
Nakatsuma A, Yamashita T, Sasaki K, Kawanabe A, Inoue K, Furutani Y, Shichida Y, Kandori H. Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin. Biophys J 2011; 100:1874-82. [PMID: 21504723 DOI: 10.1016/j.bpj.2011.02.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/12/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022] Open
Abstract
G-protein-coupled receptors transmit stimuli (light, taste, hormone, neurotransmitter, etc.) to the intracellular signaling systems, and rhodopsin (Rh) is the most-studied G-protein-coupled receptor. Rh possesses an 11-cis retinal as the chromophore, and 11-cis to all-trans photoisomerization leads to the protein structural changes in the cytoplasmic loops to activate G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. Microbial rhodopsins possess an all-trans retinal, and all-trans to 13-cis photoisomerization triggers protein structural changes for each function. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. However, it was reported that bacteriorhodopsin (BR) chimeras containing the third cytoplasmic loop of bovine Rh are able to activate G-protein, suggesting a common mechanism of protein structural changes. Here we design chimeric proteins for Natronomonas pharaonis sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin), which has a two-orders-of-magnitude slower photocycle than BR. Light-dependent transducin activation was observed for most of the nine SRII chimeras containing the third cytoplasmic loop of bovine Rh (from Y223, G224, Q225 to T251, R252, and M253), but the activation level was 30,000-140,000 times lower than that of bovine Rh. The BR chimera, BR/Rh223-253, activates a G-protein transducin, whereas the activation level was 37,000 times lower than that of bovine Rh. We interpret the low activation by the chimeric proteins as reasonable, because bovine Rh must have been optimized for activating a G-protein transducin during its evolution. On the other hand, similar activation level of the SRII and BR chimeras suggests that the lifetime of the M intermediates is not the simple determinant of activation, because SRII chimeras have two-orders-of-magnitude's slower photocycle than the BR chimera. Activation mechanism of visual and microbial rhodopsins is discussed on the basis of these results.
Collapse
Affiliation(s)
- Aya Nakatsuma
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim TY, Schlieter T, Haase S, Alexiev U. Activation and molecular recognition of the GPCR rhodopsin--insights from time-resolved fluorescence depolarisation and single molecule experiments. Eur J Cell Biol 2011; 91:300-10. [PMID: 21803442 DOI: 10.1016/j.ejcb.2011.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022] Open
Abstract
The cytoplasmic surface of the G-protein coupled receptor (GPCR) rhodopsin is a key element in membrane receptor activation, molecular recognition by signalling molecules, and receptor deactivation. Understanding of the coupling between conformational changes in the intramembrane domain and the membrane-exposed surface of the photoreceptor rhodopsin is crucial for the elucidation of the molecular mechanism in GPCR activation. As little is known about protein dynamics, particularly the conformational dynamics of the cytoplasmic surface elements on the nanoseconds timescale, we utilised time-resolved fluorescence anisotropy experiments and site-directed fluorescence labelling to provide information on both, conformational space and motion. We summarise our recent advances in understanding rhodopsin dynamics and function using time-resolved fluorescence depolarisation and single molecule fluorescence experiments, with particular focus on the amphipathic helix 8, lying parallel to the cytoplasmic membrane surface and connecting transmembrane helix 7 with the long C-terminal tail.
Collapse
Affiliation(s)
- Tai-Yang Kim
- Physics Department, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Fan Y, Solomon P, Oliver RP, Brown LS. Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1457-66. [PMID: 21791197 DOI: 10.1016/j.bbabio.2011.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 02/09/2023]
Abstract
Eukaryotic microbial rhodopsins are widespread bacteriorhodopsin-like proteins found in many lower eukaryotic groups including fungi. Many fungi contain multiple rhodopsins, some significantly diverged from the original bacteriorhodopsin template. Although few fungal rhodopsins have been studied biophysically, both fast-cycling light-driven proton pumps and slow-cycling photosensors have been found. The purpose of this study was to characterize photochemically a new subgroup of fungal rhodopsins, the so-called auxiliary group. The study used the two known rhodopsin genes from the fungal wheat pathogen, Phaeosphaeria nodorum. One of the genes is a member of the auxiliary group while the other is highly similar to previously characterized proton-pumping Leptosphaeria rhodopsin. Auxiliary rhodopsin genes from a range of species form a distinct group with a unique primary structure and are located in carotenoid biosynthesis gene cluster. Amino acid conservation pattern suggests that auxiliary rhodopsins retain the transmembrane core of bacteriorhodopsins, including all residues important for proton transport, but have unique polar intramembrane residues. Spectroscopic characterization of the two yeast-expressed Phaeosphaeria rhodopsins showed many similarities: absorption spectra, conformation of the retinal chromophore, fast photocycling, and carboxylic acid protonation changes. It is likely that both Phaeosphaeria rhodopsins are proton-pumping, at least in vitro. We suggest that auxiliary rhodopsins have separated from their ancestors fairly recently and have acquired the ability to interact with as yet unidentified transducers, performing a photosensory function without changing their spectral properties and basic photochemistry.
Collapse
Affiliation(s)
- Ying Fan
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
35
|
Verhoefen MK, Lenz MO, Amarie S, Klare JP, Tittor J, Oesterhelt D, Engelhard M, Wachtveitl J. Primary Reaction of Sensory Rhodopsin II Mutant D75N and the Influence of Azide. Biochemistry 2009; 48:9677-83. [DOI: 10.1021/bi901197c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mirka-Kristin Verhoefen
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Martin O. Lenz
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Sergiu Amarie
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Johann P. Klare
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Jörg Tittor
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Dieter Oesterhelt
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Martin Engelhard
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44139 Dortmund, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max von Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V. Three-Dimensional Solid-State NMR Study of a Seven-Helical Integral Membrane Proton Pump—Structural Insights. J Mol Biol 2009; 386:1078-93. [DOI: 10.1016/j.jmb.2009.01.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Doebber M, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N, Li L, Engelhard M, Steinhoff HJ. Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem 2008; 283:28691-701. [PMID: 18697747 PMCID: PMC2661416 DOI: 10.1074/jbc.m801931200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/06/2008] [Indexed: 11/06/2022] Open
Abstract
HAMP domains (conserved in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) perform their putative function as signal transducing units in diversified environments in a variety of protein families. Here the conformational changes induced by environmental agents, namely salt and temperature, on the structure and function of a HAMP domain of the phototransducer from Natronomonas pharaonis (NpHtrII) in complex with sensory rhodopsin II (NpSRII) were investigated by site-directed spin labeling electron paramagnetic resonance. A series of spin labeled mutants were engineered in NpHtrII157, a truncated analog containing only the first HAMP domain following the transmembrane helix 2. This truncated transducer is shown to be a valid model system for a signal transduction domain anchored to the transmembrane light sensor NpSRII. The HAMP domain is found to be engaged in a "two-state" equilibrium between a highly dynamic (dHAMP) and a more compact (cHAMP) conformation. The structural properties of the cHAMP as proven by mobility, accessibility, and intra-transducer-dimer distance data are in agreement with the four helical bundle NMR model of the HAMP domain from Archaeoglobus fulgidus.
Collapse
Affiliation(s)
- Meike Doebber
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II) is a seven transmembrane helical retinal protein. ppR forms a signaling complex with pharaonis Halobacterial transducer II (pHtrII) in the membrane that transmits a light signal to the sensory system in the cytoplasm. The M-state during the photocycle of ppR (lambda(max) = 386 nm) is one of the active (signaling) intermediates. However, progress in characterizing the M-state at physiological temperature has been slow because its lifetime is very short (decay half-time is approximately 1 s). In this study, we identify a highly stable photoproduct that can be trapped at room temperature in buffer solution containing n-octyl-beta-d-glucoside, with a decay half-time and an absorption maximum of approximately 2 h and 386 nm, respectively. HPLC analysis revealed that this stable photoproduct contains 13-cis-retinal as a chromophore. Previously, we reported that water-soluble hydroxylamine reacts selectively with the M-state, and we found that this stable photoproduct also reacts selectively with that reagent. These results suggest that the physical properties of the stable photoproduct (named the M-like state) are very similar with the M-state during the photocycle. By utilizing the high stability of the M-like state, we analyzed interactions of the M-like state and directly estimated the pK(a) value of the Schiff base in the M-like state. These results suggest that the dissociation constant of the ppR(M-like)/pHtrII complex greatly increases (to 5 muM) as the pK(a) value greatly decreases (from 12 to 1.5). The proton transfer reaction of ppR from the cytoplasmic to the extracellular side is proposed to be caused by this change in pK(a).
Collapse
|
39
|
Kawamura I, Yoshida H, Ikeda Y, Yamaguchi S, Tuzi S, Saitô H, Kamo N, Naito A. Dynamics change of phoborhodopsin and transducer by activation: study using D75N mutant of the receptor by site-directed solid-state 13C NMR. Photochem Photobiol 2008; 84:921-30. [PMID: 18363620 DOI: 10.1111/j.1751-1097.2008.00326.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pharaonis phoborhodopsin (ppR or sensory rhodopsin II) is a negative phototaxis receptor of Natronomonas pharaonis, and forms a complex, which transmits the photosignal into cytoplasm, with its cognate transducer (pHtrII). We examined a possible local dynamics change of ppR and its D75N mutant complexed with pHtrII, using solid-state (13)C NMR of [3-(13)C]Ala- and [1-(13)C]Val-labeled preparations. We distinguished Ala C(beta) (13)C signals of relatively static stem (Ala221) in the C-terminus of the receptors from those of flexible tip (Ala228, 234, 236 and 238), utilizing a mutant with truncated C-terminus. The local fluctuation frequency at the C-terminal tip was appreciably decreased when ppR was bound to pHtrII, while it was increased when D75N, that mimics the signaling state because of disrupted salt bridge between C and G helices prerequisite for the signal transfer, was bound to pHtrII. This signal change may be considered with the larger dissociation constant of the complex between pHtrII and M-state of ppR. At the same time, it turned out that fluctuation frequency of cytoplasmic portion of pHtrII is lowered when ppR is replaced by D75N in the complex with pHtrII. This means that the C-terminal tip partly participates in binding with the linker region of pHtrII in the dark, but this portion might be released at the signaling state leading to mutual association of the two transducers in the cytoplasmic regions within the ppR/pHtrII complex.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Klare JP, Chizhov I, Engelhard M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. Results Probl Cell Differ 2007; 45:73-122. [PMID: 17898961 DOI: 10.1007/400_2007_041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbial rhodopsins have been intensively researched for the last three decades. Since the discovery of bacteriorhodopsin, the scope of microbial rhodopsins has been considerably extended, not only in view of the large number of family members, but also their functional properties as pumps, sensors, and channels. In this review, we give a short overview of old and newly discovered microbial rhodopsins, the mechanism of signal transfer and ion transfer, and we discuss structural and mechanistic aspects of phototaxis.
Collapse
Affiliation(s)
- Johann P Klare
- Fachbereich Physik, University Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | | | | |
Collapse
|
41
|
Sharma AK, Walsh DA, Bapteste E, Rodriguez-Valera F, Ford Doolittle W, Papke RT. Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 2007; 7:79. [PMID: 17511874 PMCID: PMC1885257 DOI: 10.1186/1471-2148-7-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/18/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT) of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches. RESULTS Mapping presence/absence of rhodopsins onto the phylogeny of the RNA polymerase B' subunit (RpoB') of the haloarchaea supports previous notions that rhodopsins are patchily distributed. The phylogeny for the bacteriorhodopsin (BR) protein revealed two discrepancies in comparison to the RpoB' marker, while the halorhodopsin (HR) tree showed incongruence to both markers. Comparative analyses of bacteriorhodopsin-linked regions of five haloarchaeal genomes supported relationships observed in the BR tree, and also identified two open reading frames (ORFs) that were more frequently linked to the bacteriorhodopsin gene than those genes previously shown to be important to the function and expression of BR. CONCLUSION The evidence presented here reveals a complex evolutionary history for the haloarchaeal rhodopsins, with both LGT and gene loss contributing to the patchy distribution of rhodopsins within this group. Similarities between the BR and RpoB' phylogenies provide supportive evidence for the presence of bacteriorhodopsin in the last common ancestor of haloarchaea. Furthermore, two loci that we have designated bacterio-opsin associated chaperone (bac) and bacterio-opsin associated protein (bap) are inferred to have important roles in BR biogenesis based on frequent linkage and co-transfer with bacteriorhodopsin genes.
Collapse
Affiliation(s)
- Adrian K Sharma
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, B3H 1X5, Canada
| | - David A Walsh
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, B3H 1X5, Canada
| | - Eric Bapteste
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, B3H 1X5, Canada
| | - Francisco Rodriguez-Valera
- Unidad de Microbiologia, Centro de Biologia Molecular y Celular, Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan, Alicante, Spain
| | - W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, B3H 1X5, Canada
| | - R Thane Papke
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, B3H 1X5, Canada
| |
Collapse
|
42
|
Kim TY, Winkler K, Alexiev U. Picosecond Multidimensional Fluorescence Spectroscopy: A Tool to Measure Real-time Protein Dynamics During Function†. Photochem Photobiol 2007; 83:378-84. [PMID: 17117889 DOI: 10.1562/2006-06-21-ra-943] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Advanced multidimensional time-correlated single photon counting (mdTCSPC) and picosecond time-resolved fluorescence in combination with site-directed fluorescence labeling are valuable tools to study the properties of membrane protein surface segments on the pico- to nanoseconds time scale. Time-resolved fluorescence anisotropy changes of protein bound fluorescent probes reveal changes in protein dynamics and steric restriction. In addition, the change in fluorescence lifetime and intensity of the covalently bound fluorescent dye is indicative of environmental changes at the protein surface. In this study, we have measured the changes in fluorescence lifetime traces of the fluorescent dye fluorescein covalently bound to the first cytoplasmic loop of bacteriorhodopsin (bR) after light activation of protein function. The fluorescence is excited by a picosecond laser pulse. The retinylidene chromophore of bR is light-activated by a 10 ns laser pulse, which in turn triggers recording of a sequence of fluorescence lifetime traces in the mdTCSPC-module. The fluorescence decay changes upon protein function occur predominantly in the 100 ps time range. The kinetics of these changes shows two transitions between three intermediate states in the second part of the bR photocycle. Correlation with photocycle kinetics allows for the determination of reaction intermediates at the proteins surface which are coupled to changes in the retinal binding pocket.
Collapse
Affiliation(s)
- Tai-Yang Kim
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | |
Collapse
|
43
|
Hasegawa C, Kikukawa T, Miyauchi S, Seki A, Sudo Y, Kubo M, Demura M, Kamo N. Interaction of the Halobacterial Transducer to a Halorhodopsin Mutant Engineered so as to Bind the Transducer: Cl− Circulation Within the Extracellular Channel†. Photochem Photobiol 2007; 83:293-302. [PMID: 16978043 DOI: 10.1562/2006-06-09-ra-916] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alkali-halophilic archaeum, Natronomonas pharaonis, contains two rhodopsins that are halorhodopsin (phR), a light-driven inward Cl- pump and phoborhodopsin (ppR), the receptor of negative phototaxis functioning by forming a signaling complex with a transducer, pHtrII (Sudo Y. et al., J. Mol. Biol. 357 [2006] 1274). Previously, we reported that the phR double mutant, P240T/F250Y(phR), can bind with pHtrII. This mutant itself can transport Cl-, while the net transport was stopped upon formation of the complex. The flash-photolysis data were analyzed by a scheme in which phR --> 4 P1 --> P2 --> 4 P3 --> P4 --> phR. The P3 of the wild-type and the double mutant contained two components, X- and O-intermediates. After the complex formation, however, the P3 of the double mutant lacked the X-intermediate. These observations imply that the X-intermediate (probably the N-intermediate) is the state having Cl- in the cytoplasmic binding site and that the complex undergoes an extracellular Cl- circulation because of the inhibition of formation of the X-intermediate.
Collapse
Affiliation(s)
- Chisa Hasegawa
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bordignon E, Klare JP, Holterhues J, Martell S, Krasnaberski A, Engelhard M, Steinhoff HJ. Analysis of Light-Induced Conformational Changes of Natronomonas pharaonis Sensory Rhodopsin II by Time Resolved Electron Paramagnetic Resonance Spectroscopy†. Photochem Photobiol 2007; 83:263-72. [PMID: 16961434 DOI: 10.1562/2006-07-05-ra-960] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nature and kinetics of the conformational changes leading to the activated state of NpSRII/NpHtrII157 were investigated by time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy in combination with site-directed spin labeling (SDSL) on a series of spin labeled mutants of NpSRII. A structural rearrangement of the cytoplasmic moiety of NpSRII upon light activation was detected (helices B, C, F and G). The increase in distance between helices C and F in the M-trapped state of the complex observed in one double mutant is in line with the notion that an outward movement of helix F occurs upon receptor activation. The data obtained from the NpSRII/NpHtrII157 complex reconstituted in purple membrane lipids are compared with those obtained from the X-ray structure of the late M-state of the complex which shows some discrepancies. The results are discussed in the context also of other biophysical and EPR experimental evidences.
Collapse
|
45
|
Sudo Y, Spudich JL. Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci U S A 2006; 103:16129-34. [PMID: 17050685 PMCID: PMC1637548 DOI: 10.1073/pnas.0607467103] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Indexed: 11/18/2022] Open
Abstract
In haloarchaea, light-driven ion transporters have been modified by evolution to produce sensory receptors that relay light signals to transducer proteins controlling motility behavior. The proton pump bacteriorhodopsin and the phototaxis receptor sensory rhodopsin II (SRII) differ by 74% of their residues, with nearly all conserved residues within the photoreactive retinal-binding pocket in the membrane-embedded center of the proteins. Here, we show that three residues in bacteriorhodopsin replaced by the corresponding residues in SRII enable bacteriorhodopsin to efficiently relay the retinal photoisomerization signal to the SRII integral membrane transducer (HtrII) and induce robust phototaxis responses. A single replacement (Ala-215-Thr), bridging the retinal and the membrane-embedded surface, confers weak phototaxis signaling activity, and the additional two (surface substitutions Pro-200-Thr and Val-210-Tyr), expected to align bacteriorhodopsin and HtrII in similar juxtaposition as SRII and HtrII, greatly enhance the signaling. In SRII, the three residues form a chain of hydrogen bonds from the retinal's photoisomerized C(13)=C(14) double bond to residues in the membrane-embedded alpha-helices of HtrII. The results suggest a chemical mechanism for signaling that entails initial storage of energy of photoisomerization in SRII's hydrogen bond between Tyr-174, which is in contact with the retinal, and Thr-204, which borders residues on the SRII surface in contact with HtrII, followed by transfer of this chemical energy to drive structural transitions in the transducer helices. The results demonstrate that evolution accomplished an elegant but simple conversion: The essential differences between transport and signaling proteins in the rhodopsin family are far less than previously imagined.
Collapse
Affiliation(s)
- Yuki Sudo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
46
|
Spudich JL. The multitalented microbial sensory rhodopsins. Trends Microbiol 2006; 14:480-7. [PMID: 17005405 DOI: 10.1016/j.tim.2006.09.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/28/2006] [Accepted: 09/13/2006] [Indexed: 11/26/2022]
Abstract
Sensory rhodopsins are photoactive, membrane-embedded seven-transmembrane helix receptors that use retinal as a chromophore. They are widespread in the microbial world in each of the three domains of life: Archaea, Bacteria and Eukarya. A striking characteristic of these photoreceptors is their different modes of signaling in different organisms, including interaction with other membrane proteins, interaction with cytoplasmic transducers and light-controlled Ca(2+) channel activity. More than two decades since the discovery of the first sensory rhodopsins in the archaeon Halobacterium salinarum, genome projects have revealed a widespread presence of homologous photosensors. New work on cyanobacteria, algae, fungi and marine proteobacteria is revealing how evolution has modified the common design of these proteins to produce a remarkably rich diversity in their signaling biochemistry.
Collapse
Affiliation(s)
- John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Sudo Y, Furutani Y, Kandori H, Spudich JL. Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. J Biol Chem 2006; 281:34239-45. [PMID: 16968701 DOI: 10.1074/jbc.m605907200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensory rhodopsin II (SRII), a receptor for negative phototaxis in haloarchaea, transmits light signals through changes in protein-protein interaction with its transducer HtrII. Light-induced structural changes throughout the SRII-HtrII interface, which spans the periplasmic region, membrane-embedded domains, and cytoplasmic domains near the membrane, have been identified by several studies. Here we demonstrate by site-specific mutagenesis and analysis of phototaxis behavior that two residues in SRII near the membrane-embedded interface (Tyr174 on helix F and Thr204 on helix G) are essential for signaling by the SRII-HtrII complex. These residues, which are the first in SRII shown to be required for phototaxis function, provide biological significance to the previous observation that the hydrogen bond between them is strengthened upon the formation of the earliest SRII photointermediate (SRII(K)) only when SRII is complexed with HtrII. Here we report frequency changes of the S-H stretch of a cysteine substituted for SRII Thr204 in the signaling state intermediates of the SRII photocycle, as well as an influence of HtrII on the hydrogen bond strength, supporting a direct role of the hydrogen bond in SRII-HtrII signal relay chemistry. Our results suggest that the light signal is transmitted to HtrII from the energized interhelical hydrogen bond between Thr204 and Tyr174, which is located at both the retinal chromophore pocket and in helices F and G that form the membrane-embedded interaction surface to the signal-bearing second transmembrane helix of HtrII. The results argue for a critical process in signal relay occurring at this membrane interfacial region of the complex.
Collapse
Affiliation(s)
- Yuki Sudo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
48
|
Hustedt EJ, Stein RA, Sethaphong L, Brandon S, Zhou Z, Desensi SC. Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. Biophys J 2006; 90:340-56. [PMID: 16214868 PMCID: PMC1367032 DOI: 10.1529/biophysj.105.068544] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022] Open
Abstract
A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (< approximately 40 degrees ), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development.
Collapse
Affiliation(s)
- Eric J Hustedt
- Department of Molecular Physiology and Biophysics, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Klare JP, Bordignon E, Doebber M, Fitter J, Kriegsmann J, Chizhov I, Steinhoff HJ, Engelhard M. Effects of solubilization on the structure and function of the sensory rhodopsin II/transducer complex. J Mol Biol 2005; 356:1207-21. [PMID: 16410012 DOI: 10.1016/j.jmb.2005.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/02/2005] [Accepted: 12/04/2005] [Indexed: 10/25/2022]
Abstract
Lipid-protein interactions are known to play a crucial role in structure and physiological activity of integral membrane proteins. However, current technology for membrane protein purification necessitates extraction from the membrane into detergent micelles. Also, due to experimental protocols, most of the data available for membrane proteins is obtained using detergent-solubilized samples. Stable solubilization of membrane proteins is therefore an important issue in biotechnology as well as in biochemistry and structural biology. An understanding of solubilization effects on structural and functional properties of specific proteins is of utmost relevance for the evaluation and interpretation of experimental results. In this study, a comparison of structural and kinetic data obtained for the archaebacterial photoreceptor/transducer complex from Natronomonas pharaonis (NpSRII/NpHtrII) in detergent-solubilized and lipid-reconstituted states is presented. Laser flash photolysis, fluorescence spectroscopy, and electron paramagnetic resonance spectroscopy data reveal considerable influence of solubilization on the photocycle kinetics of the receptor protein and on the structure of the transducer protein. Especially the protein-membrane proximal region and the protein-protein interfacial domains are sensitive towards non-native conditions. These data demonstrate that relevance of biochemical and structural information obtained from solubilized membrane proteins or membrane protein complexes has to be evaluated carefully.
Collapse
Affiliation(s)
- Johann P Klare
- Max-Planck-Institut für Molekulare Physiologie Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bordignon E, Klare JP, Doebber M, Wegener AA, Martell S, Engelhard M, Steinhoff HJ. Structural Analysis of a HAMP Domain. J Biol Chem 2005; 280:38767-75. [PMID: 16157581 DOI: 10.1074/jbc.m509391200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensory rhodopsin II, the photophobic receptor from Natronomonas pharaonis (NpSRII)5, forms a 2:2 complex with its cognate transducer (N. pharaonis halobacterial transducer of rhodopsins II (NpHtrII)) in lipid membranes. Light activation of NpSRII leads to a displacement of helix F, which in turn triggers a rotation/screw-like motion of TM2 in NpHtrII. This conformational change is thought to be transmitted through the membrane adjacent conserved signal transduction domain in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases (HAMP domain) to the cytoplasmic signaling domain of the transducer. The architecture and function of the HAMP domain are still unknown. In order to obtain information on the structure and dynamics of this region, EPR experiments on a truncated transducer (NpHtrII(157)) and NpSRII, site-directed spin-labeled and reconstituted into purple membrane lipids, have been carried out. A nitroxide scanning involving residues in the transducer helix TM2, in the predicted AS-1 region, and at selected positions in the following connector and AS-2 regions of the HAMP domain has been performed. Accessibility and dynamics data allowed us to identify a helical region up to residue Ala(94) in the AS-1 amphipathic sequence, followed by a highly dynamic domain protruding into the water phase. Additionally, transducer-transducer and transducer-receptor proximity relations revealed the overall architecture of the AS-1 sequences in the 2:2 complex, which are suggested to form a molten globular type of a coiled-coil bundle.
Collapse
Affiliation(s)
- Enrica Bordignon
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|