1
|
Komatsu T, Sato Y, Maeki M, Ishida A, Tani H, Tokeshi M. Rapid, sensitive universal paper-based device enhances competitive immunoassays of small molecules. Anal Chim Acta 2021; 1144:85-95. [PMID: 33453801 DOI: 10.1016/j.aca.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/17/2023]
Abstract
Competitive immunoassays comprise the standard means of detecting small molecules. However, conventional methods using microwells are difficult to apply during point-of-care tests (POCT) because they require complicated handling and are time consuming. Although paper-based analytical devices (PAD) have received considerable focus because of their rapid and straightforward operation, only a few devices have been proposed for competitive immunoassays. Herein, we describe a novel universal PAD format with a 3-dimensional configuration for competitive immunoassays that rapidly and sensitively detects small molecules. The proposed device comprised a layered structure with uniform color formation and high capture efficiency between antigen and antibody that results in rapid and reproducible results. The device rapidly (90 s) assayed biotin as a model target, with a limit of detection (LOD) of 5.08 ng mL-1, and detected progesterone with an LOD of 84 pg mL-1 within 5 min. Moreover, sample volumes and reagent consumption rates were minimized. Thus, our device could be applied to competitive immunoassays of various small molecules in POCT.
Collapse
Affiliation(s)
- Takeshi Komatsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Yuki Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita, Sapporo, 060-8628, Japan; Innovative Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho Chikusa, Nagoya, 464-8601, Japan; Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
2
|
Zhang J, Xiao X, He Q, Huang L, Li S, Wang F. A Nonenzymatic Glucose Sensor Based on a Copper Nanoparticle–Zinc Oxide Nanorod Array. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.865198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Development of electrochemical immunosensors towards point of care diagnostics. Biosens Bioelectron 2013; 47:1-11. [DOI: 10.1016/j.bios.2013.02.045] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
|
4
|
Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S, Yang H. Optimization of Phosphatase- and Redox Cycling-Based Immunosensors and Its Application to Ultrasensitive Detection of Troponin I. Anal Chem 2011; 83:3926-33. [DOI: 10.1021/ac200447b] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Md. Rajibul Akanda
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Md. Abdul Aziz
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Kyungmin Jo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Vellaiappillai Tamilavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Myung Ho Hyun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 135-720, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
6
|
Wei MY, Guo LH, Famouri P. DNA biosensors based on metallo-intercalator probes and electrocatalytic amplification. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0519-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Kumar SA, Cheng HW, Chen SM, Wang SF. Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2009.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Young AG, McQuillan AJ, Green DP. In situ IR spectroscopic studies of the avidin-biotin bioconjugation reaction on CdS particle films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7416-7423. [PMID: 19354218 DOI: 10.1021/la900350s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Avidin-biotin bioconjugation reactions have been carried out on CdS nanoparticle films in H2O and D2O and investigated using in situ ATR-IR spectroscopic techniques. The experimental procedure involved the sequential adsorption of mercaptoacetic acid, the protein avidin, and the subsequent binding of the ligand biotin. The IR spectra of the solution-phase species mercaptoacetic acid, avidin, and biotin, at pH=7.2 were generally found to be similar in both H2O and D2O, with some minor peak shifts due to solvation changes. The IR spectra of the adsorbed species suggested that avidin may have undergone a conformational change upon adsorption to the CdS surface. In general, adsorption-induced conformational changes for avidin are likely, but to our knowledge have not been previously reported. The conformation of adsorbed avidin appeared to change again upon the binding of biotin, with the spectral data suggesting partial reversion to its native solution conformation.
Collapse
Affiliation(s)
- Aidan G Young
- Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
9
|
Wei MY, Wen SD, Yang XQ, Guo LH. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection. Biosens Bioelectron 2009; 24:2909-14. [DOI: 10.1016/j.bios.2009.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 02/07/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
10
|
Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode. Anal Chim Acta 2009; 632:15-20. [DOI: 10.1016/j.aca.2007.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/17/2007] [Accepted: 09/19/2007] [Indexed: 11/21/2022]
|
11
|
Wang LR, Qu N, Guo LH. Electrochemical Displacement Method for the Investigation of the Binding Interaction of Polycyclic Organic Compounds with DNA. Anal Chem 2008; 80:3910-4. [DOI: 10.1021/ac7024877] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Rong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| | - Na Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, China
| |
Collapse
|
12
|
Determination of Surface-Immobilized Double-Stranded DNA Using a Metallointercalator and Catalytic Voltammetry. Mikrochim Acta 2006. [DOI: 10.1007/s00604-006-0596-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Liang M, Liu S, Wei M, Guo LH. Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode. Anal Chem 2005; 78:621-3. [PMID: 16408949 DOI: 10.1021/ac051926y] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective photoelectrochemical oxidation of DNA was achieved by ruthenium tris(bipyridine) immobilized on a tin oxide nanoparticle electrode. The metal complex was covalently attached to a protein, avidin, which adsorbed strongly on the tin oxide electrode by electrostatic interaction. Upon irradiation with 473-nm light, anodic photocurrent was generated in a blank electrolyte and was enhanced significantly after addition of poly(guanadylic acid) (poly-G) into the electrolyte. The current increased progressively with the nucleotide concentration, suggesting the enhancement effect was related to poly-G. The action spectrum indicates that the photocurrent was initiated by light absorption of the ruthenium compound immobilized on the electrode. Among the various polynucleotides examined, poly-G produced the largest photocurrent increase, followed by poly-A, single-stranded DNA, chemically damaged DNA, and double-stranded DNA, whereas poly-C and poly-U showed little effect. The combined experimental data support the hypothesis that the photoexcited Ru2+ species injects an electron into the semiconductor and produces Ru3+, which is then reduced back to Ru2+ by guanine and adenine bases in DNA, resulting in the recycling of the metal complex and enhanced photocurrent. The photoelectrochemical reaction can be employed as a new method for the detection of DNA damage.
Collapse
|