Usharani D, Poduska A, Nixon JF, Jemmis ED. Electronic structure and bonding in neutral and dianionic boradiphospholes: R'BC2P2R2 (R = H, tBu, R' = H, Ph).
Chemistry 2009;
15:8429-8442. [PMID:
19437474 DOI:
10.1002/chem.200802491]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Classical and non-classical isomers of both neutral and dianionic BC(2)P(2)H(3) species, which are isolobal to Cp(+) and Cp(-), are studied at both B3LYP/6-311++G(d,p) and G3B3 levels of theory. The global minimum structure given by B3LYP/6-311++G(d,p) for BC(2)P(2)H(3) is based on a vinylcyclopropenyl-type structure, whereas BC(2)P(2)H(3)(2-) has a planar aromatic cyclopentadienyl-ion-like structure. However, at the G3B3 level, there are three low-energy isomers for BC(2)P(2)H(3): 1) tricyclopentane, 2) nido and 3) vinylcyclopropenyl-type structures, all within 1.7 kcal mol(-1) of each other. On the contrary, for the dianionic species the cyclic planar structure is still the minimum. In comparison to the isolobal Cp(+) and H(n)C(n)P(5-n)(+) isomers, BC(2)P(2)H(3) shows a competition between pi-delocalised vinylcyclopropenyl- and cluster-type structures (nido and tricyclopentane). Substitution of H on C by tBu, and H on B by Ph, in BC(2)P(2)H(3) increases the energy difference between the low-lying isomers, giving the lowest energy structure as a tricyclopentane type. Similar substitution in BC(2)P(2)H(3)(2-) merely favours different positional isomers of the cyclic planar geometry, as observed in 1) isoelectronic neutral heterodiphospholes EtBu(2)C(2)P(2) (E = S, Se, Te), 2) monoanionic heterophospholyl rings EtBu(2)C(2)P(2) (E = P(-), As(-), Sb(-)) and 3) polyphospholyl rings anions tBu(5-n)C(n)P(5-n) (n = 0-5). The principal factors that affect the stability of three-, four-, and five-membered ring and acyclic geometrical and positional isomers of neutral and dianionic BC(2)P(2)H(3) isomers appear to be: 1) relative bond strengths, 2) availability of electrons for the empty 2p boron orbital and 3) steric effects of the tBu groups in the HBC(2)P(2)tBu(2) systems.
Collapse