1
|
McCarte B, Yeung OT, Speakman AJ, Elfick A, Dunn KE. Using ultraviolet absorption spectroscopy to study nanoswitches based on non-canonical DNA structures. Biochem Biophys Rep 2022; 31:101293. [PMID: 35677630 PMCID: PMC9167695 DOI: 10.1016/j.bbrep.2022.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Non-canonical forms of DNA are attracting increasing interest for applications in nanotechnology. It is frequently convenient to characterize DNA molecules using a label-free approach such as ultraviolet absorption spectroscopy. In this paper we present the results of our investigation into the use of this technique to probe the folding of quadruplex and triplex nanoswitches. We confirmed that four G-quartets were necessary for folding at sub-mM concentrations of potassium and found that the wrong choice of sequence for the linker between G-tracts could dramatically disrupt folding, presumably due to the presence of kinetic traps in the folding landscape. In the case of the triplex nanoswitch we examined, we found that the UV spectrum showed a small change in absorbance when a triplex was formed. We anticipate that our results will be of interest to researchers seeking to design DNA nanoswitches based on quadruplexes and triplexes. Ultraviolet absorption spectroscopy can probe non-canonical DNA structures. Absorbance at 295 nm tends to increase as G-quadruplexes form. Four G-quartets are needed to form a quadruplex with less than 1 mM potassium. Formation of DNA triplexes can also yield a small change in UV spectra. UV absorption is a cheap label-free method for studying DNA nanoswitches.
Collapse
|
2
|
Cui MR, Chen Y, Zhu D, Chao J. Intelligent Programmable DNA Nanomachines for the Spatially Controllable Imaging of Intracellular MicroRNA. Anal Chem 2022; 94:10874-10884. [PMID: 35856834 DOI: 10.1021/acs.analchem.2c02299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The high programmability of DNA molecules makes them particularly suitable for constructing artificial molecular machines to perform sophisticated functions by simulating complex living systems. However, intelligent DNA nanomachines which can perform precise tasks logically in complex environments still remain challenging. Herein, we develop a general strategy to design a pH-responsive programmable DNA (PRPD) nanomachine to perform multilayer DNA cascades, enabling precise sensing and calculation of intracellular biomolecules. The PRPD nanomachine is built on a four-stranded DNAzyme walker precursor with a DNA switch on the surface of an Au nanoparticle, which is capable of precisely responding to pH variations in living cells by sequence tuning. This multilayer DNA cascade networks have been applicated in spatially controlled imaging of intracellular microRNA, which efficiently avoided the DNA nanomachine activated by nonspecific extracellular molecules and achieved apparent signal amplification. Our strategy enables the sensing-computing-output functional integration of DNA nanomachines, facilitating the application of programmable and complex nanomachines in nanoengineering, chemistry, and biomedicine.
Collapse
Affiliation(s)
- Mei-Rong Cui
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Chen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Engelen W, Zhu K, Subedi N, Idili A, Ricci F, Tel J, Merkx M. Programmable Bivalent Peptide-DNA Locks for pH-Based Control of Antibody Activity. ACS CENTRAL SCIENCE 2020; 6:22-31. [PMID: 31989023 PMCID: PMC6978833 DOI: 10.1021/acscentsci.9b00964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The ability to control antibody activity by pH has important applications in diagnostics, therapeutic antibody targeting, and antibody-guided imaging. Here, we report the rational design of bivalent peptide-DNA ligands that allow pH-dependent control of antibody activity. Our strategy uses a pH-responsive DNA triple helix to control switching from a tight-binding bivalent peptide-DNA lock into a weaker-binding monovalent ligand. Different designs are introduced that allow antibody activation at both basic and acidic pHs, either autonomously or in the presence of an additional oligonucleotide trigger. The pH of antibody activation could be precisely tuned by changing the DNA triple helix sequence. The peptide-DNA locks allowed pH-dependent antibody targeting of tumor cells both in bulk and for single cells confined in water-in-oil microdroplets. The latter approach enables high-throughput antibody-mediated detection of single tumor cells based on their distinctive metabolic activity.
Collapse
Affiliation(s)
- Wouter Engelen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kwankwan Zhu
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Nikita Subedi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Andrea Idili
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Jurjen Tel
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- E-mail:
| |
Collapse
|
4
|
Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46:1021-1037. [PMID: 29228337 PMCID: PMC5814803 DOI: 10.1093/nar/gkx1230] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/14/2022] Open
Abstract
DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical ('triplex') structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone.
Collapse
Affiliation(s)
| | - David A Rusling
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
5
|
Idili A, Ricci F. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. Methods Mol Biol 2018; 1811:79-100. [PMID: 29926447 DOI: 10.1007/978-1-4939-8582-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triplex DNA is becoming a very useful domain to design pH-triggered DNA nanoswitches and nanodevices. The high versatility and programmability of triplex DNA interactions allows the integration of pH-controllable modules into DNA-based reactions and self-assembly processes. Here, we describe the procedure to characterize DNA-based triplex nanoswitches and more in general pH-triggered structure-switching mechanisms. Procedures to characterize pH-triggered DNA nanodevices will be useful for many applications in the field of biosensing, drug delivery systems and smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
6
|
Li H, Zhou X, Yao D, Liang H. pH-Responsive spherical nucleic acid for intracellular lysosome imaging and an effective drug delivery system. Chem Commun (Camb) 2018; 54:3520-3523. [DOI: 10.1039/c8cc00440d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study presents a class of pH-responsive spherical nucleic acids that can exactly image intracellular lysosomes and be an effective drug delivery system.
Collapse
Affiliation(s)
- Hui Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
7
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
8
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
9
|
Narayanaswamy N, Nair RR, Suseela YV, Saini DK, Govindaraju T. A molecular beacon-based DNA switch for reversible pH sensing in vesicles and live cells. Chem Commun (Camb) 2016; 52:8741-4. [DOI: 10.1039/c6cc02705a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA switch based on a molecular beacon (closed state) to A-motif (open state) structural transformation is developed as an efficient and reversible pH sensor in synthetic vesicles and live cells.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Raji R. Nair
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bengaluru 560012
- India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
10
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
Liu Z, Mao C. Reporting transient molecular events by DNA strand displacement. Chem Commun (Camb) 2015; 50:8239-41. [PMID: 24938726 DOI: 10.1039/c4cc03291h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transient formation of DNA triplexes was reported by coupling with a permanent strand displacement reaction.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
12
|
Xu L, Guo Y, Wang J, Zhou L, Zhang Y, Hong S, Wang Z, Zhang J, Pei R. A H+/Ag+Dual-Target Responsive Label-Free Light-Up Probe Based on a DNA Triplex. Chem Asian J 2015; 10:1126-9. [DOI: 10.1002/asia.201500001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 02/03/2023]
|
13
|
Abstract
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.
Collapse
|
14
|
Yatsunyk LA, Mendoza O, Mergny JL. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res 2014; 47:1836-44. [PMID: 24871086 DOI: 10.1021/ar500063x] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONSPECTUS: DNA is an attractive polymer building material for nanodevices and nanostructures due to its ability for self-recognition and self-assembly. Assembly relies on the formation of base-specific interactions that allow strands to adopt structures in a controllable fashion. Most DNA-based higher order structures such as DNA cages, 2D and 3D DNA crystals, or origamis are based on DNA double helices stabilized by Watson-Crick complementarity. A number of nonclassical pairing patterns are possible between or among DNA strands; these interactions result in formation of unusual structures that include, but are not limited to, G-quadruplexes, i-motifs, triplexes, and parallel-stranded duplexes. These structures create greater diversity of DNA-based building blocks for nanomaterials and have certain advantages over conventional duplex DNA, such as enhanced thermal stability and sensitivity to chemical stimuli. In this Account, we briefly introduce these alternative DNA structures and describe in detail their utilization in a variety of nanomaterials and nanomachines. The field of DNA "nano-oddities" emerged in the late 1990s when for the first time a DNA nanomachine was designed based on equilibrium between B-DNA and noncanonical, left-handed Z-DNA. Soon after, "proof-of-principle" DNA nanomachines based on several DNA "oddities" were reported. These machines were set in motion by the addition of complementary strands (a principle used by many B-DNA-based nanodevices), by the addition of selected cations, small molecules, or proteins, or by a change in pH or temperature. Today, we have fair understanding of the mechanism of action of these devices, excellent control over their performance, and knowledge of basic principles of their design. pH sensors and pH-controlled devices occupy a central niche in the field. They are usually based on i-motifs or triplex DNA, are amazingly simple, robust, and reversible, and create no waste apart from salt and water. G-quadruplex based nanostructures have unusually high stability, resist DNase and temperature, and display high selectivity toward certain cations. The true power of using these "nano-oddities" comes from combining them with existing nanomaterials (e.g., DNA origami, gold nanoparticles, graphene oxide, or mesoporous silica) and integrating them into existing mechanical and optoelectronic devices. Creating well-structured junctions for these interfaces, finding appropriate applications for the vast numbers of reported "nano-oddities", and proving their biological innocence comprise major challenges in the field. Our Account is not meant to be an all-inclusive review of the field but should give a reader a firm grasp of the current state of DNA nanotechnology based on noncanonical DNA structures.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department
of Chemistry and Biochemistry, Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081 United States
| | - Oscar Mendoza
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| | - Jean-Louis Mergny
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| |
Collapse
|
15
|
Abstract
We have designed programmable DNA-based nanoswitches whose closing/opening can be triggered over specific different pH windows. These nanoswitches form an intramolecular triplex DNA structure through pH-sensitive parallel Hoogsteen interactions. We demonstrate that by simply changing the relative content of TAT/CGC triplets in the switches, we can rationally tune their pH dependence over more than 5 pH units. The ability to design DNA-based switches with tunable pH dependence provides the opportunity to engineer pH nanosensors with unprecedented wide sensitivity to pH changes. For example, by mixing in the same solution three switches with different pH sensitivity, we developed a pH nanosensor that can precisely monitor pH variations over 5.5 units of pH. With their fast response time (<200 ms) and high reversibility, these pH-triggered nanoswitches appear particularly suitable for applications ranging from the real-time monitoring of pH changes in vivo to the development of pH sensitive smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata , 00133, Rome, Italy
| | | | | |
Collapse
|
16
|
Battle C, Chu X, Jayawickramarajah J. Oligonucleotide-Based Systems for Input-Controlled and Non-Covalently Regulated Protein-Binding. Supramol Chem 2013; 25. [PMID: 24187478 DOI: 10.1080/10610278.2013.810337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supramolecular chemists continuously take inspiration from complex biological systems to develop functional molecules involved in molecular recognition and self-assembly. In this regard, "smart" synthetic molecules that emulate allosteric proteins are both exciting and challenging, since many allosteric proteins can be considered as molecular switches that bind to other protein targets in a non-covalent fashion, and importantly, are capable of having their output activity controlled by prior binding to input molecules. This review discusses the foundations and passage toward the development of non-covalently operated oligonucleotide-based systems with protein-binding capacity that can be precisely regulated in an input-controlled manner.
Collapse
Affiliation(s)
- Cooper Battle
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | | | | |
Collapse
|
17
|
Li XM, Song J, Cheng T, Fu PY. A duplex–triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem 2013; 405:5993-9. [DOI: 10.1007/s00216-013-7037-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 01/29/2023]
|
18
|
Kay ER, Lee J, Nocera DG, Bawendi MG. Conformational control of energy transfer: a mechanism for biocompatible nanocrystal-based sensors. Angew Chem Int Ed Engl 2013; 52:1165-9. [PMID: 23225635 PMCID: PMC3793206 DOI: 10.1002/anie.201207181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Indexed: 11/06/2022]
Abstract
Fold-up fluorophore : A new paradigm for designing self-referencing fluorescent nanosensors is demonstrated by interfacing a pH-triggered molecular conformational switch with quantum dots. Analytedependent, large-amplitude conformational motion controls the distance between the nanocrystal energy donor and an organic FRET acceptor. The result is a fluorescence signal capable of reporting pH values from individual endosomes in living cells.
Collapse
Affiliation(s)
| | | | - Daniel G. Nocera
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA 02139-4307 (USA)
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA 02139-4307 (USA)
| |
Collapse
|
19
|
Kay ER, Lee J, Nocera DG, Bawendi MG. Conformational Control of Energy Transfer: A Mechanism for Biocompatible Nanocrystal-Based Sensors. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
|
21
|
|
22
|
Zhao C, Qu K, Xu C, Ren J, Qu X. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Res 2011; 39:3939-48. [PMID: 21227925 PMCID: PMC3089474 DOI: 10.1093/nar/gkq1347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a promising strategy for artificially control of gene expression, reversible assembly of nanomaterials and DNA nanomachine, DNA triplex formation has received much attention. Carbon nanotubes as gene and drug delivery vector or as ‘building blocks’ in nano/microelectronic devices have been successfully explored. Therefore, studies on triplex DNA-based carbon nanotube hybrid materials are important for development of smart nanomaterials and for gene therapy. In this report, a small molecule directed single-walled carbon nanotubes (SWNTs) self-assembly assay has been developed by disproportionation of SWNTs–dT22·dA22 duplex into triplex dT22·dA22·dT22 and dA22 by a triplex formation inducer, coralyne. This has been studied by circular dichroism, light scattering (LS) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), electrophoretic mobility shift assay and supported by using DNA random sequence. In contrast, SWNTs do not aggregate under the same experimental conditions when the small molecules used can not induce dT22·dA22·dT22 triplex formation. Therefore, this novel small molecule-directed SWNTs self-assembly assay has also been used for screening of triplex inducers in our studies.
Collapse
Affiliation(s)
- Chao Zhao
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
23
|
Yi JW, Park J, Kim KS, Kim BH. pH-Responsive self-duplex of PyA-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Org Biomol Chem 2011; 9:7434-8. [DOI: 10.1039/c1ob06037f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Ye S, Li H, Cao W. Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor. Biosens Bioelectron 2010; 26:2215-20. [PMID: 20947334 DOI: 10.1016/j.bios.2010.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/19/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
A novel electrogenerated chemiluminescence (ECL) biosensor based on the construction of triplex DNA for the detection of adenosine was designed. The ECL biosensor employs an aptamer as a molecular recognition element, and quenches ECL of tris(2,2'-bipyridine) ruthenium (Ru(bpy)(3)(2+)) by ferrocenemonocarboxylic acid (FcA). Through self-assembly technology, the ECL probe of thiolated hairpin adenosine aptamer tagged was self-assembled onto the surface of a gold electrode with an ECL signal producer Ru(bpy)(3)(2+) derivative (Ru-DNA-1). The adenosine aptamer, including a section of triplex characteristic chain, formatted triplex DNA with two other DNAs (DNA-2, Fc-DNA-3) in the presence of triplex DNA binder coralyne chloride (CORA). Fc-DNA-3 was tagged with an ECL quencher ferrocenemonocarboxylic acid (FcA), a quenching probe. In the presence of adenosine, the aptamer sequence (Ru-DNA-1) prefers to form the aptamer-adenosine complex with hairpin configuration and the switch of the DNA-1 occurs in conjunction with the generation of a strong ECL signal owing to the dissociation of a quenching probe. Meanwhile, a control experiment was performed; the ECL-duplex biosensor was designed to detect adenosine. The detection limits were 2.7×10(-10) mol L(-1) and 2.3×10(-9) mol L(-1) for the ECL-triplex DNA biosensor and ECL-duplex DNA biosensor, respectively, which demonstrated that the ECL-triplex DNA biosensor improved the sensitivity and specificity greatly.
Collapse
Affiliation(s)
- Sujuan Ye
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | | | | |
Collapse
|
25
|
|
26
|
Chen Y, Mao C. pH-induced reversible expansion/contraction of gold nanoparticle aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:2191-2194. [PMID: 19016526 DOI: 10.1002/smll.200800569] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Yi Chen
- Purdue University, Department of Chemistry, West Lafayette, IN 47097, USA
| | | |
Collapse
|
27
|
Jung YH, Lee KB, Kim YG, Choi IS. Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed Engl 2007; 45:5960-3. [PMID: 16888827 DOI: 10.1002/anie.200601089] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Young Hwan Jung
- Department of Chemistry and School of Molecular Science, BK21, Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
28
|
Abstract
We are learning to build synthetic molecular machinery from DNA. This research is inspired by biological systems in which individual molecules act, singly and in concert, as specialized machines: our ambition is to create new technologies to perform tasks that are currently beyond our reach. DNA nanomachines are made by self-assembly, using techniques that rely on the sequence-specific interactions that bind complementary oligonucleotides together in a double helix. They can be activated by interactions with specific signalling molecules or by changes in their environment. Devices that change state in response to an external trigger might be used for molecular sensing, intelligent drug delivery or programmable chemical synthesis. Biological molecular motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. It has even proved possible to create DNA motors that move autonomously, obtaining energy by catalysing the reaction of DNA or RNA fuels.
Collapse
Affiliation(s)
- Jonathan Bath
- University of Oxford, Department of Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | | |
Collapse
|
29
|
Kay ER, Leigh DA, Zerbetto F. Synthetic molecular motors and mechanical machines. Angew Chem Int Ed Engl 2007; 46:72-191. [PMID: 17133632 DOI: 10.1002/anie.200504313] [Citation(s) in RCA: 2059] [Impact Index Per Article: 121.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.
Collapse
Affiliation(s)
- Euan R Kay
- School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | |
Collapse
|
30
|
Kolaric B, Sliwa M, Brucale M, Vallée RAL, Zuccheri G, Samori B, Hofkens J, De Schryver FC. Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochem Photobiol Sci 2007; 6:614-8. [PMID: 17549262 DOI: 10.1039/b618689k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several authors demonstrated that an oligonucleotide based pH-sensitive construct can act as a switch between an open and a closed state by changing the pH. To validate this process, specially designed fluorescence dye-quencher substituted oligonucleotide constructs were developed to probe the switching between these two states. This paper reports on bulk and single molecule fluorescence investigations of a duplex-triplex pH sensitive oligonucleotide switch. On the bulk level, only a partial quenching of the fluorescence is observed, similarly to what is observed for other published switches and is supposed to be due to intermolecular interactions between oligonucleotide strands. On the single molecule level, each DNA-based nanometric construct shows a complete switching. These observations suggest the tendency of the DNA construct to associate at high concentration.
Collapse
Affiliation(s)
- Branko Kolaric
- Katholieke Universiteit Leuven, Department Chemistry and Institute for Nanoscale Physics and Chemistry (INPAC), Celestijnenlaan 200F, Heverlee, B-3001, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kay E, Leigh D, Zerbetto F. Synthetische molekulare Motoren und mechanische Maschinen. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200504313] [Citation(s) in RCA: 587] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Tian Y, He Y, Chen Y, Yin P, Mao C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed Engl 2006; 44:4355-8. [PMID: 15945114 DOI: 10.1002/anie.200500703] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ye Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
33
|
Jung YH, Lee KB, Kim YG, Choi IS. Proton-Fueled, Reversible Assembly of Gold Nanoparticles by Controlled Triplex Formation. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200601089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Brucale M, Zuccheri G, Samorì B. Mastering the complexity of DNA nanostructures. Trends Biotechnol 2006; 24:235-43. [PMID: 16542743 DOI: 10.1016/j.tibtech.2006.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/29/2005] [Accepted: 02/28/2006] [Indexed: 11/18/2022]
Abstract
The self-assembly of oligodeoxynucleotides is a versatile and powerful tool for the construction of objects in the nanoscale. The strictly information-driven pairing of DNA fragments can be used to rationally design and build nanostructures with planned topologies and geometries. Taking advantage of the steadily expanding library of well-characterized DNA motifs, several examples of structures with different dimensionalities have appeared in the literature in the past few years, laying the foundations for a promising DNA-mediated, bottom-up approach to nanotechnology. This article focuses on recent developments in this area of research and proposes a classification of DNA nanostructures based on topological considerations in addition to describing strategies for tackling the inherent complexities of such an endeavor.
Collapse
Affiliation(s)
- Marco Brucale
- Department of Biochemistry, G. Moruzzi University of Bologna, Via Irnerio 48, Bologna 40126, Italy
| | | | | |
Collapse
|
35
|
Beyer S, Simmel FC. A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res 2006; 34:1581-7. [PMID: 16547201 PMCID: PMC1409677 DOI: 10.1093/nar/gkl075] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/03/2006] [Accepted: 03/03/2006] [Indexed: 11/14/2022] Open
Abstract
Owing to the intimate linkage of sequence and structure in nucleic acids, DNA is an extremely attractive molecule for the development of molecular devices, in particular when a combination of information processing and chemomechanical tasks is desired. Many of the previously demonstrated devices are driven by hybridization between DNA 'effector' strands and specific recognition sequences on the device. For applications it is of great interest to link several of such molecular devices together within artificial reaction cascades. Often it will not be possible to choose DNA sequences freely, e.g. when functional nucleic acids such as aptamers are used. In such cases translation of an arbitrary 'input' sequence into a desired effector sequence may be required. Here we demonstrate a molecular 'translator' for information encoded in DNA and show how it can be used to control the release of a protein by an aptamer using an arbitrarily chosen DNA input strand. The function of the translator is based on branch migration and the action of the endonuclease FokI. The modular design of the translator facilitates the adaptation of the device to various input or output sequences.
Collapse
Affiliation(s)
- Stefan Beyer
- Department of Physics and Center for Nanoscience, LMU MünchenGeschwister-Scholl-Platz 1, 80539 München, Germany
| | - Friedrich C. Simmel
- Department of Physics and Center for Nanoscience, LMU MünchenGeschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
36
|
Abstract
DNA has many physical and chemical properties that make it a powerful material for molecular constructions at the nanometer length scale. In particular, its ability to form duplexes and other secondary structures through predictable nucleotide-sequence-directed hybridization allows for the design of programmable structural motifs which can self-assemble to form large supramolecular arrays, scaffolds, and even mechanical and logical nanodevices. Despite the large variety of structural motifs used as building blocks in the programmed assembly of supramolecular DNA nanoarchitectures, the various modules share underlying principles in terms of the design of their hierarchical configuration and the implemented nucleotide sequences. This Review is intended to provide an overview of this fascinating and rapidly growing field of research from the structural design point of view.
Collapse
Affiliation(s)
- Udo Feldkamp
- Fachbereich Chemie, Biologisch-Chemische Mikrostrukturtechnik, Universität Dortmund, Germany.
| | | |
Collapse
|
37
|
|
38
|
Demidov VV, Dokholyan NV, Witte-Hoffmann C, Chalasani P, Yiu HW, Ding F, Yu Y, Cantor CR, Broude NE. Fast complementation of split fluorescent protein triggered by DNA hybridization. Proc Natl Acad Sci U S A 2006; 103:2052-6. [PMID: 16461889 PMCID: PMC1413755 DOI: 10.1073/pnas.0511078103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fluorescent proteins have proven to be excellent reporters and biochemical sensors with a wide range of applications. In a split form, they are not fluorescent, but their fluorescence can be restored by supplementary protein-protein or protein-nucleic acid interactions that reassemble the split polypeptides. However, in prior studies, it took hours to restore the fluorescence of a split fluorescent protein because the formation of the protein chromophore slowly occurred de novo concurrently with reassembly. Here we provide evidence that a fluorogenic chromophore can self-catalytically form within an isolated N-terminal fragment of the enhanced green fluorescent protein (EGFP). We show that restoration of the split protein fluorescence can be driven by nucleic acid complementary interactions. In our assay, fluorescence development is fast (within a few minutes) when complementary oligonucleotide-linked fragments of the split EGFP are combined. The ability of our EGFP system to respond quickly to DNA hybridization should be useful for detecting the kinetics of many other types of pairwise interactions both in vitro and in living cells.
Collapse
Affiliation(s)
- Vadim V. Demidov
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
- To whom correspondence may be addressed. E-mail:
, , or
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and
| | - Carlos Witte-Hoffmann
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Poornima Chalasani
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Hung-Wei Yiu
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and
| | - Yong Yu
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Charles R. Cantor
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Sequenom, Inc., San Diego, CA 92121
- To whom correspondence may be addressed. E-mail:
, , or
| | - Natalia E. Broude
- *Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, Boston, MA 02215
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
39
|
Liedl T, Simmel FC. Switching the conformation of a DNA molecule with a chemical oscillator. NANO LETTERS 2005; 5:1894-8. [PMID: 16218705 DOI: 10.1021/nl051180j] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
pH oscillations generated by a nonequilibrium chemical reaction are used to switch a pH-sensitive DNA structure between two distinct conformations. The utilization of a chemical oscillator represents a novel method for achieving autonomous motion in molecular devices. The oscillatory reaction is a variant of the Landolt reaction and produces pH variations in the range between pH 5 and 7. In this range, a cytosine-rich DNA strand can be switched between a random coil conformation and the folded i-motif structure. The conformational changes are monitored simultaneously with the pH value in fluorescence-resonance energy-transfer experiments.
Collapse
Affiliation(s)
- Tim Liedl
- Department of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Münich, Germany
| | | |
Collapse
|
40
|
Tian Y, He Y, Chen Y, Yin P, Mao C. A DNAzyme That Walks Processively and Autonomously along a One-Dimensional Track. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200500703] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Zuccheri G, Brucale M, Samorì B. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:590-2. [PMID: 17193491 DOI: 10.1002/smll.200500088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Giampaolo Zuccheri
- Department of Biochemistry G. Moruzzi, National Institute for the Physics of the Matter (INFM), and The National Consortium of Materials Science and Technology (INSTM), University of Bologna, Via Irnerio, 48-Bologna 40126, Italy
| | | | | |
Collapse
|