1
|
Gurbanov AV, Firoozbakht F, Pourshirband N, Sharafi-Badr P, Hayati P, Souri B, Eshghi F, Kaminsky W, Mahmoudi G, Verpoort F, Mehrabadi Z. A new 1D Mn(II) coordination polymer: Synthesis, crystal structure, hirshfeld surface analysis and molecular docking studies. Heliyon 2024; 10:e29565. [PMID: 38699722 PMCID: PMC11063412 DOI: 10.1016/j.heliyon.2024.e29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The synthesis of novel metal-organic coordination polymers (MOCP) with the chemical formula [Mn2L (SCN)2(OH)2]3·CH3OH [L = 1,5-bis(pyridine-4-ylmethylene) carbonohydrazide] {1} was accomplished using two different techniques: solvothermal and sonochemical ultrasonic-assisted. An investigation was carried out to examine the impact of various factors such as reaction time, sonication power, temperature, and reactant concentration on the morphology and size of the crystals. Interestingly, it was found that sonication power and temperature did not affect the crystals' morphology and size. To further analyze the prepared microcrystals of MOCPs, SEM was utilized to examine their surface morphology, and XRD, elemental evaluation composition. The identification of the functional groups present in the prepared Mn-MOCPs was accomplished through the utilization of FT-IR spectroscopy. Subsequently, the calcination of 1 in an air atmosphere at 650 °C led to the formation of Mn3O4 nanoparticles. The geometric and electronic structure of the MOCPs was evaluated using density functional theory (DFT). The utilization of molecular docking methodologies demonstrated that the best cavity of the human androgen receptor possessed an interaction energy of -116.3 kJ mol-1. This energy encompassed a combination of both bonding and non-bonding interactions. The Results showed that steric interaction and electrostatic potential are the main interactions in AR polymer and Mn(II). These interactions in the defined cavity indicated that this polymer could be an effective anti-prostate candidate, because AR is involved in the growth of prostate cancer cells, and these interactions indicated the inhibition of prostate cancer cell growth.
Collapse
Affiliation(s)
- Atash V. Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Excellence Center, Baku State University, Z. Khalilov Str. 23, AZ 1148 Baku, Azerbaijan
- Western Caspian University, Istiqlaliyyat Street 31, AZ 1001, Baku, Azerbaijan
| | - Fateme Firoozbakht
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Nafiseh Pourshirband
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Hayati
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Bagher Souri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fazlolah Eshghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Werner Kaminsky
- X-ray Crystallography Laboratory, University of Washington, United States
| | - Ghodrat Mahmoudi
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran
- Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sarıyer, Istanbul 34396, Turkey
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| |
Collapse
|
2
|
Ishikawa S, Kosugi Y, Kanda Y, Shimoda K, Jing Y, Toyao T, Shimizu KI, Ueda W. Microporosity and Catalytic Activity for Hydrodesulfurization of Pharmacosiderite Mo 4P 3O 16 Synthesized at a Moderate Temperature. Inorg Chem 2024; 63:7780-7791. [PMID: 38625744 DOI: 10.1021/acs.inorgchem.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Pharmacosiderite Mo4P3O16 (Pharma-MoPO) consists of [Mo4O4] cubane unit and [PO4] tetrahedral to form an open framework with a microporous structure similar to that of LTA-type zeolite. Although attractive applications are expected due to its microporous structure and redox-active components, its physicochemical properties have been poorly investigated due to the specificity of its synthesis, which requires a high hydrothermal synthesis temperature of 360 °C. In this study, we succeeded in synthesizing Pharma-MoPO by hydrothermal synthesis at 230 °C, which can be applied using a commercially available autoclave by changing the metal source. Through the study of the solids and liquids obtained after hydrothermal syntheses, the formation process of Pharma-MoPO under our studied synthesis conditions was proposed. Advanced characterizations provided detailed structural information on Pharma-MoPO, including the location site of a countercation NH4+. Pharma-MoPO could adsorb CO2 with the amount close to the number of cages without removing NH4+. Pharma-MoPO exhibited stable catalytic activity for the hydrodesulfurization of thiophene while maintaining its crystal structure, except for the introduction of sulfide by replacing lattice oxygens. Pharmacosiderite Mo4P3O16 was successfully obtained by hydrothermal synthesis at a moderate temperature, and its microporosity for CO2 adsorption and catalytic properties for hydrodesulfurization were discovered.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yudai Kosugi
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yasuharu Kanda
- Chemical and Biological Engineering Research Unit, College of Information and Systems, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Wataru Ueda
- Department of Applied Chemistry, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
3
|
Hu XY, Cheng XL, Azam M, Liu FL, Sun D. Guest-Induced Reversible Single-Crystal-to-Single-Crystal Transformation Involving Displacement of 2D Layers and Spin Crossover Behavior Change in a Hofmann-Type Coordination Polymer. Inorg Chem 2024; 63:7746-7753. [PMID: 38609344 DOI: 10.1021/acs.inorgchem.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shifting from orthorhombic Cmmm to monoclinic C2/m involving the displacement of 2D layers. The solvent-induced SCSC transformation process was reversible and verified through powder X-ray diffraction (PXRD) and single-crystal X-ray crystallography analyses. Both 1·2CH3OH and 1·2H2O exhibit complete and abrupt spin crossover (SCO) behaviors in two steps, while their SCO temperature ranges drastically shift by ca.100 K, spanning room temperature, owing to different intermolecular interactions resulting from diverse interlayer packing manners and host-guest interactions. Besides, a structural phase transition is observed in 1·2CH3OH, contributing to the two-step spin transition.
Collapse
Affiliation(s)
- Xiao-Yang Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Xiang-Long Cheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh 11451, Saudi Arabia
| | - Fu-Ling Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
4
|
Rom T, Agrawal A, Biswas R, Haldar KK, Paul AK. Superior Electrochemical Water Splitting and Energy-Storage Performances of In Situ Fabricated Charge-Separated Metal Organophosphonate Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17797-17811. [PMID: 38552198 DOI: 10.1021/acsami.3c19079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The design and exploration of advanced materials as a durable multifunctional electrocatalyst toward sustainable energy generation and storage development is the most perdurable challenge in the domain of renewable energy research. Herein, a facile in situ solvothermal approach has been adopted to prepare a methylviologen-regulated crystalline metal phosphonate compound, [C12H14N2][Ni(C11H11N2)(H2hedp)2]2•6H2O (NIT1), (H4hedp = 1-hydroxyethane 1,1-diphosphonic acid) and well characterized by several techniques. The as-prepared NIT1 displays excellent bifunctional electrocatalytic activity with dynamic stability toward oxygen evolution reaction (η10 = 288 mV) and hydrogen evolution reaction (η10 = 228 mV) in alkaline (1.0 M KOH) and acidic mediums (0.5 M H2SO4), respectively. Such a low overpotential and Tafel slope (68 mV/dec for OER; 56 mV/dec for HER) along with long-term durability up to 20 h of NIT1 make it superior to benchmark the electrocatalyst and various nonprecious metal-based catalysts under similar experimental condition. Further, the electrochemical supercapacitor measurements (in three-electrode system) reveal that the NIT1 electrode possesses much higher specific capacity of 187.6 C g-1 at a current density of 2 A g-1 (272 C g-1 at 5 mV s-1) with capacitance retention of 75.2% over 10,000 cycles at 14 A g-1 (Coulombic efficiency > 99%) in 6 M KOH electrolyte medium. Finally for a practical application, an asymmetric supercapacitor device (coin cell) is assembled by NIT1 material. The as-fabricated device delivers the maximum energy density of 39.4 Wh kg-1 at a power density of 450 W kg-1 and achieves a wide voltage window of 1.80 V. Notably, the device endures a remarkable cycle performance with cyclic retention of 92% (Coulombic efficiency > 99%) even after 14,000 charge/discharge cycles at 10 A g-1. Nevertheless, the extraordinary electrochemical activities toward OER and HER as well as the high-performance device fabrication for LED illumination of such a noble metal-free lower-dimensional charge-transfer compound are truly path breaking and would be promising for the development of advanced multifunctional materials.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology, Kurukshetra136119, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Anant Agrawal
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Rathindranath Biswas
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra136119, India
| |
Collapse
|
5
|
Biswas B, Siddiqui AI, Majee MC, Saha SK, Mondal B, Saha R, Gómez García CJ. Heptanuclear Mixed-Valence Co 4IIICo 3II Molecular Wheel─A Molecular Analogue of Layered Double Hydroxides with Single-Molecule Magnet Behavior and Electrocatalytic Activity for Hydrogen Evolution Reactions. Inorg Chem 2024; 63:6161-6172. [PMID: 38526851 PMCID: PMC11005049 DOI: 10.1021/acs.inorgchem.3c04065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(μ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four μ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 μmol H2 h-1 mol-1.
Collapse
Affiliation(s)
- Biplab Biswas
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Department
of Chemistry, Hooghly Mohsin College, Chinsurah 712101, West Bengal, India
| | | | | | - Swadhin Kumar Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
| | - Biswajit Mondal
- Department
of Chemistry, IIT Gandhinagar, Palaj 382355, Gujarat, India
| | - Rajat Saha
- Department
of Chemistry, Kazi Nazrul University, Asansol 713340, West Bengal, India
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, Burjasot, Valencia 46100, Spain
| |
Collapse
|
6
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhang J, Kosaka W, Liu Q, Amamizu N, Kitagawa Y, Miyasaka H. CO 2-Sensitive Porous Magnet: Antiferromagnet Creation from a Paramagnetic Charge-Transfer Layered Metal-Organic Framework. J Am Chem Soc 2023; 145:26179-26189. [PMID: 38053496 DOI: 10.1021/jacs.3c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Porous magnets that undergo a magnetic phase transition in response to gaseous adsorbates are desirable for the development of sustainable sensing and memory devices. Familiar gases such as O2 and CO2 are one class of target adsorbates because of their close association with life sciences and environmental issues; however, it is not easy to develop magnetic devices that respond to these ubiquitous gases. To date, only three examples of gas-responsive magnetic phase transitions have been demonstrated: (i) from a ferrimagnet to an antiferromagnet, (ii) its vice versa (i.e., change of magnetic phase), and (iii) from a ferrimagnet to a paramagnet (i.e., erasure of the magnetic phase). However, the creation of a magnet, meaning the change from a nonmagnet to a magnet by O2 or CO2 gas adsorption and magnetic switching by this phenomenon have not yet been explored. Herein, we report a CO2-induced antiferromagnet modified from a paramagnetic charge-flexible layered compound, [{Ru2(2,4-F2PhCO2)4}2TCNQ(OEt)2] (1; 2,4-F2PhCO2- = 2,4-difluorobenzoate; TCNQ(OEt)2 = 2,5-diethoxy-7,7,8,8-tetracyanoquinodimethane), where three molar equivalents of CO2 was accommodated at a CO2 pressure of 100 kPa. The magnetic change originates from charge fluctuation due to the transfer of electrons moving from the electron-donor to the electron-acceptor unit or vice versa, resulting in a change in the electron distribution induced by CO2 adsorption/desorption in the donor-acceptor-type charge transfer framework. Owing to the reversible electronic state change upon CO2 adsorption/desorption, these magnetic phases are switched, accompanied by modification of the electrical conductivity, which is boosted by the CO2 accommodation. This is the first example of the creation of a CO2-responsive magnet, which is promising for novel molecular multifunctional devices.
Collapse
Affiliation(s)
- Jun Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| | - Qingxin Liu
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| | - Naoka Amamizu
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka Kitagawa
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-8531, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Aoba-ku 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Sendai, Aoba-ku 980-8578, Japan
| |
Collapse
|
8
|
Kosaka W, Hiwatashi Y, Amamizu N, Kitagawa Y, Zhang J, Miyasaka H. Densely Packed CO 2 Aids Charge, Spin, and Lattice Ordering Partially Fluctuated in a Porous Metal-Organic Framework Magnet. Angew Chem Int Ed Engl 2023; 62:e202312205. [PMID: 37840402 DOI: 10.1002/anie.202312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Partial charge fluctuations in the charge-ordered state of a material, often triggered by structural disorders and/or defects, can significantly alter its physical characteristics, such as magnetic long-range ordering. However, it is difficult to post-chemically fix such accidental partial fluctuations to reconstruct a uniform charge-ordered state. Herein, we report CO2 -aided charge ordering demonstrated in a CO2 -post-captured layered magnet, [{Ru2 (o-ClPhCO2 )4 }2 {TCNQ(OMe)2 }] ⋅ CO2 (1⊃CO2 ; o-ClPhCO2 - =ortho-chlorobenzoate; TNCQ(OMe)2 =2,5-dimethoxy-7,7,8,8-tetracyanoquinodimethane). Pristine porous layered magnet 1 had a partially charge-fluctuated ordered state, which provided ferrimagnetic ordering at TC =65 K. Upon loading CO2 , 1 adsorbed one mole of CO2 , forming 1⊃CO2 , and raising TC to 100 K. This was because of the vanishing charge fluctuations without significantly changing the framework structure. This research illustrates the post-accessible host-guest chemistry delicately combined with charge, spin, and lattice ordering in a spongy magnet. Furthermore, it highlights how this innovative approach opens up new possibilities for technology and nanoscale magnetism manipulation.
Collapse
Affiliation(s)
- Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshie Hiwatashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Naoka Amamizu
- Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-0043, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-chou, Toyonaka, Osaka 560-0043, Japan
| | - Jun Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Dutta M, Bisht S, Ghosh P, Chilug AI, Mann D, Enachescu C, Shatruk M, Chakraborty P. Combined Experimental and Mechanoelastic Modeling Studies on the Low-Spin Stabilized Mixed Crystals of 3D Oxalate-Based Coordination Materials. Inorg Chem 2023; 62:15050-15062. [PMID: 37677120 DOI: 10.1021/acs.inorgchem.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Structural studies involving single-crystal and powder X-ray diffraction analysis have been performed on dehydrated coordination networks of the [NixCo1-x(bpy)3][LiCr(ox)3] series, 0 ≤ x ≤ 1, (bpy = 2,2'-bipyridine). The high-symmetry cubic 3D structure of these materials is formed by oxalate anions bridging alternating Cr3+ and Li+ ions into an anionic framework, which contains large cavities that incorporate the [NixCo1-x(bpy)3]2+ cations. Irrespective of the Co/Ni ratio, all of the mixed samples are phase-pure and retain the high-symmetry cubic structure, with the lattice parameters gradually decreasing upon increasing Ni(II) concentration. The influence of the Ni(II) dilution on the magnetic behavior of these materials is substantial. For pure [Co(bpy)3][LiCr(ox)3], a gradual but incomplete thermal spin-crossover is evident due to the effect of the chemical pressure applied by the [LiCr(ox)3]2- framework, which stabilizes the low-spin (LS) 2E state relative to the high-spin (HS) 4T1 state of the Co(II) ion. Upon increasing the Ni(II) content, the spin-crossover becomes even more gradual and incomplete and eventually is not observed for pure [Ni(bpy)3][LiCr(ox)3]. The average spin-crossover temperature increases with the increasing Ni(II) content, suggesting a higher degree of chemical pressure applied by the oxalate framework manifested by changing the ΔE0HL toward positive values. The magnetic behavior of all these framework materials has been explained by the mechanoelastic model, considering different radii for Co and Ni molecules and different interactions between Co-Co sites and Co-Ni sites. The model reproduced the incomplete transition, with the HS residual fraction at 300 K decreasing with increasing Ni concentration, and provided microscopic snapshots of the systems, showing how the existence of impurities prevented the spreading of Co atoms in the HS state.
Collapse
Affiliation(s)
- Mousumi Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Prabir Ghosh
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Dallas Mann
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | | | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
Routh K, Pradeep CP. Multifunctional Aryl Sulfonium Decavanadates: Tuning the Photochromic and Heterogeneous Oxidative Desulfurization Catalytic Properties Using Salicylaldehyde-type Functional Moieties on Counterions. Inorg Chem 2023; 62:13775-13792. [PMID: 37575023 DOI: 10.1021/acs.inorgchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
11
|
He G, Peng X, Zhou H, Huang G, Xie Y, He Y, Liu H, Huang K. Superior Mechanical Properties of Invar36 Alloy Lattices Structures Manufactured by Laser Powder Bed Fusion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4433. [PMID: 37374616 DOI: 10.3390/ma16124433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Invar36 alloy is a low expansion alloy, and the triply periodic minimal surfaces (TPMS) structures have excellent lightweight, high energy absorption capacity and superior thermal and acoustic insulation properties. It is, however, difficult to manufacture by traditional processing methods. Laser powder bed fusion (LPBF) as a metal additive manufacturing technology, is extremely advantageous for forming complex lattice structures. In this study, five different TPMS cell structures, Gyroid (G), Diamond (D), Schwarz-P (P), Lidinoid (L), and Neovius (N) with Invar36 alloy as the material, were prepared using the LPBF process. The deformation behavior, mechanical properties, and energy absorption efficiency of these structures under different load directions were studied, and the effects and mechanisms of structure design, wall thickness, and load direction were further investigated. The results show that except for the P cell structure, which collapsed layer by layer, the other four TPMS cell structures all exhibited uniform plastic collapse. The G and D cell structures had excellent mechanical properties, and the energy absorption efficiency could reach more than 80%. In addition, it was found that the wall thickness could adjust the apparent density, relative platform stress, relative stiffness, energy absorption, energy absorption efficiency, and deformation behavior of the structure. Printed TPMS cell structures have better mechanical properties in the horizontal direction due to intrinsic printing process and structural design.
Collapse
Affiliation(s)
- Gongming He
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Preparation Technology for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, Chengdu 610065, China
| | - Xiaoqiang Peng
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Preparation Technology for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, Chengdu 610065, China
| | - Haotian Zhou
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Preparation Technology for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, Chengdu 610065, China
| | - Guoliang Huang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Preparation Technology for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, Chengdu 610065, China
| | - Yanjun Xie
- PERA Global Co., Ltd., Beijing 100025, China
| | - Yong He
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
| | - Han Liu
- SOlids inFormaTics AI-Laboratory (SOFT-AI-Lab), College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ke Huang
- School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
- Sichuan Provincial Engineering Laboratory of Preparation Technology for Rare Earth & Vanadium-Titanium Based Functional Materials, Sichuan University, Chengdu 610065, China
- Atlastech Additive Manufacuring Laboratory, School of Materials Science & Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Intriguing π-interactions involving aromatic neutrals, aromatic cations and semiconducting behavior in a pyridinium-carboxylate salt. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
13
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
14
|
Roy S, Paul S, Misra A. A Theoretical Account of the Coupling between Metal- and Ligand-centred Spins. Chemphyschem 2023; 24:e202200889. [PMID: 36622254 DOI: 10.1002/cphc.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII (hfac)2 (imVDZ)] and [MII (hfac)2 (pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2'-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.
Collapse
Affiliation(s)
- Sriparna Roy
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 R.C Sarani, Kolkata, 700009, India
| | - Anirban Misra
- Department of Chemistry, University of North Bengal, Siliguri, Darjeeling , 734013, India
| |
Collapse
|
15
|
Anchoring polydentate N/O-ligands in metal phosphite/phosphate/phosphonate (MPO) for functional hybrid materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Singh A, Kociok-Köhn G, Dutta A, Kumar A, Muddassir M. Diaminopyridine Hg(II)-based 1D supramolecular polymer: Crystallographic and computational insights into spodium bonding. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Crystal structures, gas storage and magnetic properties of lanthanide-organic frameworks built up from dicarboxylates, [Ln2(2,5-pydc)2(2,5-pipdc)(H2O)2]n (Ln = Ce, Pr, Eu) and (H2pip)n[Ln2(2,6-pydc)4(H2O)2]n (Ln = Ce, Pr, Eu, Sm). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Synthesis, crystal structure, and physical properties of a triangular-lattice magnet K2Co(HPO4)(C2O4)(OH2)⋅H2O. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Ali A, Pervaiz M, Saeed Z, Younas U, Bashir R, Ullah S, Bukhari SM, Ali F, Jelani S, Rashid A, Adnan A. Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Antiparallel π···π and C−H···H−C contacts in a novel Zn(II) coordination solid involving π-hole tetrel bonding interactions: A combined experimental and theoretical study, Hirshfeld surface analysis, molecular docking and potential drug property. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Böhme M, Rams M, Krebs C, Mangelsen S, Jess I, Plass W, Näther C. Co(NCS) 2 Chain Compound with Alternating 5- and 6-Fold Coordination: Influence of Metal Coordination on the Magnetic Properties. Inorg Chem 2022; 61:16841-16855. [PMID: 36218356 DOI: 10.1021/acs.inorgchem.2c02813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of Co(NCS)2 with 3-bromopyridine leads to the formation of discrete complexes [Co(NCS)2(3-bromopyridine)4] (1), [Co(NCS)2(3-bromopyridine)2(H2O)2] (2), and [Co(NCS)2(3-bromopyridine)2(MeOH)2] (3) depending on the solvent. Thermogravimetric measurements on 2 and 3 show a transformation into [Co(NCS)2(3-bromopyridine)2]n (4), which upon further heating is converted to [{Co(NCS)2}2(3-bromopyridine)3]n (5), whereas 1 transforms directly into 5 upon heating. Compound 5 can also be obtained from solution, which is not possible for 4. In 4 and 5, the cobalt(II) cations are linked by pairs of μ-1,3-bridging thiocyanate anions into chains. In compound 4, all cobalt(II) cations are octahedrally coordinated (OC-6), as is usually observed in such compounds, whereas in 5, a previously unkown alternating 5- and 6-fold coordination is observed, leading to vacant octahedral (vOC-5) and octahedral (OC-6) environments, respectively. In contrast to 4, the chains in 5 are very efficiently packed and linked by π···π stacking of the pyridine rings and interchain Co···Br interactions, which is the basis for the formation of this unusual chain. The spin chains in 4 demonstrate ferromagnetic intrachain exchange and much weaker interchain interactions, as is usually observed for such linear chain compounds. In contrast, compound 5 shows almost single-ion-like magnetic susceptibility, but the magnetic ordering temperature deduced from specific heat measurements is twice as high as that in 4, which might originate from π···π stacking and Co···Br interactions between neighboring chains. More importantly, unlike all linear Co(NCS)2 chain compounds, a dominant antiferromagnetic exchange is observed for 5, which is explained by density functional theory calculations predicting an alternating ferro- and aniferromagnetic exchange within the chains. Theoretical calculations on the two different cobalt(II) ions present in 5 predict an easy-axis anisotropy that is much stronger for the octahedral cobalt(II) ion than for the one with the vacant octahedral coordination, with the magnetic axes of the two ions being canted by an angle of 84°. This almost orthogonal orientation of the easy axis of magnetization for the two cobalt(II) ions is the rationale for the observed non-Ising behavior of 5.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena 07743, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Christoph Krebs
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Sebastian Mangelsen
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Inke Jess
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena 07743, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| |
Collapse
|
22
|
Multifunctional Mn(II) Metal-Organic framework for photocatalytic aerobic oxidation and C H direct trifluoromethylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
24
|
Rom T, Agrawal A, Sarkar S, Mahata P, Kumar A, Paul AK. Organoamine Templated Multifunctional Hybrid Metal Phosphonate Frameworks: Promising Candidates for Tailoring Electrochemical Behaviors and Size-Selective Efficient Heterogeneous Lewis Acid Catalysis. Inorg Chem 2022; 61:9580-9594. [PMID: 35687505 DOI: 10.1021/acs.inorgchem.2c00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The successful discovery of novel multifunctional metal phosphonate framework materials that incorporate newer organoamines and their utilization as a potential electroactive material for energy storage applications (supercapacitors) and as efficient heterogeneous catalysts are the most enduring challenges at present. From this perspective, herein, four new inorganic-organic hybrid zinc organodiphosphonate materials, namely, [C5H14N2]2[Zn6(hedp)4] (I), [C5H14N2]0.5[Zn3(Hhedp) (hedp)]·2H2O (II), [C6H16N2][Zn3(hedp)2] (III), and [C10H24N4][Zn6(Hhedp)2(hedp)2] (IV) (H4hedp = 1-hydroxyethane 1,1-diphosphonic acid), have been synthesized through the introduction of different organoamines and then structurally analyzed using various techniques. The compounds (I-IV) possess a three-dimensional network through alternate connectivity of zinc ions and diphosphonate ligands, as confirmed using single-crystal X-ray diffraction. The investigations of electrochemical charge storage behaviors of the present compounds indicate that compound III exhibits a high specific capacitance of 190 F g-1 (76 C g-1) at 1 A g-1, while compound II shows an excellent cycling stability of 90.11% even after 5000 cycles at 5 A g-1 in the 6 M KOH solution. Further, the present materials have also been utilized as active heterogeneous Lewis acid catalysts in the ketalization reaction. The screening of various substrate scopes during the catalytic process confirms the size-selective heterogeneous catalytic nature of the framework compounds. To our utmost knowledge, such a size-selective heterogeneous Lewis acid catalytic behavior has been observed for the first time in the amine templated inorganic-organic hybrid framework family. Moreover, the excellent size-selective catalytic efficiencies with the d10 metal system and recyclability performances make the compounds (I-IV) more efficient and promising Lewis acid heterogeneous catalysts.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Anant Agrawal
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Sourav Sarkar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Ashavani Kumar
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| |
Collapse
|
25
|
Siebeneichler S, Dorn KV, Smetana V, Ovchinnikov A, Mudring AV. From a Dense Structure to Open Frameworks: The Structural Plethora of Alkali Metal Iron Fluorophosphates. Inorg Chem 2022; 61:9767-9775. [PMID: 35699656 PMCID: PMC9490823 DOI: 10.1021/acs.inorgchem.2c01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
By employing the
pyridinium hexafluorophosphate task-specific ionic
liquids 1-butyl-4-methylpyridinium hexafluorophosphate ([C4mpyr][PF6]) and 1-ethylpyridinium hexafluorophosphate
([C2pyr][PF6]) as the reaction medium, mineralizer,
structure-directing agent, and, in the case of the smaller pyridinium
cation, even a structural component, it was possible to obtain five
new alkali metal iron phosphates featuring interconnected FeX6 octahedra and PX4 (X = F, O, or OH) tetrahedra.
NaFe(PO3F)2 (1) is a dense 3D structure,
RbFe(PO3F)(PO2(OH)F)(PO2(OH)2) (2) features 1D strands, (C2pyr)LiFe(PO3F)3(PO2F2)F (3) has 2D layers, and LiFe(PO3F)(PO2F2)F (4) as well as Cs0.75Fe(PO2.75(OH)0.25F)(PO2F2)2 (5) are 3D open frameworks. While in 1–2 as well as in 4 and 5, FeX6 octahedra and PX4 (X = F, O, or OH) tetrahedra alternate, 3 features octahedra dimers, Fe2X11 (X
= F, O, or OH). The magnetic behavior of all compounds is governed
by antiferromagnetic interactions. Interestingly, 3 exhibits
a broad maximum in the temperature dependence of the magnetic susceptibility,
characteristic of a low-dimensional magnetic system consistent with
the presence of Fe–Fe dimers in its crystal structure. Application of ionic liquids as the reaction
medium, structure
templates, and mineralizer led to a series of active-metal-iron phosphates
with structural motifs of varied dimensionality and, ultimately, an
open-framework structure.
Collapse
Affiliation(s)
- Stefanie Siebeneichler
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, 10691 Stockholm, Sweden
| | - Katharina V Dorn
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, 10691 Stockholm, Sweden
| | - Volodymyr Smetana
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, 10691 Stockholm, Sweden
| | - Alexander Ovchinnikov
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, 10691 Stockholm, Sweden
| | - Anja-Verena Mudring
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16 C, 10691 Stockholm, Sweden
| |
Collapse
|
26
|
Lippi M, Murelli A, Rossi P, Paoli P, Cametti M. Different Topologies of Hg(II)-Bispidine 1D Coordination Polymers: Dynamic Behavior in Solvent Adsorption and Exchange Processes. Chemistry 2022; 28:e202200420. [PMID: 35274771 PMCID: PMC9311696 DOI: 10.1002/chem.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 11/07/2022]
Abstract
One-dimensional (1D) coordination polymers (CPs) featuring three different topologies, comprising zig-zag, ribbon-like and poly-[n]-catenane structures, were obtained by reaction of Hg(II) ions with a novel bispidine ligand L3, and structurally characterized by SC- and P-XRD methods. The CPs obtained in the form of microcrystalline powders were tested for their ability to undergo solvent adsorption and exchange by P-XRD and 1 H NMR spectroscopy. The extent of their dynamic behavior was then correlated to their structural features, highlighting the role of interchain interactions established among their constituting linear arrays. Zig-zag CPs proved to be resilient to external chemical stimuli, while they differently respond to thermal treatments, depending on the solvent originally included within the CP. In the case of polycatenated structures, we observed transformations where the original topology was maintained upon guest exchange, but also cases where it changed to zig-zag, even under solid/vapor conditions (i. e., no complete dissolution of the CP). Given the presence of linear interconnected 1D channels, 3 ⋅ ClBz-polycatenanePwd is also able to trap volatile guests such as n-hexane when exposed to its vapors.
Collapse
Affiliation(s)
- Martina Lippi
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| | - Andrea Murelli
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| | - Patrizia Rossi
- Department of Industrial EngineeringUniversità degli Studi di FirenzeVia S. Marta 350136FirenzeItaly
| | - Paola Paoli
- Department of Industrial EngineeringUniversità degli Studi di FirenzeVia S. Marta 350136FirenzeItaly
| | - Massimo Cametti
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta” Politecnico di MilanoVia Luigi Mancinelli, 720133MilanoItaly
| |
Collapse
|
27
|
Gangu KK, Maddila S, Jonnalagadda SB. The pioneering role of metal-organic framework-5 in ever-growing contemporary applications - a review. RSC Adv 2022; 12:14282-14298. [PMID: 35702657 PMCID: PMC9097495 DOI: 10.1039/d2ra01505f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
MOF-5 with a Zn(ii) cluster and terephthalic acid is a distinctive porous material among the metal–organic frameworks (MOFs), with unique physical, chemical and mechanical properties. MOF-5 based composites possess ample applications in modern chemistry. Huge surface area, suitable pore dimensions and scope of tunability make MOF-5 noteworthy in advanced materials. The extensive features of MOF-5 provided an opportunity for researchers to explore atomic/molecular scale materials. Various MOF-5 based composites have been designed with revamped properties appropriate to the application by altering and fabricating MOF-5 in situ or using a post-synthetic approach. Surface modification via the dispersion and impregnation of active substances into the pores of MOF-5 enhances its applicability. The boundless topologies and morphologies of MOF-5 combined with other chemical entities has provided opportunities in various fields, including catalysis, gas storage and sensors. The present review illuminates the leading role of MOF-5 and its composites in contemporary applications based on the current literature in heterogeneous catalysis, H2 and CO2 storage and sensors. MOF-5 with a Zn(ii) cluster and terephthalic acid is a distinctive porous material among the metal–organic frameworks (MOFs), with unique physical, chemical and mechanical properties.![]()
Collapse
Affiliation(s)
- Kranthi Kumar Gangu
- Department of Chemistry, Vignan's Institute of Information Technology Duvvada Visakhapatnam-530049 India.,School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325.,Department of Chemistry, GITAM Institute of Science, GITAM University Visakhapatnam 530045 Andhra Pradesh India
| | - Sreekantha B Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus Private Bag X54001 Durban 4000 South Africa +27 31 2603091 +27 31 2607325
| |
Collapse
|
28
|
Synthesis, X-ray, Hirshfeld, and AIM Studies on Zn(II) and Cd(II) Complexes with Pyridine Ligands. CRYSTALS 2022. [DOI: 10.3390/cryst12050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis and crystal structures of three heteroleptic complexes of Zn(II) and Cd(II) with pyridine ligands (ethyl nicotinate (EtNic), N,N-diethylnicotinamide (DiEtNA), and 2-amino-5-picoline (2Ampic) are presented. The complex [Zn(EtNic)2Cl2] (1) showed a distorted tetrahedral coordination geometry with two EtNic ligand units and two chloride ions as monodentate ligands. Complexes [Zn(DiEtNA)(H2O)4(SO4)]·H2O (2) and [Cd(OAc)2(2Ampic)2] (3) had hexa-coordinated Zn(II) and Cd(II) centers. In the former, the Zn(II) was coordinated with three different monodentate ligands, which were DiEtNA, H2O, and SO42−. In 3, the Cd(II) ion was coordinated with two bidentate acetate ions and two monodentate 2Ampic ligand units. The supramolecular structures of the three complexes were elucidated using Hirshfeld analysis. In 1, the most important interactions that governed the molecular packing were O···H (15.5–15.6%), Cl···H (13.6–13.8%), Cl···C (6.3%), and C···H (10.3–10.6%) contacts. For complexes 2 and 3, the H···H, O···H, and C···H contacts dominated. Their percentages were 50.2%, 41.2%, and 7.1%, respectively, for 2 and 57.1%, 19.6%, and 15.2%, respectively, for 3. Only in complex 3, weak π-π stacking interactions between the stacked pyridines were found. The Zn(II) natural charges were calculated using the DFT method to be 0.8775, 1.0559, and 1.2193 for complexes 1–3, respectively. A predominant closed-shell character for the Zn–Cl, Zn–N, Zn–O, Cd–O, and Cd–N bonds was also concluded from an atoms in molecules (AIM) study.
Collapse
|
29
|
Kiriukhina GV, Yakubovich OV, Verchenko PA, Volkov AS, Dimitrova OV. Novel first-row transition-metal phosphates: hydrothermal synthesis and crystal structures. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:287-294. [DOI: 10.1107/s2053229622003692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022]
Abstract
Two new compounds, sodium copper nickel diorthophosphate, Na2CuNi(PO4)2 (I), and dimanganese copper diorthophosphate, Mn2Cu(PO4)2 (II), were synthesized hydrothermally, yielding single crystals, and were studied by X-ray diffraction. In the crystal structures, various transition metals of d-elements occupy symmetrically independent crystallographic positions with different coordination geometries. In the crystal structure of Na2NiCu(PO4)2, NiO6 and CuO6 octahedra share edges to form chains that PO4 groups link into a framework with cavities filled with Na atoms. Layered cationic fragments formed from dimers of MnO5 trigonal bipyramids and CuO4 square planes, sharing vertices, are connected through PO4 tetrahedra into a 3-periodic Mn2Cu(PO4)2 crystal structure. Structural correlations between Na2NiCu(PO4)2 and NaCuPO4 are discussed, and crystal–chemical details of the currently known exclusively synthetic mixed Mn/Cu and Ni/Cu phosphates are presented.
Collapse
|
30
|
Pervaiz M, Munir A, Riaz A, Saeed Z, Younas U, Imran M, Ullah S, Bashir R, Rashid A, Adnan A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Venkata Sravani V, Sengupta S, Sreenivasulu B, Gopakumar G, Tripathi S, Chandra M, Brahmmananda Rao CVS, Suresh A, Nagarajan S. Highly efficient functionalized MOF-LIC-1 for extraction of U(VI) and Th(IV) from aqueous solution: experimental and theoretical studies. Dalton Trans 2022; 51:3557-3571. [PMID: 35143598 DOI: 10.1039/d1dt03317d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of four new functionalized MOFs, namely MOF-LIC-DPPC, MOF-LIC-GA, MOF-LIC-PCA and MOF-LIC-SA, were synthesized via the post-synthetic modification (PSM) strategy using MOF-LIC-1 for efficient extraction of U(VI) and Th(IV) from an aqueous medium. FTIR, powder XRD, TGA and SEM-EDX were employed for characterization of the functionalized MOFs. Sorption studies for U(VI) and Th(IV) were performed by monitoring the pH and contact time. Interestingly, the modified MOF-LIC-SA displayed rapid (∼5 min) and efficient extraction towards U(VI) and Th(IV) from an aqueous medium and modified MOF-LIC-DPPC displayed enhanced thermal stability (600 °C) compared with the parent MOF-LIC-1 (450 °C). These studies revealed that the grafted functionalities on MOF-LIC-1 possess enhanced sorption efficiency towards U(VI) and Th(IV) as well as thermal stability. MOF-LIC-SA exhibited the highest sorption capacity towards U(VI) and Th(IV), viz. 298 mg g-1 (pH 6) and 149 mg g-1 (pH 6), respectively. Leaching, recyclability, and radiation stability studies were also performed using MOF-LIC-1 MOFs. Additionally, we investigated the nature of U(VI) interactions on MOFs by applying density functional theory (DFT). PSM MOFs with various functionalities display high selectivity and efficient extraction of U(VI) and Th(IV) over a wide pH range (2-9) and also exhibit easy recovery of metal ions from MOFs. These studies reveal that U(VI) and Th(IV) can be extracted from aqueous streams in a pH range from 6 to 8 and potential applications of these MOFs include recovery of U(VI) and Th(IV) from mine water, sea water, etc. The studies reported in the present work also have extensive potential applications for environmental concerns as well as in the nuclear industry.
Collapse
Affiliation(s)
- V Venkata Sravani
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Somnath Sengupta
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - B Sreenivasulu
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Gopinadhanpillai Gopakumar
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Sarita Tripathi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India
| | - Manish Chandra
- Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - C V S Brahmmananda Rao
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - A Suresh
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.,Material Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, Tamil Nadu, India.
| |
Collapse
|
32
|
Pervaiz M, Sadiq A, Sadiq S, Saeed Z, Imran M, Younas U, Majid Bukhari S, Rashad Mahmood Khan R, Rashid A, Adnan A. Design and synthesis of Schiff base Homobimetallic-Complexes as promising antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Kiriukhina G, Yakubovich O, Shvanskaya L, Volkov A, Dimitrova O, Simonov S, Volkova O, Vasiliev A. A Novel Mineral-like Copper Phosphate Chloride with a Disordered Guest Structure: Crystal Chemistry and Magnetic Properties. MATERIALS 2022; 15:ma15041411. [PMID: 35207951 PMCID: PMC8876330 DOI: 10.3390/ma15041411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Novel copper phosphate chloride has been obtained under middle-temperature hydrothermal conditions. Its crystal structure was established based on the low-temperature X-ray diffraction data: Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH), sp. gr. C2/m, a = 19.3951(8) Å, b = 9.7627(3) Å, c = 9.7383(4) Å, β = 99.329(4)°, T = 150 K, MoKα (λ = 0.71073 Å), R = 0.049. The crystal structure includes tetrameric copper clusters as the main building blocks, which are built of four CuO4Cl pyramids sharing apical Cl vertices. The clusters are combined through phosphate groups and additional copper-centered polyhedra to form two mostly ordered periodic layers. Between the layers and inside the framework channels, alkali ions, H2O molecules, or OH groups are statistically distributed. Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH) is a synthetic modification of a sampleite-polymorph of the lavendulan mineral group and represents a new member in a mero-plesiotype series of copper phosphates and arsenates, for which the crystal structures contain two-periodic [Cu4X(TO4)4]∞ modules (T = As, P; X = Cl, O). Magnetically, this phase exhibits the phase transition at TC = 6.5 K, below which it possesses a weak ferromagnetic moment.
Collapse
Affiliation(s)
- Galina Kiriukhina
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
- Institute of Experimental Mineralogy RAS, 142432 Chernogolovka, Russia
| | - Olga Yakubovich
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Larisa Shvanskaya
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Anatoly Volkov
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Olga Dimitrova
- Faculty of Geology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.K.); (O.Y.); (L.S.); (A.V.); (O.D.)
| | - Sergey Simonov
- Institute of Solid State Physics RAS, 142432 Chernogolovka, Russia;
| | - Olga Volkova
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexander Vasiliev
- Quantum Functional Materials Laboratory, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia
- Correspondence:
| |
Collapse
|
34
|
Aksenov S, Antonov A, Deyneko D, Krivovichev S, Merlino S. Polymorphism, polytypism and modular aspect of compounds with the general formula A
2
M
3( TO 4) 4 ( A = Na, Rb, Cs, Ca; M = Mg, Mn, Fe 3+, Cu 2+; T = S 6+, P 5+): order–disorder, topological description and DFT calculations. ACTA CRYSTALLOGRAPHICA SECTION B STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:61-69. [DOI: 10.1107/s2052520621009136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/03/2021] [Indexed: 04/10/2023]
Abstract
The crystal structure of Na2Mn3(SO4)4 [unit-cell parameters a = 14.8307 (18), b = 9.9107 (18), c = 8.6845 (12) Å, space group Cmc21] displays order–disorder (OD) character and can be described using the OD groupoid family, more precisely a family of OD structures built up by two types of non-polar layers, with layer symmetry P(m)c21 (L
2n+1 type) and P(b)cm (L
2n
type) (category IV). A new hypothetical MDO2 polytype has been proposed and the geometry optimization demonstrates its reasonability as another possible stable polytype. Compounds Na2Mn3–x
Mg
x
(SO4)4 with the unit-cell parameters a ∼ 29.2–29.7 Å, b ∼ 9.5–9.9 Å, c ∼ 8.7 Å and space group Pbca can be described in terms of modularity as a sequence of A, S
1 and S
2 modules:…|AS
1
AS
2
AS
1
AS
2|… or (AS
1
AS
2), together with MDO1 (AS
1
AS
1) and MDO2 (AS
2
AS
2). The crystal structures of itelmenite, NaCaFe3+
3(PO4)4, and Ca2MgFe3+
2(PO4)4 are crystal-chemical isotypic to Na2Mn3–x
Mg
x
(SO4)4 and should be considered as (A*S
1
A*S
2) derivatives of the (AS
1
AS
2)-type structure.
Collapse
|
35
|
Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Chakraborty P, Sy M, Fourati H, Delgado T, Dutta M, Das C, Besnard C, Hauser A, Enachescu C, Boukheddaden K. Optical microscopy imaging of the thermally-induced spin transition and isothermal multi-stepped relaxation in a low-spin stabilized spin-crossover material. Phys Chem Chem Phys 2022; 24:982-994. [PMID: 34918013 DOI: 10.1039/d1cp04321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The thermal spin transition and the photo-induced high-spin → low-spin relaxation of the prototypical [Fe(ptz)6](BF4)2 spin-crossover compound (ptz = 1-propyltetrazole) diluted in the isostructural ruthenium host lattice [Ru(ptz)6](BF4)2, which stabilizes the Fe(II) low-spin state, have been investigated. We demonstrate the presence of a crystallographic phase transition around 145 K (i.e. from the high-temperature ordered high-spin phase to a low-temperature disordered low-spin phase) upon slow cooling from room temperature. This crystallographic phase transition is decoupled from the thermal spin transition. A supercooled ordered low-spin phase is observed as in the pure Fe(II) analogue upon fast cooling. A similar order-disorder phase transition is also observed for pure [Ru(ptz)6](BF4)2 but at relatively higher temperature (i.e. at around 150 K) without involving any spin transition. For Ru-diluted [Fe(ptz)6]2+, the crystallographic phase transition as well as strong cooperative effects involving various degrees of elastic frustration are at the origin of stepped sigmoidal high-spin → low-spin relaxation curves, which are modelled in the framework of a classical mean field model, considering both the tunnelling and thermally activated regimes. Optical microscopy studies performed on two different single crystals showed the existence of hysteretic thermal transitions with slight domain formation, hardly visible in the static crystal images. This behavior is attributed to the double effect upon Ru dilution, which decreases the cooperative character of the transition and simultaneously reduces the optical contrast between the LS and HS states. Moreover, the transition temperature revealed to be slightly crystal dependent, highlighting the crucial role of the spatial distribution of Ru from one crystal to another, in addition to the well-known effects of crystal shape and size.
Collapse
Affiliation(s)
- Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Mouhamadou Sy
- Université Assane Seck de Ziguinchor, Département de Physique, LCPM, BP 523 Diabir, Ziguinchor 27000, Sénégal
| | - Houcem Fourati
- Université Paris-Saclay, UVSQ, CNRS, GEMAC, 45 Avenue des Etats Unis 78035, Versailles, France.
| | - Teresa Delgado
- Département de Chimie Physique, Université de Genève, 30, Quai Ernest-Ansermet, CH-1211, Genève 4, Switzerland.,Chimie ParisTech-CNRS, IRCP (PSL), 11 rue P. et M. Curie, 75005 Paris, France
| | - Mousumi Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Céline Besnard
- Laboratoire de Cristallographie, Université de Genève, 24, Quai Ernest-Ansermet, CH-1211, Genève 4, Switzerland
| | - Andreas Hauser
- Département de Chimie Physique, Université de Genève, 30, Quai Ernest-Ansermet, CH-1211, Genève 4, Switzerland
| | | | - Kamel Boukheddaden
- Université Paris-Saclay, UVSQ, CNRS, GEMAC, 45 Avenue des Etats Unis 78035, Versailles, France.
| |
Collapse
|
37
|
Zazouli S, Gruber N, Bulach V, Ferlay S, Jouaiti A. Design of coordination polymers based on combinations of 1,2-diphenylethane-1,2-diyl diisonicotinate with Cu( ii), Zn( ii), Cd( ii) and Co( ii). CrystEngComm 2022. [DOI: 10.1039/d2ce01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new supramolecular coordination polymers of different dimensionalities (L-Cu(acac)2, L-Cu(hfac)2, L-ZnCl2, L-CdI2 and L-CoCl2) based on the use of the flexible organic ligand L (1,2-diphenylethane-1,2-diyl diisonicotinate) are reported.
Collapse
Affiliation(s)
- Sofia Zazouli
- Laboratoire de Développement Durable, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, B.P. 523, 23000 Beni Mellal, Morocco
| | - Nathalie Gruber
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Véronique Bulach
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Sylvie Ferlay
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Abdelaziz Jouaiti
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
38
|
Synthesis of coordination polymers based on a 2,2′-dimethoxy-1,1′-biphenyl scaffold and Hg(II), Co(II), or Zn(II). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Kumar Mishra N, Tripathi A, Supriya S. Synthesis of polyoxometalate based copper-amino-triazole inorganic-organic hybrid materials and related chemistry. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
40
|
Dawood S, Shaji S, Pathiraja G, Mo Y, Rathnayake H. Molecular magnetism in nanodomains of isoreticular MIL-88(Fe)-MOFs. Phys Chem Chem Phys 2021; 23:21677-21689. [PMID: 34581344 DOI: 10.1039/d1cp03122h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular magnetism in nanodomains of three isoreticular MIL-88(Fe) analogues is studied and reported. Microstructures of isoreticular extended frameworks of MIL-88B, MIL-88C, and the interpenetrated analogue of MIL-88D, i.e., MIL-126, with the trigonal prismatic 6-c acs net are synthesized by linking Fe3O inorganic cluster units with organic carboxylate linkers - benzene-1,4-dicarboxylic acid (BDC), 2,6-naphthalene dicarboxylic acid (NDC), and biphenyl-4,4'-dicarboxylic acid (BPDC), using a controlled solvent driven self-assembly process followed by a solvothermal method. The powder XRD traces are matched with the simulated diffraction patterns generated from their corresponding crystal structures, revealing the hexagonal symmetry for MIL-88B and MIL-88C, and the tetragonal symmetry for MIL-126. The elemental composition analysis confirms the empirical formula to be Fe3O(L)3 where L is the organic linker, supporting the formation of isoreticular MIL-88(Fe)-MOFs with MIL-88 topology. The morphologies of microstructures analyzed by SEM and TEM exhibit long spindle shaped rods with a core and a shell-like architecture for MIL-88B and MIL-88 C whereas MIL-126 shows cubic-shaped microstructures. The M-T plots confirm their blocking temperatures, TB, to be 60 K, 50 K, and 40 K for MIL-88B, MIL-88C, and MIL-126, respectively. The M-H plots reveal their magnetic response to be ferromagnetic at 10 K with the coercivities, HC, ranging from 250 G to 180 G. The gradual decrease in the TB and HC correlates with the nanocrystals' domain size, which decreases from MIL-88B to MIL-88C to MIL-126. Their phase transition from the ferromagnetic state to the short range ordering of the superparamagnetic state is observed in the temperature range of 100 K to 300 K. At T > TB, nanocrystals of all three MIL-88 microstructures act as a single-magnetic domain, owing to their shape anisotropy and finite-dimensionality. The electron density distribution and the spin density state modeled for each MIL-88 analogue exhibit localized electron density and spin density on Fe3O clusters, indicating the short range magnetic moment ordering in triangular metal oxide nodes with no extended magnetic cooperativity from their organic linkers. The short-range ordering of superparamagnetism in MIL-88(Fe)-MOFs suggests their further study as porous molecular-based magnets.
Collapse
Affiliation(s)
- Sheeba Dawood
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
| | - Surabhi Shaji
- Department of Mechanical Engineering, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Gayani Pathiraja
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
| | - Yirong Mo
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
| | - Hemali Rathnayake
- Nanoscience Department, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
| |
Collapse
|
41
|
Pervaiz M, Ahmad I, Saeed Z, Sagir M, Younas U, Tahir MB, Ahmad A, Rashid A, Syed Q, Adnan A. Amalgamation and Scrutinizing of Leucine Derivatives Schiff bases Complexes as Antimicrobial Agent. Comb Chem High Throughput Screen 2021; 25:1167-1180. [PMID: 34579629 DOI: 10.2174/1386207325666210927092623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
The enhanced applications of Schiff bases metal complexes of amino acid derivatives have captured the attention of researchers for the synthesis of leucine derivatives of Schiff bases metal complexes. Amino acids are considered to be essential part of food supplements as well as derivatives of Schiff bases in coordination chemistry due to their donor ability. The leucine derivatives Schiff bases ligand have been synthesized by condensation reaction between amine of leucine with aldehyde or ketone bearing molecules attached with them. These complexes were characterized by different spectroscopic tools in order to confirm their structural geometries. The structural geometries are considered to be very important in order to improve the antimicrobial potential of leucine derivative metal complexes. By taking into account the antimicrobial potential of titled compounds, a comprehensive review of leucine derivatives of Schiff bases metal complexes has been compiled.
Collapse
Affiliation(s)
- Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore. Pakistan
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal. Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore. Pakistan
| | - Muhammad Sagir
- Department of Chemical Engineering/Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab 64200, Punjab. Pakistan
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore. Pakistan
| | - Muhammad Bilal Tahir
- Department of Chemical Engineering/Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab 64200, Punjab. Pakistan
| | - Awais Ahmad
- Departmento de Quimica Organica, Universidad de Cordoba, Edlificio Marie Curie (C-3), Ctra Nnal IV-A,Km 396,E14014 Cordoba. Spain
| | - Ayoub Rashid
- Department of Chemistry, Government College University, Lahore. Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and industrial Research, Laboratories Complexes (PCSIR) Lahore. Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore. Pakistan
| |
Collapse
|
42
|
Bhasin H, Mishra D. Metal Organic Frameworks: A Versatile Class of Hybrid Compounds for Luminescent Detection and Adsorptive Removal of Enviromental Hazards. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
43
|
Cerium doped ZIF nanoparticles and hydroxyapatite co‐deposited coating on titanium dioxide nanotubes array exhibiting biocompatibility and antibacterial property. NANO SELECT 2021. [DOI: 10.1002/nano.202000244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Yoshino H, Tomokage N, Mishima A, Le Ouay B, Ohtani R, Kosaka W, Miyasaka H, Ohba M. Guest-selective and reversible magnetic phase switching in a pseudo-pillared-layer porous magnet. Chem Commun (Camb) 2021; 57:5211-5214. [PMID: 33908476 DOI: 10.1039/d1cc01526e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel porous magnet consisting of cationic two-dimensional (2-D) layers extended by FeIII-CN-NiII linkages and pseudo-pillar dianions was synthesized. The size-selective guest adsorption behaviour of water and methanol molecules originates from the narrow bottle-neck-type pores in the flexible pseudo-pillared-layer structure, which results in the switching of the magnetic phases from antiferromagnetic to ferromagnetic, involving significant changes in the interlayer distance.
Collapse
Affiliation(s)
- Haruka Yoshino
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Narumi Tomokage
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Mishima
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Benjamin Le Ouay
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryo Ohtani
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Masaaki Ohba
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
45
|
Magnetic Switching in Vapochromic Oxalato-Bridged 2D Copper(II)-Pyrazole Compounds for Biogenic Amine Sensing. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7050065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new two-dimensional (2D) coordination polymer of the formula {Cu(ox)(4-Hmpz)·1/3H2O}n (1) (ox = oxalate and 4-Hmpz = 4-methyl-1H-pyrazole) has been prepared, and its structure has been determined by single-crystal X-ray diffraction. It consists of corrugated oxalato-bridged copper(II) neutral layers featuring two alternating bridging modes of the oxalate group within each layer, the symmetric bis-bidentate (μ-κ2O1,O2:κ2O2′,O1′) and the asymmetric bis(bidentate/monodentate) (μ4-κO1:κ2O1,O2:κO2′:κ2O2′,O1′) coordination modes. The three crystallographically independent six-coordinate copper(II) ions that occur in 1 have tetragonally elongated surroundings with three oxygen atoms from two oxalate ligands, a methylpyrazole-nitrogen defining the equatorial plane, and two other oxalate-oxygen atoms occupying the axial positions. The monodentate 4-Hmpz ligands alternatively extrude above and below each oxalate-bridged copper(II) layer, and the water molecules of crystallization are located between the layers. Compound 1 exhibits a fast and selective adsorption of methylamine vapors to afford the adsorbate of formula {Cu(ox)(4-Hmpz)·3MeNH2·1/3H2O}n (2), which is accompanied by a concomitant color change from cyan to deep blue. Compound 2 transforms into {Cu(ox)(4-Hmpz)·MeNH2·1/3H2O}n (3) under vacuum for three hours. The cryomagnetic study of 1–3 revealed a unique switching from strong (1) to weak (2 and 3) antiferromagnetic interactions. The external control of the optical and magnetic properties along this series of compounds might make them suitable candidates for switching optical and magnetic devices for chemical sensing.
Collapse
|
46
|
Zhang Z, Zhang Y, Zhang S, Yao K, Sun Y, Liu Y, Wang X, Huang W. Synthesis of rare earth doped MOF base coating on TiO2nanotubes arrays by electrochemical method using as antibacterial implant material. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Tella AC, Owalude SO, Adimula VO, Oladipo AC, Olayemi VT, Ismail B, Mumtaz A, Rehman AU, Khan AM, Clayton HS, Tahir NM. Synthesis, Structure, and Properties of a Dinuclear Cu(II) Coordination Polymer Based on Quinoxaline and 3,3-Thiodipropionic Acid Ligands. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
48
|
Ma Y, Liu Y, Wang Y, Zhang F, Yang D. A novel sodium-fluorescent crystal. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201987. [PMID: 33959353 PMCID: PMC8074955 DOI: 10.1098/rsos.201987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, a novel sodium-fluorescent crystal (Na-FS) was synthesized from 4-dimethylaminobenzoic acid and sodium hydroxide by one-pot hydrothermal method. The structure and conformation of Na-FS were confirmed by single-crystal X-ray diffraction and scanning electron microscope, and the optical properties were studied by fluorescence spectrometer. The results showed that: Na-FS was a triclinic crystal, space group was P-1, cell parameters a, b and c were 10.5113(3), 15.9198(5) and 15.9560(5) Å, respectively, and the number of independent atoms Z in a structure cell was two. Additionally, Na-FS has a blue fluorescence emission (around 360 nm under excited at the range of 230-300 nm) with great photostability and photobleaching resistance, and the quantum yield of Na-FS is 30.58%.
Collapse
Affiliation(s)
- Yunsu Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Yongjie Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Yuan Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Fan Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| |
Collapse
|
49
|
Tripathi S, Hossain A, Seth SK, Mukhopadhyay S. Supramolecular association and quantification of intermolecular interactions of 4′-functionalized 2,2′:6′,2″-terpyridines: Experimental observation and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Cheng L, Wang Y, Zhao YM, Yang DD, Gong SS, Liu ZY, Wang Y, Wang KY. Methylammonium-templated transition-metal (Mn, Cd) vanadates: Synthesis, structures, Eu3+-adsorption and magnetic properties. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|