1
|
Farfán-Paredes M, Labra-Vázquez P, González-Antonio O, Martínez-Bourget D, Guzmán-Cedillo C, Galindo-Hernández A, Romero M, Santillan R, Farfán N. Halogen Bonding in Brominated BODIPY Crystals: a Crystallographic and Computational Study. Chemistry 2023:e202302847. [PMID: 37743257 DOI: 10.1002/chem.202302847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The study of halogen bonds (XBs) has been a subject of great interest in recent years due to its clear application in catalysis, liquid crystals, and crystal engineering. In this study, we analyzed the intermolecular interactions, in particular halogen bonds in BODIPYs with an increasing number of bromine atoms. The computational study included analyses through three different methods: the first approach of close contacts provided by mercury, then the expanded approach of the electron density partition of the molecules in the crystals provided by the analysis of Hirshfeld surfaces, and finally, the approach of the Quantum Theory of Atoms in Molecules (QT-AIM) to characterize the non-covalent interactions through finding electron density critical points between atoms and between neighboring molecules. The use of different computational methods allowed to gain insight into the interactions directing the crystal packing as the number of bromine atoms increased in the BODIPY moiety. Monocoordinated and bifurcated halogen bonds involving halide/halide were found. The penta-brominated BODIPY showed four-center cyclic nodes where each node is linked via XBs. This kind of motif can be useful in supramolecular chemistry and self-assembly.
Collapse
Affiliation(s)
- Mónica Farfán-Paredes
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, Ciudad de México, México
| | - Pablo Labra-Vázquez
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3-Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Oscar González-Antonio
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Diego Martínez-Bourget
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Cristian Guzmán-Cedillo
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Aylin Galindo-Hernández
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Margarita Romero
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Rosa Santillan
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, Ciudad de México, México
| | - Norberto Farfán
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, C.P. 04510, Ciudad de México, México
| |
Collapse
|
2
|
Abstract
The geometrical parameters and the bonding in [D···X···D]+ halonium compounds, where D is a Lewis base with N as the donor atom and X is Cl, Br, or I, have been investigated through a combined structural and computational study. Cambridge Structural Database (CSD) searches have revealed linear and symmetrical [D···X···D]+ frameworks with neutral donors. By means of density functional theory (DFT), molecular electrostatic potential (MEP), and energy decomposition analyses (EDA) calculations, we have studied the effect of various halogen atoms (X) on the [D···X···D]+ framework, the effect of different nitrogen-donor groups (D) attached to an iodonium cation (X = I), and the influence of the electron density alteration on the [D···I···D]+ halonium bond by variation of the R substituents at the N-donor upon the symmetry, strength, and nature of the interaction. The physical origin of the interaction arises from a subtle interplay between electrostatic and orbital contributions (σ-hole bond). Interaction energies as high as 45 kcal/mol suggest that halonium bonds can be exploited for the development of novel halonium transfer agents, in asymmetric halofunctionalization or as building blocks in supramolecular chemistry.
Collapse
Affiliation(s)
- Juan D Velasquez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jorge Echeverría
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Alvarez
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Nemec V, Cinčić D. The Halogen Bonding Proclivity of the sp 3 Sulfur Atom as a Halogen Bond Acceptor in Cocrystals of Tetrahydro-4 H-thiopyran-4-one and Its Derivatives. CRYSTAL GROWTH & DESIGN 2022; 22:5796-5801. [PMID: 36248237 PMCID: PMC9553023 DOI: 10.1021/acs.cgd.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Indexed: 06/16/2023]
Abstract
In this work, we present a systematic study of the capability of the sp3 hybridized sulfur atom for halogen bonding both in a small building block, tetrahydro-4H-thiopyran-4-one, and two larger ones derived from it, Schiff bases with a morpholine fragment on the other end of the molecule. These three building blocks were cocrystallized with six perhalogenated aromates: 1,4-diiodotetrafluorobenzene, 1,3,5-triiodotrifluorobenzene, 1,3-diiodotetrafluorobenzene, 1,2-diiodotetrafluorobenzene, iodopentafluorobenzene, and 1,4-dibromotetrafluorobenzene. Out of the 18 combinations, only 7 (39%) yielded cocrystals, although with a high occurrence of the targeted I···S halogen bonding motif in all cocrystals (71%), and in imine cocrystals the I···Omorpholine motif (100%) as well as, surprisingly, the I···Nimine motif (100%). The I···S halogen bonds presented in this work feature lower relative shortening values than those for other types of sulfur atoms; however, the sp3 sulfur atom could potentially be more specific an acceptor for halogen bonding.
Collapse
|
4
|
Sušanj R, Nemec V, Bedeković N, Cinčić D. Halogen Bond Motifs in Cocrystals of N, N, O and N, O, O Acceptors Derived from Diketones and Containing a Morpholine or Piperazine Moiety. CRYSTAL GROWTH & DESIGN 2022; 22:5135-5142. [PMID: 36097548 PMCID: PMC9461725 DOI: 10.1021/acs.cgd.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the halogen bond acceptor potential of oxygen and nitrogen atoms of morpholine and piperazine fragments when they are peripherally located on N,O,O or N,N,O acceptor molecules. We synthesized four acceptor molecules derived from either acetylacetone or benzoylacetone and cocrystallized them with 1,4-diiodotetrafluorobenzene and 1,3,5-triiodotrifluorobenzene. This resulted in eight cocrystals featuring different topicities and geometric dispositions of donor atoms. In all cocrystals, halogen bonds are formed with either the morpholinyl oxygen atom or the terminal piperazine nitrogen atom. The I···Omorpholine halogen bonds feature lower relative shortening values than I···Nterminal, I···Ocarbonyl, and I···Nproximal halogen bonds. The N and O halogen bond acceptor sites were evaluated through calculations of molecular electrostatic potential values.
Collapse
|
5
|
van Terwingen S, Ebel B, Wang R, Englert U. Weaving a 2D net of hydrogen and halogen bonds: cocrystal of a pyrazolium bromide with tetrafluorodiiodobenzene. Acta Crystallogr C Struct Chem 2022; 78:324-331. [PMID: 35662131 PMCID: PMC9167629 DOI: 10.1107/s2053229622004648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Hydrohalides of Lewis bases may act as halogen bond (XB) acceptors and combine two directional interactions, namely, hydrogen bonds (HB) and XBs in the same solid. 3-(1,3,5-Trimethyl-1H-pyrazol-4-yl)acetylacetone (C11H16N2O2, HacacMePz) was protonated with HX (X = Cl or Br) to afford the hydrohalides, C11H17N2O2+·X- or H2acacMePz+·X- (1, X = Cl; 2, X = Br). Hydrohalides 1 and 2 are isomorphous and adopt a classical dipole packing. Consistent with the observation for most β-diketones, the enol form with an intramolecular HB is observed. Additional noteworthy interactions are HBs of the protonated pyrazolium towards the X- anion at donor-acceptor distances of 2.9671 (17) Å for 1 and 3.159 (4) Å for 2. Cocrystallization of hydrobromide 2 with the XB donor tetrafluorodiiodobenzene (TFDIB) leads to the adduct C11H17N2O2+·Br-·0.5C6F4I2·H2O or (H2acacMePz+·Br-)2·(H2O)2·TFDIB (3), in which the XB donor TFDIB is situated on a crystallographic centre of inversion. Classical HBs link organic cations, water molecules and Br- anions into chains along [010]. Almost orthogonal to this interaction, XBs with Br...I = 3.2956 (4) Å connect neighbouring chains along [102] into two-dimensional sheets in the (10-2) plane. Assisted by their negative charge, halide anions represent particularly good nucleophiles towards XB donors.
Collapse
Affiliation(s)
- Steven van Terwingen
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ben Ebel
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ruimin Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
N LT, K HM, S KC, S S, L M, P M, R JR, A SM, Karnan M, K LN. N-[2-(5-bromo-2-chloro-pyrimidin-4-yl)thio)-4-methoxy-phenyl]-4-chlorobenzenesulfonamide: The existence of H-bond and halogen bond interactions assisted supramolecular architecture – A quantum chemical investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Mirocki A, Sikorski A. Structural Characterization of Multicomponent Crystals Formed from Diclofenac and Acridines. MATERIALS 2022; 15:ma15041518. [PMID: 35208056 PMCID: PMC8876612 DOI: 10.3390/ma15041518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
Multicomponent crystals containing diclofenac and acridine (1) and diclofenac and 6,9-diamino-2-ethoxyacridine (2) were synthesized and structurally characterized. The single-crystal XRD measurements showed that compound 1 crystallizes in the triclinic P-1 space group as a salt cocrystal with one acridinium cation, one diclofenac anion, and one diclofenac molecule in the asymmetric unit, whereas compound 2 crystallizes in the triclinic P-1 space group as an ethanol solvate monohydrate salt with one 6,9-diamino-2-ethoxyacridinium cation, one diclofenac anion, one ethanol molecule, and one water molecule in the asymmetric unit. In the crystals of the title compounds, diclofenac and acridines ions and solvent molecules interact via N–H⋯O, O–H⋯O, and C–H⋯O hydrogen bonds, as well as C–H⋯π and π–π interactions, and form heterotetramer bis[⋯cation⋯anion⋯] (1) or heterohexamer bis[⋯cation⋯ethanol⋯anion⋯] (2). Moreover, in the crystal of compound 1, acridine cations and diclofenac anions interact via N–H⋯O hydrogen bond, C–H⋯π and π–π interactions to produce blocks, while diclofenac molecules interact via C–Cl⋯π interactions to form columns. In the crystal of compound 2, the ethacridine cations interact via C–H⋯π and π–π interactions building blocks, while diclofenac anions interact via π–π interactions to form columns.
Collapse
Affiliation(s)
- Artur Mirocki
- Correspondence: (A.M.); (A.S.); Tel.: +48-58-523-5112 (A.M. & A.S.)
| | - Artur Sikorski
- Correspondence: (A.M.); (A.S.); Tel.: +48-58-523-5112 (A.M. & A.S.)
| |
Collapse
|
8
|
Rezaei Z, Solimannejad M, Atashzar SM, Esrafili MD. Systematic study of cooperative interplay between single-electron pnicogen bond and halogen bond in X3C···PH2Y···ClY (X=H, CH3; Y=CN, NC) complexes in two different minima configuration. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2014588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Rezaei
- Faculty of Sciences, Quantum Chemistry Group, Department of Chemistry, Arak University, Arak, Iran
| | - Mohammad Solimannejad
- Faculty of Sciences, Quantum Chemistry Group, Department of Chemistry, Arak University, Arak, Iran
| | | | - Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
9
|
Abstract
We performed a structural study of N-alkylated halogenopyridinium cations to examine whether choice of the N-substituent has any considerable effect on the halogen bonding capability of the cations. For that purpose, we prepared a series of N-ethyl-3-halopyridinium iodides and compared them with their N-methyl-3-halopyridinium analogues. Structural analysis revealed that N-ethylated halogenopyridinium cations form slightly shorter C−X⋯I− halogen bonds with iodide anion. We have also attempted synthesis of ditopic symmetric bis-(3-iodopyridinium) dications. Although successful in only one case, the syntheses have afforded two novel ditopic asymmetric monocations with an iodine atom bonded to the pyridine ring and another on the aliphatic N-substituent. Here, the C−I⋯I− halogen bond lengths involving pyridine iodine atom were notably shorter than those involving an aliphatic iodine atom as a halogen bond donor. This trend in halogen bond lengths is in line with the charge distribution on the Hirshfeld surfaces of the cations—the positive charge is predominantly located in the pyridine ring making the pyridine iodine atom σ-hole more positive than the one on the alkyl chan.
Collapse
|
10
|
Grover N, Flanagan KJ, Trujillo C, Kingsbury CJ, Senge MO. An Insight into Non-Covalent Interactions on the Bicyclo[1.1.1]pentane Scaffold. European J Org Chem 2021; 2021:1113-1122. [PMID: 33776556 PMCID: PMC7986844 DOI: 10.1002/ejoc.202001564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/03/2020] [Indexed: 12/28/2022]
Abstract
Bicyclo[1.1.1]pentane (BCP) is studied extensively as a bioisosteric component of drugs. Not found in nature, this molecular unit approximates the distance of a para-disubstituted benzene which is replaced in medicines as a method of improving treatments. Predicting interactions of these drugs with specific active sites requires knowledge of the non-covalent interactions engaged by this subunit. Structure determinations and computational analysis (Hirshfeld analysis, 2D fingerprint plots, DFT) of seven BCP derivatives chosen to probe specific and directional interactions. X-ray analysis revealed the presence of various non-covalent interactions including I ⋅⋅⋅ I, I ⋅⋅⋅ N, N-H ⋅⋅⋅ O, C-H ⋅⋅⋅ O, and H-C ⋅⋅⋅ H-C contacts. The preference of halogen bonding (I ⋅⋅⋅ I or I ⋅⋅⋅ N) in BCP 1-4 strictly depends upon the electronic nature and angle between bridgehead substituents. The transannular distance in co-crystals 2 and 4 was longer as compared to monomers 1 and 3. Stronger N-H ⋅⋅⋅ O and weaker C-H ⋅⋅⋅ O contacts were observed for BCP 5 while the O ⋅⋅⋅ H interaction was a prominent contact for BCP 6. The presence of 3D BCP units prevented the π ⋅⋅⋅ π stacking between phenyl rings in 3, 4, and 7. The BCP skeleton was often rotationally averaged, indicating fewer interactions compared to bridgehead functional groups. Using DFT analysis, geometries were optimized and molecular electrostatic potentials were calculated on the BCP surfaces. These interaction profiles may be useful for designing BCP analogs of drugs.
Collapse
Affiliation(s)
- Nitika Grover
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Keith J. Flanagan
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Cristina Trujillo
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Christopher J. Kingsbury
- School of ChemistryTrinity Biomedical Sciences InstituteTrinity College DublinThe University of Dublin152-160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS)Technical University of Munich, Focus Group – Molecular and Interfacial Engineering of Organic NanosystemsLichtenberg-Str. 2a85748GarchingGermany
| |
Collapse
|
11
|
Kobayashi F, Iwaya K, Zenno H, Nakamura M, Li F, Hayami S. Spin State Modulation in Cobalt(II) Terpyridine Complexes by Co-Crystallization with 1,3,5-Triiodo-2,4,6-trifluorobenzene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kyoko Iwaya
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Feng Li
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
12
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
13
|
Correlation between structural and optical properties of π-conjugated acrylonitrile derivatives: Insights from X-ray, energy frameworks, TD-DFT and charge density analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Đaković M. Predictive association of metal–organic systems in the solid-state: the molecular electrostatic potential based approach. CRYSTALLOGR REV 2020. [DOI: 10.1080/0889311x.2020.1731803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marijana Đaković
- Faculty of Science, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Kanoo P, Matsuda R, Sato H, Li L, Hosono N, Kitagawa S. Pseudo‐Gated Adsorption with Negligible Volume Change Evoked by Halogen‐Bond Interaction in the Nanospace of MOFs. Chemistry 2020; 26:2148-2153. [DOI: 10.1002/chem.201904703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Prakash Kanoo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Department of Chemistry Central University of Haryana Jant-Pali, Mahendergarh 123031 Haryana India
| | - Ryotaro Matsuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Department of Chemistry and Biotechnology School of Engineering Nagoya University and Institute for Advanced Research Nagoya University Chikusa-ku Nagoya 464–8603 Japan
| | - Hiroshi Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Present address: Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Liangchun Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Present address: School of Chemical Science and Engineering Tongji University No.67, Chifeng Road Shanghai 200092 P.R. China
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Present address: Graduate School of Frontier Sciences The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
16
|
Morpholino-Substituted BODIPY Species: Synthesis, Structure and Electrochemical Studies. CRYSTALS 2020. [DOI: 10.3390/cryst10010036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Functionalization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) chromophores at the 2,6-positions with iodo substituents and morpholino-substituted α-methyl groups affords molecules with strong absorbance in the visible spectrum. The effect of such substitution on the solid-state arrangements, absorption, fluorescence and electronic properties of these dye molecules is reported. The spectroscopic and spectroelectrochemical measurements display intense absorptions in the UV-visible spectrum with bathochromic shifts, in comparison to unfunctionalized BODIPY, and a positive shift in redox potentials due to functionalisation of the BODIPY core. Halogen bonds are observed in the solid-state structures of both halogenated BODIPY species, which in one case leads to the formation of an unusual halogen bonded framework.
Collapse
|
17
|
Freitag M, DeCicco RC, Black A, Ang X, Young CN, Resch D, Halada GP, Phillips BL, Goroff NS. Polymerization Studies of Diiodohexatriyne and Diiodooctatetrayne Cocrystals. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Racquel C. DeCicco
- Department of Chemistry and Physics, Wagner College, Staten Island, New York 10301, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shaik A, Angira D, Thiruvenkatam V. Insights into supramolecular assembly formation of diethyl aryl amino methylene malonate (DAM) derivatives assisted via non-covalent interactions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
DFT study of guest-responsive cooperative effects: Inclusion complexation of alcohols with calix[4]pyrrole. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Liu M, Zeng Y, Sun Z, Meng L. Predicting the halogen-n
(n
= 3-6) synthons to form the “windmill” pattern bonding based on the halogen-bonded interactions. J Comput Chem 2019; 40:1219-1226. [DOI: 10.1002/jcc.25781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Mengyu Liu
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
- National Demonstration Center for Experimental Chemistry Education; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Zheng Sun
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Lingpeng Meng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| |
Collapse
|
21
|
Sabbaghi F, Pourayoubi M, Nečas M, Damodaran K. Two single-enantiomer amidophosphoesters: a database study on the chirality of (O) 2P(O)(N)-based structures. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:77-84. [PMID: 30601135 DOI: 10.1107/s205322961801673x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/24/2018] [Indexed: 11/10/2022]
Abstract
The crystal structures of two single-enantiomer amidophosphoesters with an (O)2P(O)(N) skeleton, i.e. diphenyl [(R)-(+)-α-methylbenzylamido]phosphate, (I), and diphenyl [(S)-(-)-α-methylbenzylamido]phosphate, (II), both C20H20NO3P, are reported. In both structures, chiral one-dimensional hydrogen-bonded architectures, along [010], are mediated by N-H...OP interactions. The statistically identical assemblies include the noncentrosymmetric graph-set motif C(4) and the compounds crystallize in the chiral space group P21. As a result of synergistic co-operation from C-H...O interactions, a two-dimensional superstructure is built including a noncentrosymmetric R44(22) hydrogen-bonded motif. A Cambridge Structural Database survey was performed on (O)2P(O)(N)-based structures in order to review the frequency of space groups observed in this family of compounds; the hydrogen-bond motifs in structures with chiral space groups and the types of groups inducing chirality are discussed. The 2,3JX-P (X = H or C) coupling constants from the NMR spectra of (I) and (II) have been studied. In each compound, the two diastereotopic C6H5O groups are different, which is reflected in the different chemical shifts and some coupling constants.
Collapse
Affiliation(s)
- Fahimeh Sabbaghi
- Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrdad Pourayoubi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marek Nečas
- Department of Chemistry, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
22
|
Lodeiro L, Contreras R, Ormazábal-Toledo R. How Meaningful Is the Halogen Bonding in 1-Ethyl-3-methyl Imidazolium-Based Ionic Liquids for CO 2 Capture? J Phys Chem B 2018; 122:7907-7914. [PMID: 30036060 DOI: 10.1021/acs.jpcb.8b04990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on several parameters that can be used to describe the 1-ethyl-3-methyl-4,5-(X2)imidazolium cations (where X = H, Br, and I) within the Canongia-Lopez and Padua Force Field (CL&P) framework. Geometrical parameters like intramolecular distances and radial distribution functions are close to the experimental structure. Density values obtained with our force field are within the expected ones from CL&P calculations in related systems. This information is used to simulate through molecular dynamics the solubilization of CO2 by these ILs. For pure ILs, the addition of halides in position 4 and 5 promotes an enhanced hydrogen bond interaction at position 2 with the oxygen atoms in the anion. It is found that CO2 should be in the interstices of the anion-cation 3D network with longer distances than those found in other reports at ab initio levels, suggesting that halogen bond, if present, may be not the driving force interaction in these systems. Therefore, it seems that CO2 interacts linearly via an oxygen atom with the cation and with the anion through a π-stacking or hydrogen-bonded fashions. Solvation enthalpies compare well with the experimental data, thereby suggesting that halogenated ILs dissolve more efficiently in CO2 than C2C1Im+ derivatives. This result suggests that halogenated ILs can be considered as reliable candidates for CO2 capture.
Collapse
Affiliation(s)
- Lucas Lodeiro
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653, Santiago 8370854 , Chile
| | - Renato Contreras
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653, Santiago 8370854 , Chile
| | - Rodrigo Ormazábal-Toledo
- Centro Integrativo de Biología y Química Aplicada (CIBQA) , Universidad Bernardo O Higgins , Santiago 8370854 , Chile
| |
Collapse
|
23
|
Gunawardana CA, Aakeröy CB. Co-crystal synthesis: fact, fancy, and great expectations. Chem Commun (Camb) 2018; 54:14047-14060. [DOI: 10.1039/c8cc08135b] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some strategies for driving co-crystal synthesis using a variety of competing non-covalent interactions are presented.
Collapse
Affiliation(s)
| | - C. B. Aakeröy
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| |
Collapse
|
24
|
Sugiyama H, Uekusa H. Relationship between crystal structures and photochromic properties of N-salicylideneaminopyridine derivatives. CrystEngComm 2018. [DOI: 10.1039/c8ce00003d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photochromic properties of the N-salicylideneaminopyridine (SAP) crystals were related to both the molecular conformation and the packing efficiency.
Collapse
Affiliation(s)
- Haruki Sugiyama
- Department of Chemistry and Materials Science
- Graduate School of Science
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Hidehiro Uekusa
- Department of Chemistry
- Graduate School of Science
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
25
|
Ciancaleoni G. Cooperativity between hydrogen- and halogen bonds: the case of selenourea. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00353j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A combined experimental/theoretical investigation on the cooperativity between hydrogen- and halogen bonds is presented. In this study, it is shown that selenourea can interact at the same time with a benzoate anion and a polarized iodine, with the two interactions influencing and enhancing each other.
Collapse
Affiliation(s)
- Gianluca Ciancaleoni
- Università degli Studi di Pisa
- Dipartimento di Chimica e Chimica Industriale
- 13-56124 Pisa
- Italy
| |
Collapse
|
26
|
Oruganti M, Nechipadappu SK, Khade PA, Trivedi DR. Solid-State Versatility of the Molecular Salts/Cocrystals of 2-Chloro-4-nitrobenzoic Acid: A Case Study on Halogen Bonds. ACS OMEGA 2017; 2:7146-7162. [PMID: 31457294 PMCID: PMC6645404 DOI: 10.1021/acsomega.7b00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/09/2017] [Indexed: 06/10/2023]
Abstract
2-Chloro-4-nitrobenzoic acid (2c4n) is an antiviral agent used for the treatment of HIV infection and to boost the immune response in immune deficiency diseases. In the present study, a series of eight molecular salts of 2c4n with pyridyl and benzoic acid derivatives have been synthesized by a crystal engineering approach and were characterized structurally by various spectroscopic, thermal, and X-ray diffraction techniques. Crystal structures of all synthesized molecular salts were determined by single-crystal X-ray diffraction techniques. In all synthesized molecular salts, the charge-assisted acid···pyridine/amine heterosynthon was found to be the primary supramolecular synthon. The synthesized salts, namely, 2c4n.g and 2c4n.h salts were found to be isostructural. Further, in the current work, the occurrence of weak halogen bonds in the presence of strong hydrogen bonds in the synthesized and in the reported molecular salts/cocrystals of 2c4n has been investigated. A detailed inspection of the crystal structures of salts/cocrystals of 2c4n was carried out to demonstrate the importance of halogen bonds in these crystal structures. It was found that 4 out of 8 synthesized molecular salts and 12 out of 24 reported molecular adducts of 2c4n were found to exhibit halogen bonds in their crystal structures. A similar kind of conformational change was observed for molecular salts exhibiting halogen bonds in their crystal structures; however, the conformations were found to be slightly different in other molecular salts. It was observed that two-point primary supramolecular synthon and stronger intramolecular Cl···O halogen bonds in the molecular adducts of 2c4n are found to be more susceptible to exhibit halogen bonds in their crystal structures. Halogen bond interactions played a vital role in the crystal stabilization of these molecular adducts.
Collapse
Affiliation(s)
- Madhavi Oruganti
- Supramolecular
Chemistry Laboratory, Department of Chemistry, and Department of
Chemical Engineering, National Institute
of Technology Karnataka (NITK), Surathkal, Srinivasnagar, Mangalore, 575 025 Karnataka, India
| | - Sunil Kumar Nechipadappu
- Supramolecular
Chemistry Laboratory, Department of Chemistry, and Department of
Chemical Engineering, National Institute
of Technology Karnataka (NITK), Surathkal, Srinivasnagar, Mangalore, 575 025 Karnataka, India
| | - Pavan A. Khade
- Supramolecular
Chemistry Laboratory, Department of Chemistry, and Department of
Chemical Engineering, National Institute
of Technology Karnataka (NITK), Surathkal, Srinivasnagar, Mangalore, 575 025 Karnataka, India
| | - Darshak R. Trivedi
- Supramolecular
Chemistry Laboratory, Department of Chemistry, and Department of
Chemical Engineering, National Institute
of Technology Karnataka (NITK), Surathkal, Srinivasnagar, Mangalore, 575 025 Karnataka, India
| |
Collapse
|
27
|
Clˉ as the halogen bond acceptor: studies on strong halogen bonds. Struct Chem 2017. [DOI: 10.1007/s11224-017-1047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Matczak P. Tuning of non-covalent interactions involving a halogen atom that plays the role of Lewis acid and base simultaneously. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1386805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Piotr Matczak
- Faculty of Chemistry, Department of Theoretical and Structural Chemistry, University of Łódź, Lodz, Poland
| |
Collapse
|
29
|
Lu B, Zhang X, Meng L, Zeng Y. Insight into π-hole interactions containing the inorganic heterocyclic compounds S 2N 2/SN 2P 2. J Mol Model 2017; 23:233. [PMID: 28730351 DOI: 10.1007/s00894-017-3407-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022]
Abstract
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1-4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2⋯XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1⋯XH3 to 4⋯XH3. These π-hole interactions are weak and belong to "closed-shell" noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As). Graphical abstract Computed density difference plots for the complexes 3⋯NH 3 (a 1), 3⋯PH 3 (b 1), 3⋯AsH 3 (c 1) and electron density shifts for the complexes 3⋯NH 3 (a 2), 3⋯PH 3 (b 2),3⋯AsH 3 (c 2) on the 0.001 a.u. contour.
Collapse
Affiliation(s)
- Bo Lu
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Lingpeng Meng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
30
|
|
31
|
Affiliation(s)
- Bo Lu
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Xueying Zhang
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 P. R. China
| |
Collapse
|
32
|
Liu M, Hong C, Yao Y, Shen H, Ji G, Li G, Xie Y. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107:151-9. [PMID: 27395394 DOI: 10.1016/j.ejpb.2016.07.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/03/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022]
Abstract
Myricetin shows low oral bioavailability (<10%) in rats due to poor aqueous solubility, although it has demonstrated various pharmacological activities such as those related to anticancer, anti-diabetes, and hepatic protection. To overcome this issue, in this study, pharmaceutical cocrystals were designed to efficiently deliver myricetin by oral administration. A 1:2 stoichiometric cocrystal of myricetin with proline was prepared successfully by solution crystallization based on the ternary phase diagram (TPD) principle, and it is presented as a new sphericity-like crystalline phase characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The formation of myricetin-proline cocrystals was a spontaneous and exothermic process, probably due to the supramolecular interactions between themselves, which were determined by Fourier transform-infrared spectroscopy (FT-IR). Consequently, the dissolution efficiency of myricetin from cocrystals was increased 7.69-fold compared with that of coarse myricetin, and the oral bioavailability of myricetin cocrystals in rats was enhanced by approximately 3.03 times compared with that of pure myricetin. The present study provides useful information for the potential application of cocrystal technology for water-insoluble drugs, especially flavonoid compounds.
Collapse
Affiliation(s)
- Mingyu Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Hong
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yashu Yao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongyi Shen
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang Ji
- Institute of Digestive Diseases, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Digestive Diseases, Long Hua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
33
|
Insights into halogen bond-driven enantioseparations. J Chromatogr A 2016; 1467:228-238. [PMID: 27328882 DOI: 10.1016/j.chroma.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
Although the halogen bond (XB) has been so far mainly studied in silico and in the solid state, its potential impact in solution is yet to be fully understood. In this study, we describe the first systematic investigation on the halogen bond in solvated environment by high-performance liquid chromatography (HPLC). Thirty three atropisomeric polyhalogenated-4,4'-bipyridines (HBipys), containing Cl, Br and I as substituents, were selected and used as potential XB donors (XBDs) on two cellulose-based chiral stationary phases (CSPs) containing potential XB acceptors (XBAs). The impact of the halogens on the enantiodiscrimination mechanism was investigated and iodine showed a pivotal role on the enantioseparation in non-polar medium. Electrostatic potentials (EPs) were computed to understand the electrostatic component of CSP-analyte interaction. Moreover, van't Hoff studies for ten HBipys were performed and the thermodynamic parameters governing the halogen-dependent enantioseparations are discussed. Finally, a molecular dynamic (MD) simulation is proposed to model halogen bond in polysaccharide-analyte complexes by inclusion of a charged extra point to represent the positive 'σ-hole' on the halogen atom. On the basis of both experimental results and theoretical data, we have profiled the halogen bond as a chemo-, regio-, site- and stereoselective interaction which can work in HPLC environment besides other known interactions based on the complementarity between selector and selectand.
Collapse
|
34
|
Sikwal DR, Kalhapure RS, Rambharose S, Vepuri S, Soliman M, Mocktar C, Govender T. Polyelectrolyte complex of vancomycin as a nanoantibiotic: Preparation, in vitro and in silico studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:489-98. [DOI: 10.1016/j.msec.2016.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/17/2016] [Accepted: 03/06/2016] [Indexed: 11/16/2022]
|
35
|
Dubey R, Mir NA, Desiraju GR. Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM). IUCRJ 2016; 3:102-7. [PMID: 27006773 PMCID: PMC4775158 DOI: 10.1107/s2052252515023957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 12/12/2015] [Indexed: 06/01/2023]
Abstract
A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.
Collapse
Affiliation(s)
- Ritesh Dubey
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Niyaz A. Mir
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Gautam R. Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
36
|
Li B, Zang SQ, Wang LY, Mak TC. Halogen bonding: A powerful, emerging tool for constructing high-dimensional metal-containing supramolecular networks. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Wang G, Chen Z, Xu Z, Wang J, Yang Y, Cai T, Shi J, Zhu W. Stability and Characteristics of the Halogen Bonding Interaction in an Anion–Anion Complex: A Computational Chemistry Study. J Phys Chem B 2016; 120:610-20. [DOI: 10.1021/acs.jpcb.5b08139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guimin Wang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoqiang Chen
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijian Xu
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinan Wang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Yang
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Cai
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiye Shi
- UCB Biopharma SPRL, Chemin
du Foriest, Braine-l’Alleud, Belgium
| | - Weiliang Zhu
- CAS
Key Laboratory of Receptor Research, Drug Discovery and Design Center,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
38
|
Lee KH, Lee SH, Yun H, Jazbinsek M, Kim JW, Rotermund F, Kwon OP. Multi-functional supramolecular building blocks with hydroxy piperidino groups: new opportunities for developing nonlinear optical ionic crystals. CrystEngComm 2016. [DOI: 10.1039/c6ce00401f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Chen P, Zhang Z, Parkin S, Zhou P, Cheng K, Li C, Yu F, Long S. Preferred formation of the carboxylic acid–pyridine heterosynthon in 2-anilinonicotinic acids. RSC Adv 2016. [DOI: 10.1039/c6ra20019b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preferred formation of carboxylic acid–pyridine heterosynthon in 2-(phenylamino)nicotinic acid was realized through structural modification of the N bridge.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
- China
| | - Zhifei Zhang
- School of Pharmacy
- North China University of Science and Technology
- Tangshan
- China
| | - Sean Parkin
- Department of Chemistry
- University of Kentucky
- Lexington
- China
| | - Panpan Zhou
- Department of Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Kai Cheng
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan
- China
| | - Conggang Li
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan
- China
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
- China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan
- China
| |
Collapse
|
40
|
|
41
|
Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Halogen Bonding in Supramolecular Chemistry. Chem Rev 2015; 115:7118-95. [DOI: 10.1021/cr500674c] [Citation(s) in RCA: 913] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lydia C. Gilday
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Sean W. Robinson
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy A. Barendt
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Matthew J. Langton
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Benjamin R. Mullaney
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Paul D. Beer
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
42
|
Solimannejad M, Orojloo M, Amani S. Effect of cooperativity in lithium bonding on the strength of halogen bonding and tetrel bonding: (LiCN)n···ClYF3 and (LiCN)n···YF3Cl (Y = C, Si and n = 1-5) complexes as a working model. J Mol Model 2015; 21:183. [PMID: 26134217 DOI: 10.1007/s00894-015-2722-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
This paper reports results of cooperativity in lithium bonding on the strength of halogen bonding and tetrel bonding in complexes pairing CF3Cl and SiF3Cl with (LiCN)n complexes, where n varies from 1 to 5. Molecular geometries and stabilization energies of title complexes are calculated at the MP2 level with 6-311++G(d,p) basis set. Cooperative effects are found in terms of structural and energetic properties when lithium, halogen, and tetrel bonds are present in these complexes simultaneously. Our results reveal that strength of halogen and tetrel bondings are enhanced due to cooperativity of Li···N interactions in lithium bonded complexes. Good linear correlations between cooperativity parameters and electronic properties of complexes were established in the present study.
Collapse
Affiliation(s)
- Mohammad Solimannejad
- Department of Chemistry, Faculty of Sciences, Arak University, Arak, 38156-8-8349, Iran,
| | | | | |
Collapse
|
43
|
Li W, Zeng Y, Zhang X, Zheng S, Meng L. The enhancing effects of group V σ-hole interactions on the F···O halogen bond. Phys Chem Chem Phys 2015; 16:19282-9. [PMID: 25099757 DOI: 10.1039/c4cp02430c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The σ-hole interaction, which occurs between the covalent IV-VII atoms and nucleophilic substances, has become a hot issue of weak interaction. In this work, NCF···O=PX3···(NCF)n (X = F, Cl, Br, H, CH3·; n = 0, 1, 2) complexes were constructed and studied based on the second-order Møller-Plesset perturbation theory (MP2) calculations to investigate the enhancing effects of group V σ-hole interactions on the F···O halogen bond. With increasing n, the FO halogen bond becomes stronger, indicating that the group V σ-hole interactions could enhance the F···O halogen bond. As the capacity of donating electrons of X increases, the most negative electrostatic potentials outside the oxygen atom of O=PX3···(NCF)n (n = 0, 1, 2) become more negative, resulting in a stronger F···O halogen bond. In the formation of a F···O halogen bond, along the sequence of X = F, Cl, Br, H, CH3 of the negative sites O=PX3, the electric field of the lone pair of oxygen becomes greater and causes a larger decrease in electron density outside the fluorine atom. On the other hand, with increasing n from 0 to 2, the group V σ-hole interactions also increase the electric field of lone pair of oxygen and results in a larger decrease in electron density outside the fluorine atom.
Collapse
Affiliation(s)
- Wei Li
- Institute of Computational Quantum Chemistry, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Gerhardt V, Egert E. Cocrystals of 6-chlorouracil and 6-chloro-3-methyluracil: exploring their hydrogen-bond-based synthon motifs with several triazine and pyrimidine derivatives. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2015; 71:209-20. [DOI: 10.1107/s2052520615003790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 11/11/2022]
Abstract
In order to obtain complexes held together by hydrogen as well as halogen bonds, 6-chlorouracil [6-chloropyrimidin-2,4(1H,3H)-dione; 6CU] and its 3-methyl derivative [6-chloro-3-methylpyrimidin-2,4(1H,3H)-dione; M6CU] were cocrystallized with 2,4,6-triaminopyrimidine and the three triazine derivatives 2,4,6-triamino-1,3,5-triazine (melamine), 2,4-diamino-6-methyl-1,3,5-triazine and 2-chloro-4,6-diamino-1,3,5-triazine, which all offer complementary hydrogen-bonding sites. Three of these compounds form cocrystals with 6CU; however, melamine yielded only a new pseudopolymorph with 6CU, but formed a cocrystal with M6CU. All six cocrystals contain solvent molecules (N,N-dimethylformamide,N,N-dimethylacetamide orN-methylpyrrolidin-2-one), whose intermolecular interactions contribute significantly to the stabilization of the crystal packing. Each of these structures comprises chains, which are primarily formed by strong hydrogen bonds with a basic framework built byR22(8) hydrogen bonds of either pure N—H...N or mixed patterns. Solvent molecules are aligned to the border of these chainsviaN—H...O hydrogen bonds. Two of the reported crystal structures containing 6CU show additional Cl...O halogen bonds, which connect the chains to two-dimensional layers, while one weak and one strong Cl...Cl interaction are observed in the two structures in which molecules of M6CU are present.
Collapse
|
46
|
Zhang S, Chen Z, Lu Y, Xu Z, Wu W, Zhu W, Peng C, Liu H. Halogen bonding interactions in ion pairs versus conventional charge-assisted and neutral halogen bonds: a theoretical study based on imidazolium species. RSC Adv 2015. [DOI: 10.1039/c5ra13988k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The properties of three different types of halogen bonds in the complexes of imidazolium species are characterized.
Collapse
Affiliation(s)
- Shaoze Zhang
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhaoqiang Chen
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yunxiang Lu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhijian Xu
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Weihong Wu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weiliang Zhu
- Drug Discovery and Design Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Changjun Peng
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
47
|
Gao X, Jin S, Jin L, Ye X, Zheng L, Li J, Jin B, Wang D. Noncovalent-bonded 1D–3D supramolecular architectures from 2-methylquinoline/quinoline with monocarboxylic acid and dicarboxylic acid. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
Mukherjee A, Tothadi S, Desiraju GR. Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc Chem Res 2014; 47:2514-24. [PMID: 25134974 DOI: 10.1021/ar5001555] [Citation(s) in RCA: 542] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen···halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Srinu Tothadi
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Gautam R. Desiraju
- Solid State and Structural
Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
50
|
Huang YJ, Yan YS, Du G, Liang Y. Hydrothermal Synthesis and Crystal Structure of a Complex with Pyrogallic Acid and N-donor Ligand: 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10] Phenanthroline. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/15533174.2013.817422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yan-Ju Huang
- Department of Chemistry, Tonghua Normal University, Tonghua, P.R. China
| | - Yong-Sheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Gang Du
- Tonghua's NO.1 middle school, Tonghua, P.R. China
| | - Yue Liang
- Department of Chemistry, Tonghua Normal University, Tonghua, P.R. China
| |
Collapse
|