1
|
Radulović NS, Živković Stošić MZ. Long-chain syn-1-phenylalkane-1,3-diyl diacetates, related phenylalkane derivatives, and sec-alcohols, all possessing dominantly iso-branched chain termini, and 2/3-methyl-branched fatty acids from Primula veris L. (Primulaceae) wax. PHYTOCHEMISTRY 2021; 186:112732. [PMID: 33761377 DOI: 10.1016/j.phytochem.2021.112732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, the results of the first study of non-flavonoid constituents of aboveground surface-wax washings of Primula veris L. (Primulaceae) are presented. Chromatography of the washings yielded a minor fraction composed of n-, iso-, and anteiso-series of long-chained syn-1-phenylalkane-1,3-diyl diacetates, 3-oxo-1-phenylalkan-1-yl acetates, 1-phenylalkane-1,3-diones, 1-hydroxy-1-phenylalkan-3-ones, sec-alcohols (2- to 10-alkanols), and n-, iso-, anteiso-, 2-methylalkanoic and 3-methylalkanoic acids; 118 of these constituents represent up to now unreported natural compounds. The structural/stereochemical elucidation was accomplished by the synthesis of authentic standards, derivatization reactions, the use of gas chromatographic retention data and detailed 1D and 2D-NMR analyses of the obtained complex chromatographic fraction. Primula veris produces unusually high amounts of branched long-chained metabolites (>60%) except for the fatty acids where the percentage of branched isomers is comparable to the ones with n-chains. Noteworthy is the fact that long-chained α- and β-methyl substituted fatty acids were detected herein for the first time in the kingdom Plantae.
Collapse
Affiliation(s)
- Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Milena Z Živković Stošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
2
|
Probst AJ, Elling FJ, Castelle CJ, Zhu Q, Elvert M, Birarda G, Holman HYN, Lane KR, Ladd B, Ryan MC, Woyke T, Hinrichs KU, Banfield JF. Lipid analysis of CO 2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria. ISME JOURNAL 2020; 14:1547-1560. [PMID: 32203118 PMCID: PMC7242380 DOI: 10.1038/s41396-020-0624-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. An unusually high abundance of lysolipids attributed to CPR bacteria may represent an adaptation to membrane curvature stress induced by their small cell sizes. Our findings provide new insights into the carbon cycle in the deep subsurface and suggest the redistribution of lipids into putative symbionts within this community.
Collapse
Affiliation(s)
- Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA. .,Institute for Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Felix J Elling
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. .,Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA.,MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Qingzeng Zhu
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Marcus Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste, Strada Statale 14-km 163,5 Basovizza, 34149, Trieste, Italy.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hoi-Ying N Holman
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine R Lane
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA
| | - Bethany Ladd
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada.,Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - M Cathryn Ryan
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, MA, USA
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Jeon JE, Kim JG, Fischer CR, Mehta N, Dufour-Schroif C, Wemmer K, Mudgett MB, Sattely E. A Pathogen-Responsive Gene Cluster for Highly Modified Fatty Acids in Tomato. Cell 2020; 180:176-187.e19. [PMID: 31923394 PMCID: PMC6956849 DOI: 10.1016/j.cell.2019.11.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
In response to biotic stress, plants produce suites of highly modified fatty acids that bear unusual chemical functionalities. Despite their chemical complexity and proposed roles in pathogen defense, little is known about the biosynthesis of decorated fatty acids in plants. Falcarindiol is a prototypical acetylenic lipid present in carrot, tomato, and celery that inhibits growth of fungi and human cancer cell lines. Using a combination of untargeted metabolomics and RNA sequencing, we discovered a biosynthetic gene cluster in tomato (Solanum lycopersicum) required for falcarindiol production. By reconstituting initial biosynthetic steps in a heterologous host and generating transgenic pathway mutants in tomato, we demonstrate a direct role of the cluster in falcarindiol biosynthesis and resistance to fungal and bacterial pathogens in tomato leaves. This work reveals a mechanism by which plants sculpt their lipid pool in response to pathogens and provides critical insight into the complex biochemistry of alkynyl lipid production.
Collapse
Affiliation(s)
- Ju Eun Jeon
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA
| | - Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Sharma AR, Harunari E, Zhou T, Trianto A, Igarashi Y. Isolation and biosynthesis of an unsaturated fatty acid with unusual methylation pattern from a coral-associated bacterium Microbulbifer sp. Beilstein J Org Chem 2019; 15:2327-2332. [PMID: 31666867 PMCID: PMC6808205 DOI: 10.3762/bjoc.15.225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022] Open
Abstract
(2Z,4E)-3-Methyl-2,4-decadienoic acid (1) was identified as a major metabolite from a culture extract of a marine bacterium Microbulbifer which was collected from a stony coral Porites sp. NMR-based spectroscopic analysis revealed that 1 is an unsaturated fatty acid in which a methyl group is located in an uncommon position as a natural product. Feeding experiments of 13C-labeled precursors clarified that ʟ-methionine-derived methylation takes place at the carbon which is derived from the carbonyl carbon of acetate. Compound 1 showed weak growth inhibition against Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Amit Raj Sharma
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Agus Trianto
- Faculty of Fisheries and Marine Sciences, Diponegoro University, Tembalang Campus, St. Prof. Soedarto SH., Semarang 50275, Central Java, Indonesia
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Arai M, Hayashi Y, Kudo H. Cyanobacterial Enzymes for Bioalkane Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:119-154. [PMID: 30091094 DOI: 10.1007/978-981-13-0854-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyanobacterial biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based fuels. Key enzymes for bioalkane production in cyanobacteria are acyl-ACP reductase (AAR) and aldehyde-deformylating oxygenase (ADO). AAR catalyzes the reduction of the fatty acyl-ACP/CoA substrates to fatty aldehydes, which are then converted into alkanes/alkenes by ADO. These enzymes have been widely used for biofuel production by metabolic engineering of cyanobacteria and other organisms. However, both proteins, particularly ADO, have low enzymatic activities, and their catalytic activities are desired to be improved for use in biofuel production. Recently, progress has been made in the basic sciences and in the application of AAR and ADO in alkane production. This chapter provides an overview of recent advances in the study of the structure and function of AAR and ADO, protein engineering of these enzymes for improving activity and modifying substrate specificities, and examples of metabolic engineering of cyanobacteria and other organisms using AAR and ADO for biofuel production.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Kudo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Shakeel T, Gupta M, Fatma Z, Kumar R, Kumar R, Singh R, Sharma M, Jade D, Gupta D, Fatma T, Yazdani SS. A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. J Biol Chem 2018; 293:9148-9161. [PMID: 29632075 PMCID: PMC6005442 DOI: 10.1074/jbc.ra117.000639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/06/2018] [Indexed: 01/02/2023] Open
Abstract
Aldehyde-deformylating oxygenase (ADO) is an essential enzyme for production of long-chain alkanes as drop-in biofuels, which are compatible with existing fuel systems. The most active ADOs are present in mesophilic cyanobacteria, especially Nostoc punctiforme Given the potential applications of thermostable enzymes in biorefineries, here we generated a thermostable (Cts)-ADO based on a consensus of ADO sequences from several thermophilic cyanobacterial strains. Using an in silico design pipeline and a metagenome library containing 41 hot-spring microbial communities, we created Cts-ADO. Cts-ADO displayed a 3.8-fold increase in pentadecane production on raising the temperature from 30 to 42 °C, whereas ADO from N. punctiforme (Np-ADO) exhibited a 1.7-fold decline. 3D structure modeling and molecular dynamics simulations of Cts- and Np-ADO at different temperatures revealed differences between the two enzymes in residues clustered on exposed loops of these variants, which affected the conformation of helices involved in forming the ADO catalytic core. In Cts-ADO, this conformational change promoted ligand binding to its preferred iron, Fe2, in the di-iron cluster at higher temperature, but the reverse was observed in Np-ADO. Detailed mapping of residues conferring Cts-ADO thermostability identified four amino acids, which we substituted individually and together in Np-ADO. Among these substitution variants, A161E was remarkably similar to Cts-ADO in terms of activity optima, kinetic parameters, and structure at higher temperature. A161E was located in loop L6, which connects helices H5 and H6, and supported ligand binding to Fe2 at higher temperatures, thereby promoting optimal activity at these temperatures and explaining the increased thermostability of Cts-ADO.
Collapse
Affiliation(s)
- Tabinda Shakeel
- From the Microbial Engineering Group.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| | - Mayank Gupta
- From the Microbial Engineering Group.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| | - Zia Fatma
- From the Microbial Engineering Group.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| | | | | | - Rahul Singh
- From the Microbial Engineering Group.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| | - Medha Sharma
- From the Microbial Engineering Group.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| | | | | | - Tasneem Fatma
- the Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Shams Yazdani
- From the Microbial Engineering Group, .,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067 and
| |
Collapse
|
7
|
Park AK, Kim IS, Jeon BW, Roh SJ, Ryu MY, Baek HR, Jo SW, Kim YS, Park H, Lee JH, Yoon HS, Kim HW. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem Biophys Res Commun 2016; 477:395-400. [DOI: 10.1016/j.bbrc.2016.06.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 01/12/2023]
|
8
|
Shokri A, Que L. Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase. J Am Chem Soc 2015; 137:7686-91. [PMID: 26030345 DOI: 10.1021/jacs.5b01053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyanobacterial aldehyde-deformylating oxygenase (cADO) converts long-chain fatty aldehydes to alkanes via a proposed diferric-peroxo intermediate that carries out the oxidative deformylation of the substrate. Herein, we report that the synthetic iron(III)-peroxo complex [Fe(III)(η(2)-O2)(TMC)](+) (TMC = tetramethylcyclam) causes a similar transformation in the presence of a suitable H atom donor, thus serving as a functional model for cADO. Mechanistic studies suggest that the H atom donor can intercept the incipient alkyl radical formed in the oxidative deformylation step in competition with the oxygen rebound step typically used by most oxygenases for forming C-O bonds.
Collapse
Affiliation(s)
- Alireza Shokri
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Pfleger BF, Gossing M, Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2015; 29:1-11. [PMID: 25662836 DOI: 10.1016/j.ymben.2015.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
Microbial synthesis of oleochemicals has advanced significantly in the last decade. Microbes have been engineered to convert renewable substrates to a wide range of molecules that are ordinarily made from plant oils. This approach is attractive because it can reduce a motivation for converting tropical rainforest into farmland while simultaneously enabling access to molecules that are currently expensive to produce from oil crops. In the last decade, enzymes responsible for producing oleochemicals in nature have been identified, strategies to circumvent native regulation have been developed, and high yielding strains have been designed, built, and successfully demonstrated. This review will describe the metabolic pathways that lead to the diverse molecular features found in natural oleochemicals, highlight successful metabolic engineering strategies, and comment on areas where future work could further advance the field.
Collapse
Affiliation(s)
- Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States.
| | - Michael Gossing
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
10
|
Buer B, Paul B, Das D, Stuckey JA, Marsh ENG. Insights into substrate and metal binding from the crystal structure of cyanobacterial aldehyde deformylating oxygenase with substrate bound. ACS Chem Biol 2014; 9:2584-93. [PMID: 25222710 PMCID: PMC4245163 DOI: 10.1021/cb500343j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/02/2014] [Indexed: 11/28/2022]
Abstract
The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solvent with the deeply buried active site and reveal a mode of substrate binding that is different from previously determined structures with long-chain fatty acids bound. The structures also identify a water channel leading to the active site that could facilitate the entry of protons required in the reaction. NMR studies examining 1-[(13)C]-octanal binding to cADO indicate that the enzyme binds the aldehyde form rather than the hydrated form. Lastly, the fortuitous cocrystallization of the metal-free form of the protein with aldehyde bound has revealed protein conformation changes that are involved in binding iron.
Collapse
Affiliation(s)
- Benjamin
C. Buer
- Department of Chemistry, Life Sciences Institute, and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bishwajit Paul
- Department of Chemistry, Life Sciences Institute, and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Debasis Das
- Department of Chemistry, Life Sciences Institute, and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Department of Chemistry, Life Sciences Institute, and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department of Chemistry, Life Sciences Institute, and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Das D, Ellington B, Paul B, Marsh ENG. Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase. ACS Chem Biol 2014; 9:570-7. [PMID: 24313866 DOI: 10.1021/cb400772q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of long-chain aliphatic hydrocarbons, which are derived from fatty acids, is widespread in Nature. The last step in this pathway involves the decarbonylation of fatty aldehydes to the corresponding alkanes or alkenes. In cyanobacteria, this is catalyzed by an aldehyde deformylating oxygenase. We have investigated the mechanism of this enzyme using substrates bearing an oxirane ring adjacent to the aldehyde carbon. The enzyme catalyzed the deformylation of these substrates to produce the corresponding oxiranes. Performing the reaction in D2O allowed the facial selectivity of proton addition to be examined by (1)H NMR spectroscopy. The proton is delivered with equal probability to either face of the oxirane ring, indicating the formation of an oxiranyl radical intermediate that is free to rotate during the reaction. Unexpectedly, the enzyme also catalyzes a side reaction in which oxiranyl-aldehydes undergo tandem deformylation to furnish alkanes two carbons shorter. We present evidence that this involves the rearrangement of the intermediate oxiranyl radical formed in the first step, resulting in aldehyde that is further deformylated in a second step. These observations provide support for a radical mechanism for deformylation and, furthermore, allow the lifetime of the radical intermediate to be estimated based on prior measurements of rate constants for the rearrangement of oxiranyl radicals.
Collapse
Affiliation(s)
- Debasis Das
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin Ellington
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bishwajit Paul
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Marsh ENG, Waugh MW. Aldehyde Decarbonylases: Enigmatic Enzymes of Hydrocarbon Biosynthesis. ACS Catal 2013; 3. [PMID: 24319622 DOI: 10.1021/cs400637t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- E. Neil G. Marsh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew W. Waugh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Lagoutte R, Šebesta P, Jiroš P, Kalinová B, Jirošová A, Straka J, Černá K, Šobotník J, Cvačka J, Jahn U. Total synthesis, proof of absolute configuration, and biosynthetic origin of stylopsal, the first isolated sex pheromone of strepsiptera. Chemistry 2013; 19:8515-24. [PMID: 23630024 DOI: 10.1002/chem.201204196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/15/2013] [Indexed: 11/10/2022]
Abstract
The asymmetric total synthesis of the diastereomers of stylopsal establishes the absolute configuration of the first reported sex pheromone of the twisted-wing parasite Stylops muelleri as (3R,5R,9R)-trimethyldodecanal. The key steps for the diastereo- and enantiodivergent introduction of the methyl groups are two different types of asymmetric conjugate addition reactions of organocopper reagents to α,β-unsaturated esters, whereas the dodecanal skeleton is assembled by Wittig reactions. The structure of the natural product was confirmed by chiral gas chromatography (GC) techniques, GC/MS and GC/electroantennography (EAD) as well as field tests. An investigation into the biosynthesis of the pheromone revealed that it is likely to be produced by decarboxylation of a 4,6,10-trimethyltridecanoic acid derivative, which was found in substantial amounts in the fat body of the female, but not in the host bee Andrena vaga. This triple-branched fatty acid precursor thus seems to be biosynthesized de novo through a polyketide pathway with two consecutive propionate-propionate-acetate assemblies to form the complete skeleton. The simplified, motionless and fully host-dependent female exploits a remarkable strategy to maximize its reproductive success by employing a relatively complex and potent sex pheromone.
Collapse
Affiliation(s)
- Roman Lagoutte
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Paul B, Das D, Ellington B, Marsh ENG. Probing the mechanism of cyanobacterial aldehyde decarbonylase using a cyclopropyl aldehyde. J Am Chem Soc 2013; 135:5234-7. [PMID: 23514600 DOI: 10.1021/ja3115949] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyanobacterial aldehyde decarbonylase (cAD) is a non-heme diiron oxygenase that catalyzes the conversion of fatty aldehydes to alkanes and formate. The mechanism of this chemically unusual reaction is poorly understood. We have investigated the mechanism of C1-C2 bond cleavage by cAD using a fatty aldehyde that incorporates a cyclopropyl group, which can act as a radical clock. When reacted with cAD, the cyclopropyl aldehyde produces 1-octadecene as the rearranged product, providing evidence for a radical mechanism for C-C bond scission. In an alternate pathway, the cyclopropyl aldehyde acts as a mechanism-based irreversible inhibitor of cAD through covalent binding of the alkyl chain to the enzyme.
Collapse
Affiliation(s)
- Bishwajit Paul
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
15
|
Palko JW, Buist PH, Manthorpe JM. A flexible and modular stereoselective synthesis of (9R,10S)-dihydrosterculic acid. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Cooper HLR, Mishra G, Huang X, Pender-Cudlip M, Austin RN, Shanklin J, Groves JT. Parallel and competitive pathways for substrate desaturation, hydroxylation, and radical rearrangement by the non-heme diiron hydroxylase AlkB. J Am Chem Soc 2012; 134:20365-75. [PMID: 23157204 PMCID: PMC3531984 DOI: 10.1021/ja3059149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A purified and highly active form of the non-heme diiron hydroxylase AlkB was investigated using the diagnostic probe substrate norcarane. The reaction afforded C2 (26%) and C3 (43%) hydroxylation and desaturation products (31%). Initial C-H cleavage at C2 led to 7% C2 hydroxylation and 19% 3-hydroxymethylcyclohexene, a rearrangement product characteristic of a radical rearrangement pathway. A deuterated substrate analogue, 3,3,4,4-norcarane-d(4), afforded drastically reduced amounts of C3 alcohol (8%) and desaturation products (5%), while the radical rearranged alcohol was now the major product (65%). This change in product ratios indicates a large kinetic hydrogen isotope effect of ∼20 for both the C-H hydroxylation at C3 and the desaturation pathway, with all of the desaturation originating via hydrogen abstraction at C3 and not C2. The data indicate that AlkB reacts with norcarane via initial C-H hydrogen abstraction from C2 or C3 and that the three pathways, C3 hydroxylation, C3 desaturation, and C2 hydroxylation/radical rearrangement, are parallel and competitive. Thus, the incipient radical at C3 either reacts with the iron-oxo center to form an alcohol or proceeds along the desaturation pathway via a second H-abstraction to afford both 2-norcarene and 3-norcarene. Subsequent reactions of these norcarenes lead to detectable amounts of hydroxylation products and toluene. By contrast, the 2-norcaranyl radical intermediate leads to C2 hydroxylation and the diagnostic radical rearrangement, but this radical apparently does not afford desaturation products. The results indicate that C-H hydroxylation and desaturation follow analogous stepwise reaction channels via carbon radicals that diverge at the product-forming step.
Collapse
Affiliation(s)
| | - Girish Mishra
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973
| | - Xiongyi Huang
- Department of Chemistry, Princeton University, Princeton NJ 08544
| | | | | | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton NJ 08544
| |
Collapse
|
17
|
Jarboe LR, Liu P, Royce LA. Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 2011. [DOI: 10.1016/j.coche.2011.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
DeGuire SM, Ma S, Sulikowski GA. Synthesis of a Bicyclobutane Fatty Acid Identified from the Cyanobacterium Anabaena PCC 7120. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
DeGuire SM, Ma S, Sulikowski GA. Synthesis of a bicyclobutane fatty acid identified from the cyanobacterium Anabaena PCC 7120. Angew Chem Int Ed Engl 2011; 50:9940-2. [PMID: 21898738 DOI: 10.1002/anie.201104366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Indexed: 11/06/2022]
Abstract
By design: a carbanion-mediated cyclization reaction cascade serves as the key final step in the total synthesis of a novel oxylipin, which features a strained bicyclo[1.1.0]butane conjugated to a labile vinyl epoxide.
Collapse
Affiliation(s)
- Sean M DeGuire
- Departments of Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, USA
| | | | | |
Collapse
|
20
|
Das D, Eser BE, Sciore A, Marsh ENG, Han J. Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Engl 2011; 50:7148-52. [PMID: 21671322 PMCID: PMC3335439 DOI: 10.1002/anie.201101552] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/17/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Debasis Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, (U.S.A.)
| | - Bekir E. Eser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, (U.S.A.)
| | - Aaron Sciore
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, (U.S.A.)
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, (U.S.A.)
| | - Jaehong Han
- School of Biological Sciences, Chung-Ang University, Anseong 456-756, (Korea)
| |
Collapse
|
21
|
Das D, Eser BE, Han J, Sciore A, Marsh ENG. Oxygen-Independent Decarbonylation of Aldehydes by Cyanobacterial Aldehyde Decarbonylase: A New Reaction of Diiron Enzymes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Hochmuth T, Niederkrüger H, Gernert C, Siegl A, Taudien S, Platzer M, Crews P, Hentschel U, Piel J. Linking chemical and microbial diversity in marine sponges: possible role for poribacteria as producers of methyl-branched fatty acids. Chembiochem 2011; 11:2572-8. [PMID: 21077090 DOI: 10.1002/cbic.201000510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many marine sponges contain massive numbers of largely uncultivated, phylogenetically diverse bacteria that seem to be important contributors to the chemistry of these animals. Insights into the diversity, origin, distribution, and function of their metabolic gene communities are crucial to dissect the chemical ecology and biotechnological potential of sponge symbionts. This study reveals a sharp dichotomy between high and low microbial abundance sponges with respect to polyketide synthase (PKS) gene content, the presence of methyl-branched fatty acids, and the presence of members of the symbiotic candidate phylum "Poribacteria". For the symbiont-rich sponge Cacospongia mycofijiensis, a source of the tubulin-inhibiting fijianolides (=laulimalides), near-exhaustive large-scale sequencing of PKS gene-derived PCR amplicons was conducted. Although these amplicons exhibit high diversity at the sequence level, almost all of them belong to a single, architecturally unique group of PKSs present in "Poribacteria" and are proposed to synthesize methyl-branched fatty acids. Three components of this PKS were studied in vitro, providing initial insight into its biochemistry.
Collapse
Affiliation(s)
- Thomas Hochmuth
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The cytochromes P450 (P450s) are a superfamily of oxidative haemoproteins that are capable of catalysing a vast range of oxidative transformations, including the oxidation of unactivated alkanes, often with high stereo- and regio-selectivity. Fatty acid hydroxylation by P450s is widespread across both bacteria and higher organisms, with the sites of oxidation and specificity of oxidation varying from system to system. Several key examples are discussed in the present article, with the focus on P450(BioI) (CYP107H1), a biosynthetic P450 found in the biotin operon of Bacillus subtilis. The biosynthetic function of P450(BioI) is the formation of pimelic acid, a biotin precursor, via a multiple-step oxidative cleavage of long-chain fatty acids. P450(BioI) is a member of an important subgroup of P450s that accept their substrates not free in solution, but rather presented by a separate carrier protein. Structural characterization of the P450(BioI)-ACP (acyl-carrier protein) complex has recently been performed, which has revealed the basis for the oxidation of the centre of the fatty acid chain. The P450(BioI)-ACP structure is the first such P450-carrier protein complex to be characterized structurally, with important implications for other biosynthetically intriguing P450-carrier protein complexes.
Collapse
|
24
|
Guangqi E, Lesage D, Ploux O. Insight into the reaction mechanism of the Escherichia coli cyclopropane fatty acid synthase: isotope exchange and kinetic isotope effects. Biochimie 2010; 92:1454-7. [PMID: 20538038 DOI: 10.1016/j.biochi.2010.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 05/31/2010] [Indexed: 11/28/2022]
Abstract
Cyclopropanation of unsaturated lipids is an intriguing enzymatic reaction and a potential therapeutic target in Mycobacterium tuberculosis. Cyclopropane fatty acid synthase from Escherichia coli is the only in vitro model available to date for mechanistic and inhibition studies. While the overall reaction mechanism of this enzymatic process is now well accepted, some mechanistic issues are still debated. Using homogeneous E. coli enzyme we have shown that, contrary to previous report based on in vivo experiments, there is no exchange of the cylopropane methylene protons with the solvent during catalysis, as probed by ultra high resolution mass spectrometry. Using [methyl-14C]-labeled and [methyl-³H₃]-S-adenosyl-L-methionine we have measured a significant intermolecular primary tritium kinetic isotope effect ((T)V/K(app)=1.8 ± 0.1) consistent with a partially rate determining deprotonation step. We conclude that both chemical steps of this enzymatic cyclopropanation, the methyl addition onto the double bond and the deprotonation step, are rate determining, a common situation in efficient enzymes.
Collapse
Affiliation(s)
- E Guangqi
- Laboratoire Charles Friedel, UMR-CNRS 7223, ENSCP ChimieParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
25
|
Maru N, Ohno O, Koyama T, Yamada K, Uemura D. Papillamide, a Novel Fatty Acid Amide from the Red AlgaLaurencia papillosa. CHEM LETT 2010. [DOI: 10.1246/cl.2010.366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Shanklin J, Guy JE, Mishra G, Lindqvist Y. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem 2009; 284:18559-63. [PMID: 19363032 DOI: 10.1074/jbc.r900009200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desaturases and related enzymes perform O(2)-dependent dehydrogenations initiated at unactivated C-H groups with the use of a diiron active site. Determination of the long-sought oxidized desaturase crystal structure facilitated structural comparison of the active sites of disparate diiron enzymes. Experiments on the castor desaturase are discussed that provide experimental support for a hypothesized ancestral oxidase enzyme in the context of the evolution of the diiron enzyme diverse functionality. We also summarize recent analysis of a castor mutant desaturase that provides valuable insights into the relationship of proposed substrate-binding modes with respect to a range of catalytic outcomes.
Collapse
Affiliation(s)
- John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | |
Collapse
|
27
|
Guianvarc'h D, Guangqi E, Drujon T, Rey C, Wang Q, Ploux O. Identification of inhibitors of the E. coli cyclopropane fatty acid synthase from the screening of a chemical library: In vitro and in vivo studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1652-8. [DOI: 10.1016/j.bbapap.2008.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/21/2008] [Accepted: 04/25/2008] [Indexed: 11/30/2022]
|