1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Ogbonna SJ, Masuda K, Hazama H. The effect of fluence rate and wavelength on the formation of protoporphyrin IX photoproducts. Photochem Photobiol Sci 2024:10.1007/s43630-024-00611-9. [PMID: 39244727 DOI: 10.1007/s43630-024-00611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 09/10/2024]
Abstract
Photodynamic diagnosis and therapy (PDD and PDT) are emerging techniques for diagnosing and treating tumors and malignant diseases. Photoproducts of protoporphyrin IX (PpIX) used in PDD and PDT may be used in the diagnosis and treatment, making a detailed analysis of the photoproduct formation under various treatment and diagnosis conditions important.Spectroscopic and mass spectrometric analysis of photoproduct formation from PpIX dissolved in dimethyl sulfoxide were performed under commonly used irradiation conditions for PDD and PDT, i.e., wavelengths of 405 and 635 nm and fluence rates of 10 and 100 mW/cm2. Irradiation resulted in the formation of hydroxyaldehyde photoproduct (photoprotoporphyrin; Ppp) and formyl photoproduct (product II; Pp II) existing in different quantities with the irradiation wavelength and fluence rate. Ppp was dominant under 635 nm irradiation of PpIX, with a fluorescence peak at 673 nm and a protonated monoisotopic peak at m/z 595.3. PpIX irradiation with 405 nm yielded more Pp II, with a fluorescence peak at 654 nm. A higher photoproduct formation was observed at a low fluence rate for irradiation with 635 nm, while irradiation with 405 nm indicated a higher photoproduct formation at a higher fluence rate.The photoproduct formation with the irradiation conditions can be exploited for dosimetry estimation and may be used as an additional photosensitizer to improve the diagnostics and treatment efficacies of PDD and PDT. Differences in environmental conditions of the present study from that of a biological environment may result in a variation in the photoproduct formation rate and may limit their clinical utilization in PDD and PDT. Thus, further investigation of photoproduct formation rates in more complex biological environments, including in vivo, is necessary. However, the results obtained in this study will serve as a basis for understanding reaction processes in such biological environments.
Collapse
Affiliation(s)
- Sochi J Ogbonna
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Katsuyoshi Masuda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
- Graduate Course of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisanao Hazama
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Gautheron A, Bernstock JD, Picart T, Guyotat J, Valdés PA, Montcel B. 5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review. Front Neurosci 2024; 18:1310282. [PMID: 38348134 PMCID: PMC10859467 DOI: 10.3389/fnins.2024.1310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
The review begins with an overview of the fundamental principles/physics underlying light, fluorescence, and other light-matter interactions in biological tissues. It then focuses on 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence spectroscopy methods used in neurosurgery (e.g., intensity, time-resolved) and in so doing, describe their specific features (e.g., hardware requirements, main processing methods) as well as their strengths and limitations. Finally, we review current clinical applications and future directions of 5-ALA-induced protoporphyrin IX (PpIX) fluorescence spectroscopy in neurosurgery.
Collapse
Affiliation(s)
- A. Gautheron
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, Saint-Étienne, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - J. D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - T. Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - J. Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - P. A. Valdés
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - B. Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| |
Collapse
|
4
|
Scholz M, Croizat G, Pšenčík J, Dědic R, Nonell S, Wagnieres G. Understanding delayed fluorescence and triplet decays of Protoporphyrin IX under hypoxic conditions. Photochem Photobiol Sci 2021; 20:843-857. [PMID: 34216374 DOI: 10.1007/s43630-021-00044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023]
Abstract
Photosensitizers of singlet oxygen exhibit three main types of reverse intersystem-crossing (RISC): thermally activated, triplet-triplet annihilation, and singlet oxygen feedback. RISC can be followed by delayed fluorescence (DF) emission, which can provide important information about the excited state dynamics in the studied system. An excellent model example is a widely used clinical photosensitizer Protoporphyrin IX, which manifests all three mentioned types of RISC and DF. Here, we estimated rate constants of individual RISC and DF processes in Protoporphyrin IX in dimethylformamide, and we showed how these affect triplet decays and DF signals under diverse experimental conditions, such as a varying oxygen concentration or excitation intensity. This provided a basis for a general discussion on guidelines for a more precise analysis of long-lived signals. Furthermore, it has been found that PpIX photoproducts and potential transient excited complexes introduce a new overlapping delayed luminescence spectral band with a distinct lifetime. These findings are important for design of more accurate biological oxygen sensors and assays based on DF and triplet lifetime.
Collapse
Affiliation(s)
- Marek Scholz
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic. .,Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover, USA. .,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Gauthier Croizat
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Roman Dědic
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Catalunya, Spain
| | - Georges Wagnieres
- Laboratory for functional and metabolic imaging, LIFMET, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Ogbonna SJ, Hazama H, Awazu K. Mass Spectrometric Analysis of the Photobleaching of Protoporphyrin IX Used in Photodynamic Diagnosis and Therapy of Cancer. Photochem Photobiol 2021; 97:1089-1096. [PMID: 33687739 DOI: 10.1111/php.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Photobleaching and photoproduct formations are considered essential phenomena in improving the efficacy of photodynamic diagnosis and therapy (PDD and PDT). We investigated the photobleaching of protoporphyrin IX (PpIX) by measuring its concentration with mass spectrometry (MS). The reduction in the concentration of PpIX dissolved in dimethyl sulfoxide was measured during PDD and PDT conditions using lasers with wavelengths of 405 and 635 nm, respectively, at a power density of 10, 50 or 100 mW/cm2 . The obtained results were compared with the results of conventional fluorescence spectroscopy and previously reported results. Our results demonstrate the variation in the MS-based photobleaching coefficient of PpIX with the power density, while the fluorescence-based photobleaching coefficient was independent of the power density. The results of MS also show faster photobleaching of PpIX in comparison with that obtained from fluorescence. The difference may be attributed to the change in the fluorescence quantum yield of PpIX with its concentration and the effect of fluorescence emission from the PpIX photoproducts. Thus, an MS-based investigation of the photobleaching poses to be a more stable investigation form. Our finding highlights the importance of recognizing the potential significance of these discoveries in the PDD and PDT dosimetry and efficacy.
Collapse
Affiliation(s)
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Kirillin M, Kurakina D, Khilov A, Orlova A, Shakhova M, Orlinskaya N, Sergeeva E. Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. BIOMEDICAL OPTICS EXPRESS 2021; 12:872-892. [PMID: 33680547 PMCID: PMC7901330 DOI: 10.1364/boe.411518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm2 delivered at 660 nm, 200 J/cm2 delivered at 405 nm, and 250 J/cm2 delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection. Red light or dual-wavelength PDT regimes with intravenous PS injection were demonstrated to provide the most pronounced tumor response among all the considered cases. On the contrary, blue light regimes were demonstrated to be most efficient among topical application and irradiation only regimes. Tumor size dynamics for different groups is in good agreement with the tumor response predictions based on OCT-A taken in 24h after exposure and the results of histology analysis performed in 7 days after the exposure.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Maria Shakhova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
7
|
Yuan B, Wu H, Wang H, Tang B, Xu J, Zhang X. A Self‐Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
Yuan B, Wu H, Wang H, Tang B, Xu J, Zhang X. A Self‐Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew Chem Int Ed Engl 2020; 60:706-710. [DOI: 10.1002/anie.202012477] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Bin Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
9
|
Scholz M, Petusseau AF, Gunn JR, Shane Chapman M, Pogue BW. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis Photodyn Ther 2020; 30:101790. [PMID: 32344195 DOI: 10.1016/j.pdpdt.2020.101790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxic lesions often respond poorly to cancer therapies. Particularly, photodynamic therapy (PDT) consumes oxygen in treated tissues, which in turn lowers its efficacy. Tools for online monitoring of intracellular pO2 are desirable. METHODS The pO2 changes were tracked during photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) in mouse skin, xenograft tumors, and human skin. ALA was applied either topically as Ameluz cream or systemically by injection. Mitochondrial pO2 was quantified by time-gated lifetime-based imaging of delayed fluorescence (DF) of protoporphyrin IX (PpIX). RESULTS pO2-weighted images were obtained with capture-times of several seconds, radiant exposures near 10 mJ/cm2, spatial resolution of 0.3 mm, and a broad dynamic range 1-50 mmHg, corresponding to DF lifetimes ≈20-2000 μs. The dose-rate effect on oxygen consumption was investigated in mouse skin. A fluence rate of 1.2 mW/cm2 did not cause any appreciable oxygen depletion, whereas 6 mW/cm2 and 12 mW/cm2 caused severe oxygen depletion after radiant exposures of only 0.4-0.8 J/cm2 and <0.2 J/cm2, respectively. Reoxygenation after PDT was studied too. With a 5 J/cm2 radiant exposure, the recovery times were 10-60 min, whereas with 2 J/cm2 they were only 1-6 min. pO2 distribution was spatially non-uniform at (sub)-millimeter scale, which underlines the necessity of tracking pO2 changes by imaging rather than point-detection. CONCLUSIONS Time-gated imaging of PpIX DF seems to be a unique tool for direct online monitoring of pO2 changes during PDT with a promising potential for research purposes as well as for comparatively easy clinical translation to improve efficacy in PDT treatment.
Collapse
Affiliation(s)
- Marek Scholz
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| | - Arthur F Petusseau
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Jason R Gunn
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Brian W Pogue
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| |
Collapse
|
10
|
Hasegawa T, Takahashi J, Nagasawa S, Doi M, Moriyama A, Iwahashi H. DNA Strand Break Properties of Protoporphyrin IX by X-Ray Irradiation against Melanoma. Int J Mol Sci 2020; 21:ijms21072302. [PMID: 32225109 PMCID: PMC7177738 DOI: 10.3390/ijms21072302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Recent reports have suggested that 5-aminolevulinic acid (5-ALA), which is a precursor to protoporphyrin IX (PpIX), leads to selective accumulation of PpIX in tumor cells and acts as a radiation sensitizer in vitro and in vivo in mouse models of melanoma, glioma, and colon cancer. In this study, we investigated the effect of PpIX under X-ray irradiation through ROS generation and DNA damage. ROS generation by the interaction between PpIX and X-ray was evaluated by two kinds of probes, 3′-(p-aminophenyl) fluorescein (APF) for hydroxyl radical (•OH) detection and dihydroethidium (DHE) for superoxide (O2•-). •OH showed an increase, regardless of the dissolved oxygen. Meanwhile, the increase in O2•- was proportional to the dissolved oxygen. Strand breaks (SBs) of DNA molecule were evaluated by gel electrophoresis, and the enhancement of SBs was observed by PpIX treatment. We also studied the effect of PpIX for DNA damage in cells by X-ray irradiation using a B16 melanoma culture. X-ray irradiation induced γH2AX, DNA double-strand breaks (DSBs) in the context of chromatin, and affected cell survival. Since PpIX can enhance ROS generation even in a hypoxic state and induce DNA damage, combined radiotherapy treatment with 5-ALA is expected to improve therapeutic efficacy for radioresistant tumors.
Collapse
Affiliation(s)
- Takema Hasegawa
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; (T.H.); (A.M.); (H.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Junko Takahashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
- Correspondence: ; Tel.: +81-20-862-6705
| | - Shinsuke Nagasawa
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Akihiro Moriyama
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; (T.H.); (A.M.); (H.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Hitoshi Iwahashi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; (T.H.); (A.M.); (H.I.)
| |
Collapse
|
11
|
Etcheverry ME, Pasquale MA, Bergna C, Ponzinibbio C, Garavaglia M. Photodynamic therapy in 2D and 3D human cervical carcinoma cell cultures employing LED light sources emitting at different wavelengths. ACTA ACUST UNITED AC 2020; 65:015017. [DOI: 10.1088/1361-6560/ab589a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Lavaee F, Amanati A, Ramzi M, Naseri S, Shakiba Sefat H. Evaluation of the effect of photodynamic therapy on chemotherapy induced oral mucositis. Photodiagnosis Photodyn Ther 2020; 30:101653. [PMID: 31923632 DOI: 10.1016/j.pdpdt.2020.101653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND In this study the effect of photodynamic therapy on chemotherapy induced mucositis was evaluated. METHODS This randomized single blind clinical pilot evaluation evaluated the effect of PDT with methylene blue on 15 patients with chemotherapy induced bilateral oral mucositis. They were divided into 2 groups (control side and intervention side). Methylene blue was applied on the lesions of both sides, after 10 min the lesion of intervention side was irradiated by a 660 nm diode laser InGaAlP(Azor-2 K) for 10 min (power: 25 mW, dose:19.23 J/CM2, probe diameter: 0.78 cm2) for three sessions (day1,3,5) and followed on day 12. In control side only sham laser was used. Data were analyzed by Wilcoxon and Mann-Whitney test using SPSS version 22. RESULTS Comparing the WCCNR and NCI difference in different sessions between intervention and control group, represented significant improvement in oral mucositis in photodynamic therapy group for sessions 1-0, 2-0, 3-0 (P.value<0.05). CONCLUSION Photodynamic therapy can improve chemotherapy induced oral mucositis.
Collapse
Affiliation(s)
- Fatemeh Lavaee
- Oral and Dental Disease Research Center, Assistant Professor of Oral and Maxillofacial Disease Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Amanati
- Professor Alborzi Clinical Microbiology Research Center, Shiraz, Iran.
| | - Mani Ramzi
- Hematology Research Center, Department of Hematology, Oncology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Setareh Naseri
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
13
|
Nishimura T, Hara K, Honda N, Okazaki S, Hazama H, Awazu K. Determination and analysis of singlet oxygen quantum yields of talaporfin sodium, protoporphyrin IX, and lipidated protoporphyrin IX using near-infrared luminescence spectroscopy. Lasers Med Sci 2019; 35:1289-1297. [PMID: 31853809 DOI: 10.1007/s10103-019-02907-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/18/2019] [Indexed: 11/27/2022]
Abstract
In photodynamic therapy (PDT), singlet oxygen ([Formula: see text]) is the main species responsible for promoting tumor cell death. The determination of the quantum yield (ΦΔ) of a photosensitizer (PS) is important for dosimetry. The purpose of this paper is to quantify the [Formula: see text] generated by the PS by near-infrared spectroscopy (NIRS). The ΦΔ of different PS species were measured by the detection of near-infrared [Formula: see text] luminescence. From the measurement results, the ΦΔ of talaporfin sodium, protoporphyrin IX (PpIX), and lipidated PpIX (PpIX lipid) were measured as 0.53, 0.77, and 0.87, respectively. In addition, the ΦΔ values of PpIX in a hypoxic and oxic solution were evaluated, since tumors are associated with regions of hypoxia. The measured ΦΔ indicated a same value at high (DO: 20%) and low (DO: 1%) oxygen concentrations. Using the measured ΦΔ, the amount of [Formula: see text] generated by the PSs was estimated using [[Formula: see text]] = D*ΦΔ, where D* is the total excited PS concentration. The generated [Formula: see text] amounts were little different at the high and the low oxygen concentrations, and the generated [Formula: see text] amount for each PS was different depending on each ΦΔ. The NIRS measurement determined the ΦΔ of talaporfin sodium, PpIX, and PpIX lipid. The quantitative evaluation based on the measured ΦΔ will support the development of PDT treatment monitoring and design.
Collapse
Affiliation(s)
- Takahiro Nishimura
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Keisuke Hara
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norihiro Honda
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigetoshi Okazaki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Kamanli AF, Çetinel G, Yıldız MZ. A New handheld singlet oxygen detection system (SODS) and NIR light source based phantom environment for photodynamic therapy applications. Photodiagnosis Photodyn Ther 2019; 29:101577. [PMID: 31711998 DOI: 10.1016/j.pdpdt.2019.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Photodynamic therapy (PDT) is an emerging treatment modality in various areas such as cancer treatment and disinfection. The photosensitizer and oxygen have crucial roles for effective PDT treatment. The quantitative evaluation of singlet oxygen, which is a gold standard for monitoring effective treatment, remains as an important problem for PDT. However, low quantum yield and low life span of the singlet oxygen make the system expensive, unnecessarily large and unadaptable for clinical usage. In our study, a new mobile singlet oxygen detection system (SODS) was designed to detect singlet oxygen illumination during PDT and a new singlet oxygen phantom environment was constituted to test the designed SODS system. The singlet oxygen phantom environment composed of fast switching led driver & microcontroller and led light source (1200-1300 nm radiation). The elements of the singlet oxygen detection system are optic filter and collimation, avalanche photodiode transimpedance amplifier, differential amplifier and a signal processing block. According to the performance evaluation of the system on the phantom environment, the presented SODS can measure the illuminations at 1270 nm wavelength between 10 ns and 15 µs timespans. The results showed that the proposed system might be a good candidate for clinical PDT applications.
Collapse
Affiliation(s)
- Ali Furkan Kamanli
- Sakarya University of Applied Sciences, Faculty of Technology, Electrical and Electronics Engineering, Turkey.
| | - Gökçen Çetinel
- Sakarya University, Faculty of Engineering, Electrical and Electronics Engineering, Turkey
| | - Mustafa Zahid Yıldız
- Sakarya University of Applied Sciences, Faculty of Technology, Electrical and Electronics Engineering, Turkey
| |
Collapse
|
15
|
Platform for ergonomic intraoral photodynamic therapy using low-cost, modular 3D-printed components: Design, comfort and clinical evaluation. Sci Rep 2019; 9:15830. [PMID: 31676807 PMCID: PMC6825190 DOI: 10.1038/s41598-019-51859-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
Oral cancer prevalence is increasing at an alarming rate worldwide, especially in developing countries which lack the medical infrastructure to manage it. For example, the oral cancer burden in India has been identified as a public health crisis. The high expense and logistical barriers to obtaining treatment with surgery, radiotherapy and chemotherapy often result in progression to unmanageable late stage disease with high morbidity. Even when curative, these approaches can be cosmetically and functionally disfiguring with extensive side effects. An alternate effective therapy for oral cancer is a light based spatially-targeted cytotoxic therapy called photodynamic therapy (PDT). Despite excellent healing of the oral mucosa in PDT, a lack of robust enabling technology for intraoral light delivery has limited its broader implementation. Leveraging advances in 3D printing, we have developed an intraoral light delivery system consisting of modular 3D printed light applicators with pre-calibrated dosimetry and mouth props that can be utilized to perform PDT in conscious subjects without the need of extensive infrastructure or manual positioning of an optical fiber. To evaluate the stability of the light applicators, we utilized an endoscope in lieu of the optical fiber to monitor motion in the fiducial markers. Here we showcase the stability (less than 2 mm deviation in both horizontal and vertical axis) and ergonomics of our applicators in delivering light precisely to the target location in ten healthy volunteers. We also demonstrate in five subjects with T1N0M0 oral lesions that our applicators coupled with a low-cost fiber coupled LED-based light source served as a complete platform for intraoral light delivery achieving complete tumor response with no residual disease at initial histopathology follow up in these patients. Overall, our approach potentiates PDT as a viable therapeutic option for early stage oral lesions that can be delivered in low resource settings.
Collapse
|
16
|
Lavaee F, Shadmanpour M. Comparison of the effect of photodynamic therapy and topical corticosteroid on oral lichen planus lesions. Oral Dis 2019; 25:1954-1963. [PMID: 31478283 DOI: 10.1111/odi.13188] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study, the effect of photodynamic therapy with topical corticosteroid in oral lichen planus patients was compared. MATERIAL AND METHODS In this randomized, double-blind clinical trial, eight patients with bilateral oral OLP lesions were recruited. Toluidine blue was applied on the lesions of both sides; a 660-nm diode laser InGaAlP was irradiated for 10 min (power: 25 mW, fluence: 19.23 J/cm2 , probe cross section: 0.78 cm2 ) for three sessions. In the control side of the oral mucosa, only sham laser was used. Follow-up sessions were held on weeks 3 and 7. In week 3, oral paste triamcinolone acetonide 0.1% was prescribed. Response rates were assessed clinically by VAS, Thongprasom sign scoring, clinical severity index, efficacy indices, and the amount of reduction in the size of the lesions. The Mann-Whitney test was used to evaluate the treatment outcomes. RESULTS In spite of the control side, all scores improved significantly between sessions 0 and 4 for the intervention side. The differences between the changes in almost all scores between sessions 0 and 4 in both the intervention and control sides were significantly considerable (p value < .05). CONCLUSION Photodynamic therapy can be used as an alternative therapy alongside standard methods or as a new modality for refractory OLP.
Collapse
Affiliation(s)
- Fatemeh Lavaee
- Oral and Dental Disease Research Center, Oral and Maxillofacial Medicine Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Shadmanpour
- Orthodontics Department, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
A study of concentration changes of Protoporphyrin IX and Coproporphyrin III in mixed samples mimicking conditions inside cancer cells for Photodynamic Therapy. PLoS One 2018; 13:e0202349. [PMID: 30169536 PMCID: PMC6118380 DOI: 10.1371/journal.pone.0202349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/01/2018] [Indexed: 01/31/2023] Open
Abstract
Photodynamic Therapy (PDT) using Aminolevulinic acid (ALA) could be an effective and minimally invasively applicable way to treat many different types of tumors without radiation and large incisions by just applying a light pulse. However the PDT process is difficult to observe, control and optimize and the dynamical relationships between the variables involved in the process is complex and still hardly understood. One of the main variables affecting the outcome of the process is the determination of the interval of time between ALA inoculation and starting of light delivery. This interval, better known as drug-light interval, should ensure that enough Protoporphyrin IX (PPIX) is located in the vicinity of functional structures inside the cells for the greatest damage during the PDT procedure. One route to better estimate this time interval would be by predicting PPIX from the dynamical changes of its precursors. For that purpose, in this work a novel optical setup (OS) is proposed for differentiating fluorescence emitted by Coproporphyrin III (CPIII) and PPIX itself in samples composed of mixed solutions. The OS is tested using samples with different concentrations in mixed solutions of PPIX and the precursor CPIII as well as with a Polymethyl methacrylate test sample as additional reference. Results show that emitted fluorescence of the whole process can be measured independently for PPIX and its precursor, which can enable future developments on PPIX prediction from the dynamical changes of its precursor for subject-dependent drug-light interval assessment.
Collapse
|
18
|
Reis ER, Ferreira LP, Nicola EMD, Borissevitch I. Comparative study of phototoxicity of protoporphyrin IX synthetic and extracted from ssp Rattus novergicus albinus rats toward murine melanoma cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:601-609. [PMID: 29453611 DOI: 10.1007/s00249-018-1283-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/31/2017] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
Protoporphyrin IX (PpIX) is a precursor of heme synthesis and is known to be an active photosensitizer and precursor of photosensitizers applied in photodynamic therapy (PDT) and photodynamic diagnostics (PDD). On irradiation with visible light, PpIX undergoes phototransformation, producing photoproducts which may also be phototoxic and increase its efficacy. The mechanism of PpIX phototransformation depends on environmental characteristics and can be different in vitro and in vivo. In this paper, we present a comparative study of the photoactivity of synthetic PpIX and PpIX extracted from the Harderian gland of ssp Rattus novergicus albinus rats, along with their photoproducts toward murine B16F-10 melanoma cells. It was observed that when irradiated with visible light the endogenous PpIX demonstrates photocytotoxicity ten times higher than the synthetic PpIX. The photoproduct of endogenous PpIX also possesses phototoxicity, though slightly lower than that of PpIX itself. The rate of cell internalization for both endogenous PpIX and its photoproduct was eightfold greater than that obtained for the synthetic porphyrin. This difference might result from a complexation of the native PpIX with some amphiphilic compounds during its synthesis within the Harderian glands, which facilitates the cell uptake of PpIX. Fluorescence microscopy images show that both endogenous and synthetic porphyrins are localized after uptake predominantly in the mitochondrial region of cells.
Collapse
Affiliation(s)
- E R Reis
- Laser Laboratory of Medicine and Surgery Experimental Center, Faculty of Medical Sciences, State University of Campinas-UNICAMP, PO Box 6111, Campinas, SP, Cep 13083-970, Brazil.
| | - L P Ferreira
- Physics Department, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - E M D Nicola
- Laser Laboratory of Medicine and Surgery Experimental Center, Faculty of Medical Sciences, State University of Campinas-UNICAMP, PO Box 6111, Campinas, SP, Cep 13083-970, Brazil
| | - I Borissevitch
- Physics Department, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Brazil.,Institute of Physics, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
19
|
Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study. Lasers Med Sci 2017; 33:305-313. [PMID: 29139000 DOI: 10.1007/s10103-017-2369-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.
Collapse
|
20
|
Mostafa D, Moussa E, Alnouaem M. Evaluation of photodynamic therapy in treatment of oral erosive lichen planus in comparison with topically applied corticosteroids. Photodiagnosis Photodyn Ther 2017; 19:56-66. [PMID: 28450262 DOI: 10.1016/j.pdpdt.2017.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND The treatment of erosive oral lichen planus represents a therapeutic challenge. Despite numerous existing remedies, some of these treatments display disappointing results. Since it is a chronic disease with no current cure, the best treatment should target mainly the reduction of the duration and severity of symptomatic outbreaks with minimal side effects. To date, corticosteroids remain the first choice of treatment for oral lichen planus (OLP) patients. Although, topical corticosteroids have been found to be the safest and the most successful agents in the treatment of OLP, their prolonged use may cause mucosal problems and may lead to systemic complications. Recently, the use of photodynamic therapy has been well introduced in the treatment of oral diseases. Our clinical study was done to evaluate clinically the effect of photodynamic therapy mediated by methylene blue (MB-PDT) on signs and symptoms of erosive oral lichen planus (EOLP) lesions in comparison with the conventional topical corticosteroids (TC) treatment. The present work tried this recent modality of treatment to overcome the disadvantages of TC. MATERIAL AND METHODS Twenty patients with clinical and histological diagnosis of EOLP were selected from Oral Medicine and periodontology department in Faculty of Dentistry, Alexandria University in a randomized parallel study design. They were divided into two groups; group A (control group) involved ten patients who were instructed to use the conventional TC (kenakort A-orabase). While, group B (study group) contained ten patients who received PDT using diode laser 660nm mediated by methylene blue (MB). RESULTS Both groups presented statistically significant difference from baseline to follow up periods. But, the MB-PDT in treatment of EOLP showed more remarkable reduction in pain and lesion scores in comparison with corticosteroids treatment. CONCLUSION The results of this study allow the conclusion that the MB-PDT is considered to be a better treatment for OELP in comparison with TC because it is much more effective in pain reduction and lesion regression.
Collapse
Affiliation(s)
- Diana Mostafa
- Department of Preventive Dental Sciences, Al-Farabi Colleges, Riyadh, Saudi Arabia.
| | - Eglal Moussa
- Professor of Oral Medicine Department, Faculty of Dentistry, Alexandria University, Egypt
| | - Manal Alnouaem
- Professor of Oral Pathology Department, Faculty of Dentistry, Alexandria University, Egypt
| |
Collapse
|
21
|
Kim MM, Ghogare AA, Greer A, Zhu TC. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling. Phys Med Biol 2017; 62:R1-R48. [PMID: 28166056 PMCID: PMC5510640 DOI: 10.1088/1361-6560/62/5/r1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosensitizer photochemical parameters are crucial data in accurate dosimetry for photodynamic therapy (PDT) based on photochemical modeling. Progress has been made in the last few decades in determining the photochemical properties of commonly used photosensitizers (PS), but mostly in solution or in vitro. Recent developments allow for the estimation of some of these photochemical parameters in vivo. This review will cover the currently available in vivo photochemical properties of photosensitizers as well as the techniques for measuring those parameters. Furthermore, photochemical parameters that are independent of environmental factors or are universal for different photosensitizers will be examined. Most photosensitizers discussed in this review are of the type II (singlet oxygen) photooxidation category, although type I photosensitizers that involve other reactive oxygen species (ROS) will be discussed as well. The compilation of these parameters will be essential for ROS modeling of PDT.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States of America. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | | | | |
Collapse
|
22
|
Vinklárek IS, Scholz M, Dědic R, Hála J. Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions. Photochem Photobiol Sci 2017; 16:507-518. [DOI: 10.1039/c6pp00298f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PpIX DF show the significant role of SOFDF mechanism at high concentrations and at atmospheric partial pressure of oxygen and should be considered when developing diagnostic tools for clinical applications.
Collapse
Affiliation(s)
- Ivo S. Vinklárek
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Marek Scholz
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Roman Dědic
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| | - Jan Hála
- Charles University
- Faculty of Mathematics and Physics
- Department of Chemical Physics and Optics
- Prague
- The Czech Republic
| |
Collapse
|
23
|
Valdés PA, Roberts DW, Lu FK, Golby A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus 2016; 40:E8. [PMID: 26926066 DOI: 10.3171/2015.12.focus15550] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.
Collapse
Affiliation(s)
- Pablo A Valdés
- Departments of 1 Neurosurgery and.,Department of Neurosurgery, Harvard Medical School, Boston Children's Hospital, Boston
| | - David W Roberts
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Alexandra Golby
- Departments of 1 Neurosurgery and.,Radiology, and.,Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital
| |
Collapse
|
24
|
Effect of PpIX photoproducts formation on pO 2 measurement by time-resolved delayed fluorescence spectroscopy of PpIX in solution and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:49-56. [PMID: 27643984 DOI: 10.1016/j.jphotobiol.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022]
Abstract
The measurement of Protoporphyrin IX delayed fluorescence lifetime is a minimally invasive method for monitoring the levels of oxygen in cells and tissues. The excitation of Protoporphyrin IX during this measurement can lead to the formation of photoproducts in vitro and in vivo. The influence of their luminescence on the measured Protoporphyrin IX delayed fluorescence lifetimes was studied in solution and in vivo on the Chick's chorioallantoic membrane (CAM) model under various oxygen enriched air conditions (0mmHg, 37mmHg and 155mmHg). The presence of photoproducts disturbs such measurements since the delayed fluorescence emission of some of them spectrally overlaps with that of Protoporphyrin IX. One possible way to avoid this obstacle is to detect Protoporphyrin IX's delayed fluorescence lifetime in a very specific spectral range (620-640nm). Another possibility is to excite Protoporphyrin IX with light doses much lower than 10J/cm2, quite possibly as low as a fraction 1J/cm2 at 405nm. This leads to an increased accuracy of pO2 detection. Furthermore, this method allows combination of diagnosis and therapy in one step. This helps to improve detection systems and real-time identification of tissue respiration, which is tuned for the detection of PpIX luminescence and not its photoproducts.
Collapse
|
25
|
|
26
|
Wang P, Qin F, Zhang Z, Cao W. Quantitative monitoring of the level of singlet oxygen using luminescence spectra of phosphorescent photosensitizer. OPTICS EXPRESS 2015; 23:22991-3003. [PMID: 26368404 DOI: 10.1364/oe.23.022991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The lack of accurate and robust photodynamic therapy dosimetry is one of the obstacles for the widespread clinical applications. In this study, we propose a methodology to monitor the production of reactive oxygen species in real-time using the phosphorescent spectra of metalloporphyrin based photosensitizer. The correlation among the phosphorescence intensity, the (1)O(2) quantum yield (Φ(Δ)) and the oxygen concentration [O(2)] was established. A method of determining Φ(Δ) with different [O(2)] was studied based on comparative spectrophotometry, and the quantum yield Φ(Δ) of gadolinium metalated hematoporphyrin mono ether (Gd-HMME) in methanol was determined for different [O(2)]. With our method, both [O(2)] and Φ(Δ) could be monitored simultaneously using the phosphorescence spectra. The photochemical reactions in a liquid phantom composed of Gd-HMME and (1)O(2) capture 1,3-diphenylisobenzofuran (DPBF) were correlated using the kinetics equations of singlet oxygen generation and reaction. Using our method, the (1)O(2) quantum yield becomes observable and the (1)O(2) dose rate could be calculated by the product of photosensitizer absorption and its (1)O(2) quantum yield. Moreover, this (1)O(2) dosimetry could be observed by spectral imaging intuitively without complex analysis, and is especially suitable for precise customized photodynamic treatment.
Collapse
|
27
|
Wold JP, Skaret J, Dalsgaard TK. Assessment of the action spectrum for photooxidation in full fat bovine milk. Food Chem 2015; 179:68-75. [DOI: 10.1016/j.foodchem.2015.01.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
28
|
|
29
|
Huntosova V, Stroffekova K, Wagnieres G, Novotova M, Nichtova Z, Miskovsky P. Endosomes: guardians against [Ru(Phen)3]2+ photo-action in endothelial cells during in vivo pO2 detection? Metallomics 2014; 6:2279-89. [PMID: 25371090 DOI: 10.1039/c4mt00190g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phototoxicity is a side-effect of in vitro and in vivo oxygen partial pressure (pO2) detection by luminescence lifetime measurement methods. Dichlorotris(1,10-phenanthroline)-ruthenium(ii) hydrate ([Ru(Phen)3]2+) is a water soluble pO2 probe associated with low phototoxicity, which we investigated in vivo in the chick's chorioallantoic membrane (CAM) after intravenous or topical administration and in vitro in normal human coronary artery endothelial cells (HCAEC). In vivo, the level of intravenously injected [Ru(Phen)3]2+ decreases within several minutes, whereas the maximum of its biodistribution is observed during the first 2 h after topical application. Both routes are followed by convergence to almost identical "intra/extra-vascular" levels of [Ru(Phen)3]2+. In vitro, we observed that [Ru(Phen)3]2+ enters cells via endocytosis and is then redistributed. None of the studied conditions induced modification of lysosomal or mitochondrial membranes without illumination. No nuclear accumulation was observed. Without illumination [Ru(Phen)3]2+ induces changes in endoplasmic reticulum (ER)-to-Golgi transport. The phototoxic effect of [Ru(Phen)3]2+ leads to more marked ultrastructural changes than administration of [Ru(Phen)3]2+ only (in the dark). These could lead to disruption of Ca2+ homeostasis accompanied by mitochondrial changes or to changes in secretory pathways. In conclusion, we have demonstrated that the intravenous injection of [Ru(Phen)3]2+ into the CAM model mostly leads to extracellular localization of [Ru(Phen)3]2+, while its topical application induces intracellular localization. We have shown in vivo that [Ru(Phen)3]2+ induces minimal photo-damage after illumination with light doses larger by two orders of magnitude than those used for pO2 measurements. This low phototoxicity is due to the fact that [Ru(Phen)3]2+ enters endothelial cells via endocytosis and is then redistributed towards peroxisomes and other endosomal and secretory vesicles before it is eliminated via exocytosis. Cellular response to [Ru(Phen)3]2+, survival or death, depends on its intracellular concentration and oxidation-reduction properties.
Collapse
Affiliation(s)
- Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Sciences, University of PJ Safarik in Kosice, Jesenna 5, 041 54 Kosice, Slovakia.
| | | | | | | | | | | |
Collapse
|
30
|
Mallidi S, Anbil S, Lee S, Manstein D, Elrington S, Kositratna G, Schoenfeld D, Pogue B, Davis SJ, Hasan T. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:028001. [PMID: 24503639 PMCID: PMC3915169 DOI: 10.1117/1.jbo.19.2.028001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 05/19/2023]
Abstract
The need for patient-specific photodynamic therapy (PDT) in dermatologic and oncologic applications has triggered several studies that explore the utility of surrogate parameters as predictive reporters of treatment outcome. Although photosensitizer (PS) fluorescence, a widely used parameter, can be viewed as emission from several fluorescent states of the PS (e.g., minimally aggregated and monomeric), we suggest that singlet oxygen luminescence (SOL) indicates only the active PS component responsible for the PDT. Here, the ability of discrete PS fluorescence-based metrics (absolute and percent PS photobleaching and PS re-accumulation post-PDT) to predict the clinical phototoxic response (erythema) resulting from 5-aminolevulinic acid PDT was compared with discrete SOL (DSOL)-based metrics (DSOL counts pre-PDT and change in DSOL counts pre/post-PDT) in healthy human skin. Receiver operating characteristic curve (ROC) analyses demonstrated that absolute fluorescence photobleaching metric (AFPM) exhibited the highest area under the curve (AUC) of all tested parameters, including DSOL based metrics. The combination of dose-metrics did not yield better AUC than AFPM alone. Although sophisticated real-time SOL measurements may improve the clinical utility of SOL-based dosimetry, discrete PS fluorescence-based metrics are easy to implement, and our results suggest that AFPM may sufficiently predict the PDT outcomes and identify treatment nonresponders with high specificity in clinical contexts.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Sriram Anbil
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Seonkyung Lee
- Physical Sciences Inc., Andover, Massachusetts 01810
| | - Dieter Manstein
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - Stefan Elrington
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Garuna Kositratna
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - David Schoenfeld
- Massachusetts General Hospital, Biostatistics Department, Boston, Massachusetts 02114
| | - Brian Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | | | - Tayyaba Hasan
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Tayyaba Hasan, E-mail:
| |
Collapse
|
31
|
Weston MA, Patterson MS. Effect of1O2quencher depletion on the efficiency of photodynamic therapy. Photochem Photobiol Sci 2014; 13:112-21. [DOI: 10.1039/c3pp50258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Blázquez-Castro A, Breitenbach T, Ogilby PR. Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level. Photochem Photobiol Sci 2014; 13:1235-40. [DOI: 10.1039/c4pp00113c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two-photon excitation of a sensitizer with a focused laser beam was used to create a spatially-localized subcellular population of reactive oxygen species, ROS, stimulating proliferation in single HeLa cells.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Center for Oxygen Microscopy and Imaging
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus, Denmark
| | - Thomas Breitenbach
- Center for Oxygen Microscopy and Imaging
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus, Denmark
| | - Peter R. Ogilby
- Center for Oxygen Microscopy and Imaging
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus, Denmark
| |
Collapse
|
33
|
Weston MA, Patterson MS. Monitoring oxygen concentration during photodynamic therapy using prompt photosensitizer fluorescence. Phys Med Biol 2013; 58:7039-59. [PMID: 24051952 DOI: 10.1088/0031-9155/58/20/7039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel technique is described that uses either time-resolved or steady state prompt photosensitizer fluorescence to measure local oxygen concentration. Solution experiments conducted with Al(III) phthalocyanine chloride tetrasulfonic acid confirmed that the steady state fluorescence signal is dependent on the oxygen concentration and fluence rate. A relationship between prompt sensitizer fluorescence and sensitizer triplet quenching efficiency is derived which does not require knowledge of the Stern-Volmer constant. Similar relationships are also derived for sensitizer delayed fluorescence and phosphorescence. An explicit photodynamic therapy (PDT) dose metric that incorporates light dosimetry, sensitizer dosimetry, and triplet quenching efficiency is introduced. All components of this metric can be determined by optical measurements.
Collapse
Affiliation(s)
- Mark A Weston
- Juravinski Cancer Centre, Physics Research, 699 Concession St., Hamilton, Ontario, L8V 5C2, Canada
| | | |
Collapse
|
34
|
Gollmer A, Besostri F, Breitenbach T, Ogilby PR. Spatially resolved two-photon irradiation of an intracellular singlet oxygen photosensitizer: Correlating cell response to the site of localized irradiation. Free Radic Res 2013; 47:718-30. [DOI: 10.3109/10715762.2013.817670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Rizvi I, Anbil S, Alagic N, Celli J, Celli JP, Zheng LZ, Palanisami A, Glidden MD, Pogue BW, Hasan T. PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model. Photochem Photobiol 2013; 89:942-52. [PMID: 23442192 DOI: 10.1111/php.12065] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/20/2013] [Indexed: 12/26/2022]
Abstract
The successful implementation of photodynamic therapy (PDT)-based regimens depends on an improved understanding of the dosimetric and biological factors that govern therapeutic variability. Here, the kinetics of tumor destruction and regrowth are characterized by systematically varying benzoporphyrin derivative (BPD)-light combinations to achieve fixed PDT doses (M × J cm(-2)). Three endpoints were used to evaluate treatment response: (1) Viability evaluated every 24 h for 5 days post-PDT; (2) Photobleaching assessed immediately post-PDT; and (3) Caspase-3 activation determined 24 h post-PDT. The specific BPD-light parameters used to construct a given PDT dose significantly impact not only acute cytotoxic efficacy, but also treatment durability. For each dose, PDT with 0.25 μM BPD produces the most significant and sustained reduction in normalized viability compared to 1 and 10 μM BPD. Percent photobleaching correlates with normalized viability for a range of PDT doses achieved within BPD concentrations. To produce a cytotoxic response with 10 μM BPD that is comparable to 0.25 and 1 μM BPD a reduction in irradiance from 150 to 0.5 mW cm(-2) is required. Activated caspase-3 does not correlate with normalized viability. The parameter-dependent durability of outcomes within fixed PDT doses provides opportunities for treatment customization and improved therapeutic planning.
Collapse
Affiliation(s)
- Imran Rizvi
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Montcel B, Mahieu-Williame L, Armoiry X, Meyronet D, Guyotat J. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas. BIOMEDICAL OPTICS EXPRESS 2013; 4:548-58. [PMID: 23577290 PMCID: PMC3617717 DOI: 10.1364/boe.4.000548] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 05/22/2023]
Abstract
5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.
Collapse
Affiliation(s)
- Bruno Montcel
- CREATIS; Université de Lyon; Université Lyon1; CNRS UMR5220; INSERM U1044; INSA Lyon, Villeurbanne, France
| | - Laurent Mahieu-Williame
- CREATIS; Université de Lyon; Université Lyon1; CNRS UMR5220; INSERM U1044; INSA Lyon, Villeurbanne, France
| | - Xavier Armoiry
- Pharmacy Department/Cellule Innovation; Groupement Hospitalier Est; Hospices Civils de Lyon, Bron, France
| | - David Meyronet
- ONCOFLAM, Inserm U1028; CNRS UMR5292; Neuroscience Center, Université Lyon1, Lyon, F-69000, France
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, F-69003, France
| | - Jacques Guyotat
- Service de Neurochirurgie D; Hospices Civils de Lyon, Bron, France
| |
Collapse
|
37
|
Flynn BP, DSouza AV, Kanick SC, Davis SC, Pogue BW. White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:046008. [PMID: 23584445 PMCID: PMC3639786 DOI: 10.1117/1.jbo.18.4.046008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Subsurface fluorescence imaging is desirable for medical applications, including protoporphyrin-IX (PpIX)-based skin tumor diagnosis, surgical guidance, and dosimetry in photodynamic therapy. While tissue optical properties and heterogeneities make true subsurface fluorescence mapping an ill-posed problem, ultrasound-guided fluorescence-tomography (USFT) provides regional fluorescence mapping. Here USFT is implemented with spectroscopic decoupling of fluorescence signals (auto-fluorescence, PpIX, photoproducts), and white light spectroscopy-determined bulk optical properties. Segmented US images provide a priori spatial information for fluorescence reconstruction using region-based, diffuse FT. The method was tested in simulations, tissue homogeneous and inclusion phantoms, and an injected-inclusion animal model. Reconstructed fluorescence yield was linear with PpIX concentration, including the lowest concentration used, 0.025 μg/ml. White light spectroscopy informed optical properties, which improved fluorescence reconstruction accuracy compared to the use of fixed, literature-based optical properties, reduced reconstruction error and reconstructed fluorescence standard deviation by factors of 8.9 and 2.0, respectively. Recovered contrast-to-background error was 25% and 74% for inclusion phantoms without and with a 2-mm skin-like layer, respectively. Preliminary mouse-model imaging demonstrated system feasibility for subsurface fluorescence measurement in vivo. These data suggest that this implementation of USFT is capable of regional PpIX mapping in human skin tumors during photodynamic therapy, to be used in dosimetric evaluations.
Collapse
Affiliation(s)
- Brendan P. Flynn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Alisha V. DSouza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Stephen C. Kanick
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
- Address all correspondence to: Brian W. Pogue, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755. Tel: (603) 646-3861; E-mail:
| |
Collapse
|
38
|
Piffaretti F, Zellweger M, Kasraee B, Barge J, Salomon D, van den Bergh H, Wagnières G. Correlation between Protoporphyrin IX Fluorescence Intensity, Photobleaching, Pain and Clinical Outcome of Actinic Keratosis Treated by Photodynamic Therapy. Dermatology 2013; 227:214-25. [DOI: 10.1159/000353775] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
|
39
|
Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. J Neuropathol Exp Neurol 2012; 71:806-13. [PMID: 22878664 DOI: 10.1097/nen.0b013e31826775a1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In recent years, 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence guidance has been used as a surgical adjunct to improve the extent of resection of gliomas. Exogenous administration of ALA before surgery leads to the accumulation of red fluorescent PpIX in tumor tissue that the surgeon can visualize and thereby discriminate between normal and tumor tissue. Selective accumulation of PpIX has been linked to numerous factors, of which blood-brain barrier breakdown has been suggested to be a key factor. To test the hypothesis that PpIX concentration positively correlates with gadolinium (Gd) concentrations, we performed ex vivo measurements of PpIX and of Gd using inductively coupled plasma mass spectrometry, the latter as a quantitative biomarker of blood-brain barrier breakdown; this was corroborated with immunohistochemistry of microvascular density in surgical biopsies of patients undergoing fluorescence-guided surgery for glioma. We found positive correlations between PpIX concentration and Gd concentration (r = 0.58, p < 0.0001) and between PpIX concentration and microvascular density (r = 0.55, p < 0.0001), suggesting a significant, yet limited, association between blood-brain barrier breakdown and ALA-induced PpIX fluorescence. To our knowledge, this is the first time that Gd measurements by inductively coupled plasma mass spectrometry have been used in human gliomas.
Collapse
|
40
|
Jarvi MT, Patterson MS, Wilson BC. Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements. Biophys J 2012; 102:661-71. [PMID: 22325290 DOI: 10.1016/j.bpj.2011.12.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/30/2011] [Accepted: 12/01/2011] [Indexed: 11/27/2022] Open
Abstract
Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen ((1)O(2)) through interactions of photosensitizer, light, and oxygen ((3)O(2)). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial (1)O(2) dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes. Although the 1270 nm luminescence emission from (1)O(2) provides a direct and predictive PDT dose metric, it may not be clinically practical. We used (1)O(2) luminescence (or singlet oxygen luminescence (SOL)) as a gold-standard metric to evaluate potentially more clinically feasible dosimetry based on photosensitizer bleaching. We performed in vitro dose-response studies with simultaneous SOL and photosensitizer fluorescence measurements under various conditions, including variable (3)O(2), using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). The results show that SOL was always predictive of cytotoxicity and immune to PDT's complex dynamics, whereas photobleaching-based dosimetry failed under hypoxic conditions. However, we identified a previously unreported 613 nm emission from mTHPC that indicates critically low (3)O(2) levels and can be used to salvage photobleaching-based dosimetry. These studies improve our understanding of PDT processes, demonstrate that SOL is a valuable gold-standard dose metric, and show that when used judiciously, photobleaching can serve as a surrogate for (1)O(2) dose.
Collapse
Affiliation(s)
- Mark T Jarvi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
da Silva EFF, Pedersen BW, Breitenbach T, Toftegaard R, Kuimova MK, Arnaut LG, Ogilby PR. Irradiation- and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process. J Phys Chem B 2011; 116:445-61. [PMID: 22117929 DOI: 10.1021/jp206739y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Singlet oxygen, O(2)(a(1)Δ(g)), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian cells in a 1 cm cuvette. Data were recorded using hydrophilic and, independently, hydrophobic sensitizers. The microscope-based single cell results are consistent with a model in which the behavior of singlet oxygen reflects the environment in which it is produced; nevertheless, the data also indicate that a significant fraction of a given singlet oxygen population readily crosses barriers between phase-separated intracellular domains. The singlet oxygen phosphorescence signals reflect the effects of singlet-oxygen-mediated damage on cell components which, at the limit, mean that data were collected from dead cells and, in some cases, reflect contributions from both intracellular and extracellular populations of singlet oxygen. Despite the irradiation-induced changes in the environment to which singlet oxygen is exposed, the "inherent" intracellular lifetime of singlet oxygen does not appear to change appreciably as the cell progresses toward death. The results obtained from cell suspensions reflect key features that differentiate cell ensemble from single cell experiments (e.g., the ensemble experiment is more susceptible to the effects of sensitizer that has leaked out of the cell). Overall, the data clearly indicate that measuring the intracellular lifetime of singlet oxygen in a O(2)(a(1)Δ(g)) → O(2)(X(3)Σ(g)(-)) phosphorescence experiment is a challenging endeavor that involves working with a dynamic system that is perturbed during the measurement. The most important aspect of this study is that it establishes a useful framework through which future singlet oxygen data from cells can be interpreted.
Collapse
Affiliation(s)
- Elsa F F da Silva
- Center for Oxygen Microscopy and Imaging, Department of Chemistry, Aarhus University, Århus, Denmark
| | | | | | | | | | | | | |
Collapse
|
42
|
Valdés PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro Oncol 2011; 13:846-56. [PMID: 21798847 DOI: 10.1093/neuonc/nor086] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extent of resection is a major goal and prognostic factor in the treatment of gliomas. In this study we evaluate whether quantitative ex vivo tissue measurements of δ-aminolevulinic acid-induced protoporphyrin IX (PpIX) identify regions of increasing malignancy in low- and high-grade gliomas beyond the capabilities of current fluorescence imaging in patients undergoing fluorescence-guided resection (FGR). Surgical specimens were collected from 133 biopsies in 23 patients and processed for ex vivo neuropathological analysis: PpIX fluorimetry to measure PpIX concentrations (C(PpIX)) and Ki-67 immunohistochemistry to assess tissue proliferation. Samples displaying visible levels of fluorescence showed significantly higher levels of C(PpIX) and tissue proliferation. C(PpIX) was strongly correlated with histopathological score (nonparametric) and tissue proliferation (parametric), such that increasing levels of C(PpIX) were identified with regions of increasing malignancy. Furthermore, a large percentage of tumor-positive biopsy sites (∼40%) that were not visibly fluorescent under the operating microscope had levels of C(PpIX) greater than 0.1 µg/mL, which indicates that significant PpIX accumulation exists below the detection threshold of current fluorescence imaging. Although PpIX fluorescence is recognized as a visual biomarker for neurosurgical resection guidance, these data show that it is quantitatively related at the microscopic level to increasing malignancy in both low- and high-grade gliomas. This work suggests a need for improved PpIX fluorescence detection technologies to achieve better sensitivity and quantification of PpIX in tissue during surgery.
Collapse
Affiliation(s)
- Pablo A Valdés
- Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pogue BW, Davis SC, Leblond F, Mastanduno MA, Dehghani H, Paulsen KD. Implicit and explicit prior information in near-infrared spectral imaging: accuracy, quantification and diagnostic value. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4531-57. [PMID: 22006905 PMCID: PMC3263784 DOI: 10.1098/rsta.2011.0228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Near-infrared spectroscopy (NIRS) of tissue provides quantification of absorbers, scattering and luminescent agents in bulk tissue through the use of measurement data and assumptions. Prior knowledge can be critical about things such as (i) the tissue shape and/or structure, (ii) spectral constituents, (iii) limits on parameters, (iv) demographic or biomarker data, and (v) biophysical models of the temporal signal shapes. A general framework of NIRS imaging with prior information is presented, showing that prior information datasets could be incorporated at any step in the NIRS process, with the general workflow being: (i) data acquisition, (ii) pre-processing, (iii) forward model, (iv) inversion/reconstruction, (v) post-processing, and (vi) interpretation/diagnosis. Most of the development in NIRS has used ad hoc or empirical implementations of prior information such as pre-measured absorber or fluorophore spectra, or tissue shapes as estimated by additional imaging tools. A comprehensive analysis would examine what prior information maximizes the accuracy in recovery and value for medical diagnosis, when implemented at separate stages of the NIRS sequence. Individual applications of prior information can show increases in accuracy or improved ability to estimate biochemical features of tissue, while other approaches may not. Most beneficial inclusion of prior information has been in the inversion/reconstruction process, because it solves the mathematical intractability. However, it is not clear that this is always the most beneficial stage.
Collapse
Affiliation(s)
- Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Tyrrell J, Thorn C, Shore A, Campbell S, Curnow A. Oxygen saturation and perfusion changes during dermatological methylaminolaevulinate photodynamic therapy. Br J Dermatol 2011; 165:1323-31. [DOI: 10.1111/j.1365-2133.2011.10554.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Valdés PA, Kim A, Leblond F, Conde OM, Harris BT, Paulsen KD, Wilson BC, Roberts DW. Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:116007. [PMID: 22112112 PMCID: PMC3221714 DOI: 10.1117/1.3646916] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 05/19/2023]
Abstract
Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients.
Collapse
Affiliation(s)
- Pablo A Valdés
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Intawiwat N, Dahl AV, Pettersen MK, Skaret J, Rukke EO, Wold JP. Effect of different wavelength of light on the formation of photo-oxidation in Gouda-like cheese. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Weston MA, Patterson MS. Calculation of Singlet Oxygen Dose Using Explicit and Implicit Dose Metrics During Benzoporphyrin Derivative Monoacid Ring A (BPD-MA)-PDT In Vitro and Correlation with MLL Cell Survival. Photochem Photobiol 2011; 87:1129-37. [DOI: 10.1111/j.1751-1097.2011.00942.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Naghavi N, Miranbaygi MH, Sazgarnia A. Simulation of fractionated and continuous irradiation in photodynamic therapy: study the differences between photobleaching and singlet oxygen dose deposition. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:203-11. [DOI: 10.1007/s13246-011-0064-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 03/08/2011] [Indexed: 11/24/2022]
|
49
|
Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 2011; 115:11-7. [PMID: 21438658 DOI: 10.3171/2011.2.jns101451] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. METHODS The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board-approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. RESULTS A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeon's visual perception were classified correctly in an analysis of all tumors. CONCLUSIONS These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of intracranial tumors.
Collapse
Affiliation(s)
- Pablo A Valdés
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Croce AC, Santamaria G, De Simone U, Lucchini F, Freitas I, Bottiroli G. Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci 2011; 10:1189-95. [DOI: 10.1039/c0pp00375a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|