1
|
Yuan RN, Chen JJ, Chen Q, Zhang QW, Niu H, Wei R, Wei ZH, Li XN, Li SD. Observation of Aromatic B 13(CO) n+ ( n = 1-7) as Boron Carbonyl Analogs of Benzene. J Am Chem Soc 2024; 146:31464-31471. [PMID: 39508261 DOI: 10.1021/jacs.4c07680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
CO as a typical σ-donor is one of the most important ligands in chemistry, while planar B13+ is experimentally known as the most prominent magic-number boron cluster analogous to benzene. Joint gas-phase mass spectroscopy, collision-induced dissociation, and first-principles theory investigations performed herein indicate that B13+ reacts with CO successively under ambient conditions to form a series of boron carbonyl complexes B13(CO)n+ up to n = 7, presenting the largest boron carbonyl complexes observed to date with a quasi-planar B13+ core at the center coordinated by nCO ligands around it. Extensive theoretical analyses unveil both the chemisorption pathways and bonding patterns of these aromatic B13(CO)n+ monocations which, with three delocalized π bonds well-retained over the slightly wrinkled B13+ moiety, all prove to be boron carbonyl analogs of benzene tentatively named as boron carbonyl aromatics (BCAs). Their π-isovalent B12(CO)n (n = 1-6) complexes with a quasi-planar B12 coordination center are predicted to be stable neutral BCAs.
Collapse
Affiliation(s)
- Rui-Nan Yuan
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Jiao-Jiao Chen
- School of Mathematics and Physics, North China Electric Power University, Beijing 102206, P. R. China
| | - Qiang Chen
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Qin-Wei Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Hong Niu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Rui Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhi-Hong Wei
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Si-Dian Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
2
|
Huber ME, Ceman A, Weber P, Berg L, East NR, Riehn C, Heinze K, Meyer J. Gas-Phase Characterization of Redox-Active Manganese Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2642-2649. [PMID: 39082125 DOI: 10.1021/jasms.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Manganese complexes exhibit a rich redox chemistry, usually accompanied by structural reorganization during the redox processes often followed by ligand dissociation or association. The push-pull ligand 2,6-diguanidylpyridine (dgpy) stabilizes manganese in the oxidation states +II, +III, and + IV in the complexes [Mn(dgpy)2]n+ (n = 2-4) without change in the coordination sphere in the condensed phase [Heinze et al., Inorganic Chemistry, 2022, 61, 14616]. In the condensed phase, the manganese(IV) complex is a very strong oxidant. In the present work, we investigate the stability and redox activity of the MnIV complex and its counterion (PF6-) adducts in the gas phase, using two modified 3D Paul ion trap mass spectrometers. Six different cationic species of the type [Mnx(dgpy)2(PF6)y]n+ (x = II, III, IV, y = 0-3, n = 1-3) could be observed for the three oxidation states MnIV, MnIII, and MnII, of which one observed complex also contains a reduced dgpy ligand. MnII species showed the highest relative stability in collision induced dissociation and UV/vis photo dissociation experiments. The lowest stability is observed in the presence of one or more counterions, which correlates to a lower total charge n+. Gas phase UV/vis spectra show similar features as the condensed phase spectra only differing in relative band intensities. The strongly oxidizing MnIV complex reacts with triethylamine (NEt3) in the gas phase to give MnIII, while MnIII species show little reactivity toward NEt3.
Collapse
Affiliation(s)
- Maximilian E Huber
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Adela Ceman
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Philipp Weber
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Lisa Berg
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Nathan R East
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christoph Riehn
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Jennifer Meyer
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Rahrt R, Hein-Janke B, Amarasinghe KN, Shafique M, Feldt M, Guo L, Harvey JN, Pollice R, Koszinowski K, Mata RA. The Fe-MAN Challenge: Ferrates-Microkinetic Assessment of Numerical Quantum Chemistry. J Phys Chem A 2024; 128:4663-4673. [PMID: 38832568 PMCID: PMC11182345 DOI: 10.1021/acs.jpca.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Organometallic species, such as organoferrate ions, are prototypical nucleophiles prone to reacting with a wide range of electrophiles, including proton donors. In solution, the operation of dynamic equilibria and the simultaneous presence of several organometallic species severely complicate the analysis of these fundamentally important reactions. This can be overcome by gas-phase experiments on mass-selected ions, which allow for the determination of the microscopic reactivity of the target species. In this contribution, we focus on the reactivity of a series of trisarylferrate complexes toward 2,2,2-trifluoroethanol and 2,2-difluoroethanol. By means of mass-spectrometric measurements, we determined the experimental bimolecular rate constants kexp of the gas-phase protolysis reactions of the trisarylferrate anions FePh3- and FeMes3- with the aforementioned acids. Based on these experiments, we carried out a dual blind challenge, inviting theoretical groups to submit their best predictions for the activation barriers and/or theoretical rate constants ktheo. This provides a unique opportunity to evaluate different computational protocols under minimal bias and sets the stage for further benchmarking of quantum chemical methods and data-driven approaches in the future.
Collapse
Affiliation(s)
- Rene Rahrt
- Institut
für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| | - Björn Hein-Janke
- Institut
für Physikalische Chemie, Universität
Göttingen, Tammannstr.
6, Göttingen 37077, Germany
| | - Kosala N. Amarasinghe
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Muhammad Shafique
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Milica Feldt
- Leibniz
Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, Rostock 18059, Germany
| | - Luxuan Guo
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Jeremy N. Harvey
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Robert Pollice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The
Netherlands
| | - Konrad Koszinowski
- Institut
für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| | - Ricardo A. Mata
- Institut
für Physikalische Chemie, Universität
Göttingen, Tammannstr.
6, Göttingen 37077, Germany
| |
Collapse
|
4
|
Kraft F, Koszinowski K. Intramolecular Phenyl Transfer from a Boronate to Lithium in the Gas Phase Reveals Crucial Role of Solvation in Transmetalations. Chemistry 2024; 30:e202303653. [PMID: 38427965 DOI: 10.1002/chem.202303653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
In contrast to its behavior in solution, the adduct [(LiBr)(tBu)(Ph)Bpin]- (pin=pinacol) transfers its phenyl anion from boron to lithium upon fragmentation in the gas phase. Quantum chemical calculations predict this exceptional transmetalation to be exothermic relative to the separated reactants, [(tBu)(Ph)Bpin]- and LiBr, which we attribute to the high phenyl-anion affinity of the coordinatively unsaturated LiBr unit. The addition of a single molecule of tetrahydrofuran drastically reduces the phenyl-anion affinity of LiBr and thereby renders the transmetalation from boron to lithium endothermic. Thus, the probed system highlights the importance of solvation and ligation effects in transmetalations. For correctly predicting the direction, in which these reactions proceed, it is not sufficient to consider the electronegativities or partial charges of the involved metals or metalloids. Instead, the individual coordination states and their changes over the course of the reaction must be taken into account.
Collapse
Affiliation(s)
- Finn Kraft
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konrad Koszinowski
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Parker K, Bollis NE, Ryzhov V. Ion-molecule reactions of mass-selected ions. MASS SPECTROMETRY REVIEWS 2024; 43:47-89. [PMID: 36447431 DOI: 10.1002/mas.21819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With "soft" ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their "natural" oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.
Collapse
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas E Bollis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
6
|
Shafi Z, Gibson JK. Organolanthanide Complexes Containing Ln-CH 3 σ-bonds: Unexpectedly Similar Hydrolysis Rates for Trivalent and Tetravalent Organocerium. Inorg Chem 2023; 62:18399-18413. [PMID: 37910232 DOI: 10.1021/acs.inorgchem.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We report the gas-phase preparation, isolation, and reactivity of a series of organolanthanides featuring the Ln-CH3 bond. The complexes are formed by decarboxylating anionic lanthanide acetates to form trivalent [LnIII(CH3)(CH3CO2)3]- (Ln = La, Ce, Pr, Nd, Sm, Tb, Tm, Yb, Lu), divalent [EuII(CH3)(CH3CO2)2]-, and the first examples of tetravalent organocerium complexes featuring CeIV-Calkyl σ-bonds: [CeIV(O)(CH3)(CH3CO2)2]- and [CeIV(O)(CH3)(NO3)2]-. Attempts to isolate PrIV-CH3 and TbIV-CH3 were unsuccessful; however, fragmentation patterns reveal that the oxidation of LnIII to a LnIV-oxo-acetate complex is more favorable for Ln = Pr than for Ln = Tb. The rate of Ln-CH3 hydrolysis is a measure of bond stability, and it decreases from LaIII-CH3 to LuIII-CH3, with increasing steric crowding for smaller Ln stabilizing the harder Ln-CH3 bond against hydrolysis. [EuII(CH3)(CH3CO2)2]- engages in a much faster hydrolysis versus LnIII-CH3. The surprising observation of similar hydrolysis rates for CeIV-CH3 and CeIII-CH3 is discussed with respect to sterics, the oxo ligand, and bond covalency in σ-bonded organolanthanides.
Collapse
Affiliation(s)
- Ziad Shafi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Ma HZ, Canty AJ, O'Hair RAJ. Liberation of carbon monoxide from formic acid mediated by molybdenum oxyanions. Dalton Trans 2023; 52:15734-15746. [PMID: 37843527 DOI: 10.1039/d3dt01983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Multistage mass spectrometry experiments, isotope labelling and DFT calculations were used to explore whether selective decarbonylation of formic acid could be mediated by molybdate anions [(MoO3)x(OH)]- (x = 1 and 2) via a formal catalytic cycle involving two steps. In step 1, both molybdate anions undergo gas-phase ion-molecule reactions (IMR) with formic acid to produce the coordinated formates [(MoO3)x(O2CH)]- and H2O. In step 2, both coordinated formates [(MoO3)x(O2CH)]- undergo decarbonylation under collision-induced dissociation (CID) conditions to reform the molybdate anions [(MoO3)x(OH)]- (x = 1 and 2), thus closing a formal catalytic cycle. In the case of [MoO3(O2CH)]- an additional decarboxylation channel also occurs to yield [MoO3(H)]-, which is unreactive towards formic acid. The reaction between [Mo18O3(18OH)]- and formic acid gives rise to [Mo18O3(O2CH)]- highlighting that ligand substitution occurs without 18O/16O exchange between the coordinated 18OH ligand and HC16O2H. The reaction between [(MoO3)x(OD)]- (x = 1 and 2) and DCO2H initially produces [(MoO3)x(OH)]- (x = 1 and 2), indicating that D/H exchange occurs. DFT calculations were carried out to investigate the reaction mechanisms and energetics associated with both steps of the formal catalytic cycle and to better understand the competition between decarbonylation and decarboxylation, which is crucial in developing a selective catalyst. The CO and CO2 loss channels from the monomolybdate anion [MoO3(O2CH)]- have similar barrier heights which is in agreement with experimental results where both fragmentation channels are observed. In contrast, the dimolybdate anion is more selective, since the decarbonylation pathway of [(MoO3)2(O2CH)]- is both kinetically and thermodynamically favoured, which agrees with experimental observations where the CO loss channel is solely observed.
Collapse
Affiliation(s)
- Howard Z Ma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Munshi MU, Berden G, Oomens J. Infrared Ion Spectroscopic Characterization of the Gaseous [Co(15-crown-5)(H 2O)] 2+ Complex. J Phys Chem A 2023; 127:7256-7263. [PMID: 37595154 PMCID: PMC10476210 DOI: 10.1021/acs.jpca.3c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Indexed: 08/20/2023]
Abstract
We report fingerprint infrared multiple-photon dissociation spectra of the gaseous monohydrated coordination complex of cobalt(II) and the macrocycle 1,4,7,10,13-pentaoxacyclopentadecane (or 15-crown-5), [Co(15-crown-5)(H2O)]2+. The metal-ligand complexes are generated using electrospray ionization, and their IR action spectra are recorded in a quadrupole ion trap mass spectrometer using the free-electron laser FELIX. The electronic structure and chelation motif are derived from spectral comparison with computed vibrational spectra obtained at the density functional theory level. We focus here on the gas-phase structure, addressing the question of doublet versus quartet spin multiplicity and the chelation geometry. We conclude that the gas-phase complex adopts a quartet spin state, excluding contributions of doublet species, and that the chelation geometry is pseudo-octahedral with the six oxygen centers of 15-crown-5 and H2O coordinated to the metal ion. We also address the possible presence of higher-energy conformers based on the IR spectral evidence and calculated thermodynamics.
Collapse
Affiliation(s)
| | - Giel Berden
- FELIX
Laboratory, Radboud University, Institute
for Molecules and Materials, Toernooiveld 7, 6525
ED Nijmegen, The
Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Radboud University, Institute
for Molecules and Materials, Toernooiveld 7, 6525
ED Nijmegen, The
Netherlands
- University
of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ma HZ, Canty AJ, O'Hair RAJ. Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes. Dalton Trans 2023; 52:1574-1581. [PMID: 36656079 DOI: 10.1039/d2dt03764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A near thermal two-step catalytic cycle for the selective release of hydrogen from formic acid by mononuclear cuprate anions was revealed using multistage mass spectrometry experiments, deuterium labelling and DFT calculations. In gas-phase ion-molecule reactions, mononuclear copper hydride anions [(L)Cu(H)]- (where L = H-, O2CH-, BH4- and CN-) were found to react with formic acid (HCO2H) to yield [(L)Cu(O2CH)]- and H2. The copper formate anions [(L)Cu(O2CH)]- can decarboxylate via collision-induced dissociation (CID) to reform the copper hydride [(L)Cu(H)]-, thereby closing the two-step catalytic cycle. Analogous labelling experiments with d1-formic acid (DCO2H) reveal that the decarboxylation process also occurs spontaneously. A kinetic study was carried out to provide further insights into the species involved in this reaction. Energetics from density functional theory (DFT) calculations show that the key decarboxylation step can occur without CID, thus in support of experimental observations.
Collapse
Affiliation(s)
- Howard Z Ma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
10
|
Rahrt R, Koszinowski K. C versus O Protonation in Zincate Anions: A Simple Gas-Phase Model for the Surprising Kinetic Stability of Organometallics. Chemistry 2023; 29:e202203611. [PMID: 36692992 DOI: 10.1002/chem.202203611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
For better understanding the intrinsic reactivity of organozinc reagents, we have examined the protolysis of the isolated zincate ions Et3 Zn- , Et2 Zn(OH)- , and Et2 Zn(OH)2 Li- by 2,2,2-trifluoroethanol in the gas phase. The protonation of the hydroxy groups and the release of water proceed much more efficiently than the protonation of the ethyl groups and the liberation of ethane. Quantum-chemical computations and statistical-rate theory calculations fully reproduce the experimental findings and attribute the lower reactivity of the more basic ethyl moiety to higher intrinsic barriers, which override the thermodynamic preference for its protonation. Thus, our minimalistic gas-phase model provides evidence for the intrinsically low reactivity of organozinc reagents toward proton donors and helps to explain their remarkable kinetic stability against moisture and even protic media.
Collapse
Affiliation(s)
- Rene Rahrt
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
11
|
Holmsen MSM, Blons C, Amgoune A, Regnacq M, Lesage D, Sosa Carrizo ED, Lavedan P, Gimbert Y, Miqueu K, Bourissou D. Mechanism of Alkyne Hydroarylation Catalyzed by (P,C)-Cyclometalated Au(III) Complexes. J Am Chem Soc 2022; 144:22722-22733. [PMID: 36455211 DOI: 10.1021/jacs.2c10737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Over the last 5-10 years, gold(III) catalysis has developed rapidly. It often shows complementary if not unique features compared to gold(I) catalysis. While recent work has enabled major synthetic progress in terms of scope and efficiency, very little is yet known about the mechanism of Au(III)-catalyzed transformations and the relevant key intermediates have rarely been authenticated. Here, we report a detailed experimental/computational mechanistic study of the recently reported intermolecular hydroarylation of alkynes catalyzed by (P,C)-cyclometalated Au(III) complexes. The cationic (P,C)Au(OAcF)+ complex (OAcF = OCOCF3) was authenticated by mass spectrometry (MS) in the gas phase and multi-nuclear NMR spectroscopy in solution at low temperatures. According to density functional theory (DFT) calculations, the OAcF moiety is κ2-coordinated to gold in the ground state, but the corresponding κ1-forms featuring a vacant coordination site sit only slightly higher in energy. Side-on coordination of the alkyne to Au(III) then promotes nucleophilic addition of the arene. The energy profiles for the reaction between trimethoxybenzene (TMB) and diphenylacetylene (DPA) were computed by DFT. The activation barrier is significantly lower for the outer-sphere pathway than for the alternative inner-sphere mechanism involving C-H activation of the arene followed by migratory insertion. The π-complex of DPA was characterized by MS. An unprecedented σ-arene Au(III) complex with TMB was also authenticated both in the gas phase and in solution. The cationic complexes [(P,C)Au(OAcF)]+ and [(P,C)Au(OAcF)(σ-TMB)]+ stand as active species and off-cycle resting state during catalysis, respectively. This study provides a rational basis for the further development of Au(III) catalysis based on π-activation.
Collapse
Affiliation(s)
- Marte Sofie Martinsen Holmsen
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France.,Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1126 Blindern, N-0316 Oslo, Norway.,Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Charlie Blons
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Abderrahmane Amgoune
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Matthieu Regnacq
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 4 Place Jussieu, CC 229, 75252 Paris Cedex 05, France
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 4 Place Jussieu, CC 229, 75252 Paris Cedex 05, France
| | - E Daiann Sosa Carrizo
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - IPREM UMR 5254, Hélioparc. 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Pierre Lavedan
- Institut de Chimie de Toulouse - ICT, CNRS/Université de Toulouse, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Yves Gimbert
- Institut Parisien de Chimie Moléculaire - IPCM UMR 8232, CNRS/Sorbonne Université, 4 Place Jussieu, CC 229, 75252 Paris Cedex 05, France.,Département de Chimie Moléculaire - DCM UMR 5250, CNRS/Université Grenoble Alpes, UGA, 38000 Grenoble, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, E2S-UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux - IPREM UMR 5254, Hélioparc. 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée - LHFA UMR 5069, CNRS/Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| |
Collapse
|
12
|
Lülf S, Guo L, Parchomyk T, Harvey JN, Koszinowski K. Microscopic Reactivity of Phenylferrate Ions toward Organyl Halides. Chemistry 2022; 28:e202202030. [PMID: 35948515 PMCID: PMC9826238 DOI: 10.1002/chem.202202030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 01/11/2023]
Abstract
Despite its practical importance, organoiron chemistry remains poorly understood due to its mechanistic complexity. Here, we focus on the oxidative addition of organyl halides to phenylferrate anions in the gas phase. By mass-selecting individual phenylferrate anions, we can determine the effect of the oxidation state, the ligation, and the nuclearity of the iron complex on its reactions with a series of organyl halides RX. We find that Ph2 Fe(I)- and other low-valent ferrates are more reactive than Ph3 Fe(II)- ; Ph4 Fe(III)- is inert. The coordination of a PPh3 ligand or the presence of a second iron center lower the reactivity. Besides direct cross-coupling reactions resulting in the formation of RPh, we also observe the abstraction of halogen atoms. This reaction channel shows the readiness of organoiron species to undergo radical-type processes. Complementary DFT calculations afford further insight and rationalize the high reactivity of the Ph2 Fe(I)- complex by the exothermicity of the oxidative addition and the low barriers associated with this reaction step. At the same time, they point to the importance of changes of the spin state in the reactions of Ph3 Fe(II)- .
Collapse
Affiliation(s)
- Stefan Lülf
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Luxuan Guo
- Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001LeuvenBelgium
| | - Tobias Parchomyk
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
| | - Jeremy N. Harvey
- Department of ChemistryKU LeuvenCelestijnenlaan 200FB-3001LeuvenBelgium
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstr. 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryUniversität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
13
|
Pfrunder MC, Marshall DL, Poad BLJ, Stovell EG, Loomans BI, Blinco JP, Blanksby SJ, McMurtrie JC, Mullen KM. Exploring the Gas-Phase Formation and Chemical Reactivity of Highly Reduced M 8 L 6 Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202212710. [PMID: 36102176 PMCID: PMC9827999 DOI: 10.1002/anie.202212710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.
Collapse
Affiliation(s)
- Michael C. Pfrunder
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - David L. Marshall
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Berwyck L. J. Poad
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Ethan G. Stovell
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin I. Loomans
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - James P. Blinco
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Stephen J. Blanksby
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - John C. McMurtrie
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Kathleen M. Mullen
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| |
Collapse
|
14
|
Huang B, Wu H, Yang M, Luo Z. An integrated instrument of a tandem quadrupole mass spectrometer for cluster reaction and soft-landing deposition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113307. [PMID: 36461460 DOI: 10.1063/5.0112401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
We have developed an integrated instrument system of a multiple-ion laminar flow tube (MIFT) reactor combined with a tandem quadrupole mass spectrometer (TQMS) and soft-landing deposition (SD) apparatus. A customized water-cooling magnetron sputtering (MagS) source is designed, by which we are able to attain a highly efficient preparation of metal clusters of 1-30 atoms with tunable size distributions. Following the MagS source, a laminar flow tube reactor is designed, allowing for sufficient gas-collision reactions of the as-prepared metal clusters, which is advantageous for probing magic clusters and minimizing wall effects when probing the reaction dynamics of such clusters. The customized TQMS analyzer involves a conical octupole, two linear octupoles, a quadruple ion deflector, and a 19 mm quadruple mass analyzer, allowing to decrease the pressure stepwise (from ∼5 to ∼10-9 Torr), thus ensuring high sensitivity and high resolution of the mass spectrometry analysis. In addition, we have designed a dual SD apparatus for the mass-selected deposition of clusters and their reaction products. For the whole system, abbreviated as MagS-MIFT-TQMS-SD, we have performed a detailed ions-fly simulation and quantitatively estimated the ions transfer efficiency under vacuum conditions determined by real experiments. Taking these advantages, well-resolved Pbn +, Agn +, and Nbn + clusters have been produced, allowing for meticulous studies of cluster reactions under sufficient gas-phase collisions free of electric field trapping. Also, we have tested the efficiency of the dual SD.
Collapse
Affiliation(s)
- Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Ma HZ, Canty AJ, O'Hair RAJ. Electrospray Ionization Tandem Mass Spectrometry and DFT Survey of Copper(I) Ate Complexes Containing Coordinated Borohydride Anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1443-1452. [PMID: 35749300 DOI: 10.1021/jasms.2c00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper(I) borohydride ate complexes of the type Cat+[XCu(BH4)]- have been previously postulated as intermediates in the reactions of copper salts with borohydride. Negative ion electrospray ionization of an acetonitrile solution of copper(I) phenylacetylide with a 10-fold excess of sodium borohydride (NaBH4) revealed the formation of a diverse range of mononuclear, dinuclear and trinuclear cuprates with different numbers of BH4-, H- and CN- ligands, the latter likely being formed by abstraction of CN- from the acetonitrile solvent. Collision-induced dissociation was used to examine the fragmentation reactions of the following borohydride containing cuprates: [Cu(H)(BH4)]-, [Cu(BH4)2]-, [Cu(BH4)(CN)]-, [Cu2(H)(BH4)2]-, [Cu2(H)2(BH4)]-, [Cu2(BH4)2(CN)]-, [Cu2(H)(BH4)(CN)]-, [Cu3(H)(BH4)3]-, [Cu3(H)2(BH4)2]-, [Cu3(H)3(BH4)]-, [Cu3(BH4)2(CN)2]-, and [Cu3(H)(BH4)2(CN)]-. In all cases, BH3 loss is observed. For many of the dinuclear and trinuclear complexes cluster fragmentation by loss of CuH was also observed. In the case of [Cu2(H)2(BH4)]- and [Cu3(H)3(BH4)]-, loss of H2 was also observed. DFT calculations were used to explore potential structures of the various borohydride-containing cuprates and to predict the overall reaction energetics for the various fragmentation channels.
Collapse
Affiliation(s)
- Howard Z Ma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Chen X, Xiong Z, Yang M, Gong Y. Gas-phase synthesis and structure of thorium benzyne complexes. Chem Commun (Camb) 2022; 58:7018-7021. [PMID: 35638532 DOI: 10.1039/d2cc02057b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thorium benzyne complex (η2-C6H4)ThCl3- was synthesized in the gas phase through consecutive decarboxylation and dehydrochlorination from the (C6H5CO2)ThCl4- precursor upon collision-induced dissociation. Theoretical calculations suggest that (η2-C6H4)ThCl3- exhibits a metallacyclopropene structure with two polarized Th-Cbenzyne σ bonds. This procedure can be generally extended to the synthesis of a wide range of gas-phase thorium benzyne complexes.
Collapse
Affiliation(s)
- Xiuting Chen
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Zhixin Xiong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixian Yang
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
17
|
Yang Y, Spyrou B, White JM, Canty AJ, Donnelly PS, O’Hair RAJ. Palladium-Mediated CO 2 Extrusion Followed by Insertion of Allenes: Translating Mechanistic Studies to Develop a One-Pot Method for the Synthesis of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Yang
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Benjamin Spyrou
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Jonathan M. White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Allan J. Canty
- School of Physical Sciences─Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Paul S. Donnelly
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Massi L, Gal JF, Dunach E. Metal triflates as catalysts in organic synthesis: characterization of their Lewis acidity by mass spectrometry. Chempluschem 2022; 87:e202200037. [DOI: 10.1002/cplu.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lionel Massi
- Universite Cote d'Azur Institut de Chimie de Nice FRANCE
| | | | - Elisabet Dunach
- CNRS Institut de Chimie de Nice Parc ValroseFaculte Sciences 06108 Nice cedex 2 FRANCE
| |
Collapse
|
19
|
Fabijanczuk KC, Altalhi WAO, Aldajani AMO, Canty AJ, McLuckey SA, O'Hair RAJ. Ion-pairs as a gateway to transmetalation: aryl transfer from boron to nickel and magnesium. Dalton Trans 2022; 51:5699-5705. [PMID: 35323833 DOI: 10.1039/d2dt00746k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase ion-ion reactions between tris-1,10-phenantholine metal dications, [(phen)3M]2+ (where M = Ni and Mg), and the tetraphenylborate anion yield the ion-pairs {[(phen)3M]2+[BPh4]-}+. The ion-pairs undergo transmetalation upon loss of a phen ligand to give the organometallic complexes [(phen)2M(Ph)]+. DFT calculations, used to determine the energy barriers for the transmetalation reactions and the hydrolysis reactions, are entirely consistent with the experimental results.
Collapse
Affiliation(s)
| | - Weam A O Altalhi
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia. .,Department of Chemistry, Prince Sattam Bin Abdulaziz University, Hotat Bani Tamim, 16511 Saudi Arabia
| | - Asma M O Aldajani
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia. .,Department of Chemistry, College of Science, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Allan J Canty
- School of Physical Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
20
|
Joshi A, Killeen C, Thiessen T, Zijlstra HS, McIndoe JS. Handling considerations for the mass spectrometry of reactive organometallic compounds. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4807. [PMID: 35019209 DOI: 10.1002/jms.4807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Mass spectrometry is a powerful tool in disparate areas of chemistry, but its characteristic strength of sensitivity can be an Achilles heel when studying highly reactive organometallic compounds. A quantity of material suitable for mass spectrometric analysis often represents a tiny grain or a very dilute solution, and both are highly susceptible to decomposition due to ambient oxygen or moisture. This complexity can be frustrating to chemists and analysts alike: the former being unable to get spectra free of decomposition products and the latter often being poorly equipped to handle reactive samples. Fortunately, many creative solutions to such problems have been developed. This review summarizes some key methods for handling reactive samples in conjunction with the various ionization methods most frequently employed for their analysis.
Collapse
Affiliation(s)
- Anuj Joshi
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Charles Killeen
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Tanner Thiessen
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Harmen S Zijlstra
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - J Scott McIndoe
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
21
|
Abstract
We have applied a combination of tandem-mass spectrometry, quantum-chemical calculations, and statistical rate theory computations to examine the gas phase reactions between the trisarylzincate anions ArXZnPh2- (ArX = p-X-C6H4, X = NMe2, OMe, Me, H, F, and Cl) and 2,2,2-trifluoroethanol at T = 310 ± 20 K. The observed reactions bring about the protonation of one of the aryl anions, which is then released as the corresponding arene, while the formed alkoxide binds to the zinc center. The protonation is faster for the more electron-rich aryl groups and shows a linear Hammett plot if the rate constant for X = NMe2 is discarded from the analysis. Although the reactions are highly exothermic, they proceed only with relatively low efficiencies (0.1% ≤ φ ≤ 1.3%). According to the quantum-chemical calculations, this behavior can be ascribed to the reactions proceeding through a double-well potential with a tight transition structure located at the central barrier. Based on these potential energy surfaces, the statistical rate theory computations can reproduce the measured rate constants within factors of 2 to 8. A comparison of the protolysis of the trisarylzincates with that of the corresponding free aryl anions demonstrates how the coordination to the metal center not only stabilizes the carbanions energetically but also moderates their reactivity. Thus, our gas phase study contributes to a better understanding of the fundamentals of organometallic reactivity.
Collapse
Affiliation(s)
- Rene Rahrt
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, Göttingen 37077, Germany
| |
Collapse
|
22
|
Straßner A, Klein MP, Fries DV, Wiehn C, Huber ME, Mohrbach J, Dillinger S, Spelsberg D, Armentrout PB, Niedner-Schatteburg G. Kinetics of stepwise nitrogen adsorption by size-selected iron cluster cations: Evidence for size-dependent nitrogen phobia. J Chem Phys 2021; 155:244306. [PMID: 34972360 DOI: 10.1063/5.0064965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a study of stepwise cryogenic N2 adsorption on size-selected Fen + (n = 8-20) clusters within a hexapole collision cell held at T = 21-28 K. The stoichiometries of the observed adsorption limits and the kinetic fits of stepwise N2 uptake reveal cluster size-dependent variations that characterize four structural regions. Exploratory density functional theory studies support tentative structural assignment in terms of icosahedral, hexagonal antiprismatic, and closely packed structural motifs. There are three particularly noteworthy cases, Fe13 + with a peculiar metastable adsorption limit, Fe17 + with unprecedented nitrogen phobia (inefficient N2 adsorption), and Fe18 + with an isomeric mixture that undergoes relaxation upon considerable N2 uptake.
Collapse
Affiliation(s)
- Annika Straßner
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Matthias P Klein
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniela V Fries
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Christopher Wiehn
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maximilian E Huber
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jennifer Mohrbach
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sebastian Dillinger
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Dirk Spelsberg
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - P B Armentrout
- Department of Chemistry, Univerdstsity of Utah, Salt Lake City, Utah 84112, USA
| | - Gereon Niedner-Schatteburg
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
23
|
O'Hair RAJ. ORGANOMETALLIC GAS-PHASE ION CHEMISTRY AND CATALYSIS: INSIGHTS INTO THE USE OF METAL CATALYSTS TO PROMOTE SELECTIVITY IN THE REACTIONS OF CARBOXYLIC ACIDS AND THEIR DERIVATIVES. MASS SPECTROMETRY REVIEWS 2021; 40:782-810. [PMID: 32965774 DOI: 10.1002/mas.21654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Carboxylic acids are valuable organic substrates as they are widely available, easy to handle, and exhibit structural and functional variety. While they are used in many standard synthetic protocols, over the past two decades numerous studies have explored new modes of metal-mediated reactivity of carboxylic acids and their derivatives. Mass spectrometry-based studies can provide fundamental mechanistic insights into these new modes of reactivity. Here gas-phase models for the following catalytic transformations of carboxylic acids and their derivatives are reviewed: protodecarboxylation; dehydration; decarbonylation; reaction as coordinated bases in C-H bond activation; remote functionalization and decarboxylative C-C bond coupling. In each case the catalytic problem is defined, insights from gas-phase studies are highlighted, comparisons with condensed-phase systems are made and perspectives are reached. Finally, the potential role for mechanistic studies that integrate both gas- and condensed-phase studies is highlighted by recent studies on the discovery of new catalysts for the selective decomposition of formic acid and the invention of the new extrusion-insertion class of reactions for the synthesis of amides, thioamides, and amidines. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Richard A J O'Hair
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
24
|
Parker K, Weragoda GK, Mohr A, Canty AJ, O’Hair RAJ, Ryzhov V. Cracking and Dehydrogenation of Cyclohexane by [(phen)M(X)] + (M = Ni, Pd, Pt; X = H, CH 3) in the Gas Phase. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Geethika K. Weragoda
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Alyssa Mohr
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|
25
|
Joven‐Sancho D, Baya M, Falvello LR, Martín A, Orduna J, Menjón B. Stability of Ag III towards Halides in Organosilver(III) Complexes. Chemistry 2021; 27:12796-12806. [PMID: 34190377 PMCID: PMC8519087 DOI: 10.1002/chem.202101859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/09/2022]
Abstract
The involvement of silver in two-electron AgI /AgIII processes is currently emerging. However, the range of stability of the required and uncommon AgIII species is virtually unknown. Here, the stability of AgIII towards the whole set of halide ligands in the organosilver(III) complex frame [(CF3 )3 AgX]- (X=F, Cl, Br, I, At) is theoretically analyzed. The results obtained depend on a single factor: the nature of X. Even the softest and least electronegative halides (I and At) are found to form reasonably stable AgIII -X bonds. Our estimates were confirmed by experiment. The whole series of nonradiative halide complexes [PPh4 ][(CF3 )3 AgX] (X=F, Cl, Br, I) has been experimentally prepared and all its constituents have been isolated in pure form. The pseudohalides [PPh4 ][(CF3 )3 AgCN] and [PPh4 ][(CF3 )3 Ag(N3 )] have also been isolated, the latter being the first silver(III) azido complex. Except for the iodo compound, all the crystal and molecular structures have been established by single-crystal X-ray diffraction methods. The decomposition paths of the [(CF3 )3 AgX]- entities at the unimolecular level have been examined in the gas phase by multistage mass spectrometry (MSn ). The experimental detection of the two series of mixed complexes [CF3 AgX]- and [FAgX]- arising from the corresponding parent species [(CF3 )3 AgX]- demonstrate that the Ag-X bond is particularly robust. Our experimental observations are rationalized with the aid of theoretical methods. Smooth variation with the electronegativity of X is also observed in the thermolyses of bulk samples. The thermal stability in the solid state gradually decreases from X=F (145 °C, dec.) to X=I (78 °C, dec.) The experimentally established compatibility of AgIII with the heaviest halides is of particular relevance to silver-mediated or silver-catalyzed processes.
Collapse
Affiliation(s)
- Daniel Joven‐Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de ZaragozaC/ Pedro Cerbuna 12, 50009ZaragozaSpain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de ZaragozaC/ Pedro Cerbuna 12, 50009ZaragozaSpain
| | - Larry R. Falvello
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12, 50009ZaragozaSpain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de ZaragozaC/ Pedro Cerbuna 12, 50009ZaragozaSpain
| | - Jesús Orduna
- Instituto de Nanociencia y Materiales de Aragón (INMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12, 50009ZaragozaSpain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de ZaragozaC/ Pedro Cerbuna 12, 50009ZaragozaSpain
| |
Collapse
|
26
|
Auth T, Grabarics M, Schlangen M, Pagel K, Koszinowski K. Modular Ion Mobility Calibrants for Organometallic Anions Based on Tetraorganylborate Salts. Anal Chem 2021; 93:9797-9807. [PMID: 34227799 DOI: 10.1021/acs.analchem.1c01333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organometallics are widely used in catalysis and synthesis. Their analysis relies heavily on mass spectrometric methods, among which traveling-wave ion mobility spectrometry (TWIMS) has gained increasing importance. Collision cross sections (CCS) obtainable by TWIMS significantly aid the structural characterization of ions in the gas phase, but for organometallics, their accuracy has been limited by the lack of appropriate calibrants. Here, we propose tetraorganylborates and their alkali-metal bound oligomers [Mn-1(BR4)n]- (M = Li, Na, K, Rb, Cs; R = aryl, Et; n = 1-6) as calibrants for electrospray ionization (ESI) TWIMS. These species chemically resemble typical organometallics and readily form upon negative-ion mode ESI of solutions of alkali-metal tetraorganylborates. By combining different tetraorganylborate salts, we have generated a large number of anions in a modular manner and determined their CCS values by drift-tube ion mobility spectrometry (DTIMS) (DTCCSHe = 81-585, DTCCSN2 = 130-704 Å2). In proof-of-concept experiments, we then applied these DTCCS values to the calibration of a TWIMS instrument and analyzed phenylcuprate and argentate anions, [Lin-1MnPh2n]- and [MnPhn+1]- (M = Cu, Ag), as prototypical reactive organometallics. The TWCCSN2 values derived from TWIMS measurements are in excellent agreement with those determined by DTIMS (<2% relative difference), demonstrating the effectiveness of the proposed calibration scheme. Moreover, we used theoretical methods to predict the structures and CCS values of the anions considered. These predictions are in good agreement with the experimental results and give further insight into the trends governing the assembly of tetraorganylborate, cuprate, and argentate oligomers.
Collapse
Affiliation(s)
- Thomas Auth
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| | - Márkó Grabarics
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Maria Schlangen
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, Berlin 10623, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Molekülphysik, Faradayweg 4-6, Berlin 14195, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, Göttingen 37077, Germany
| |
Collapse
|
27
|
Stewart AWE, Ma HZ, Weragoda GK, Khairallah GN, Canty AJ, O’Hair RAJ. Dissecting Transmetalation Reactions at the Molecular Level: Role of the Coordinated Anion in Gas-Phase Models for the Transmetalation Step of the Hiyama Cross-Coupling Reaction. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam W. E. Stewart
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Howard Z. Ma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Geethika K. Weragoda
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - George N. Khairallah
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
- Accurate Mass Scientific P/L, P.O. Box 92, Keilor, Victoria 3036, Australia
| | - Allan J. Canty
- School of Natural Sciences − Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Van Stipdonk MJ, Perez EH, Metzler LJ, Bubas AR, Corcovilos T, Somogyi A. Destruction and reconstruction of UO 22+ using gas-phase reactions. Phys Chem Chem Phys 2021; 23:11844-11851. [PMID: 33988189 DOI: 10.1039/d1cp01520f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While the strong axial U[double bond, length as m-dash]O bonds confer high stability and inertness to UO22+, it has been shown that the axial oxo ligands can be eliminated or replaced in the gas-phase using collision-induced dissociation (CID) reactions. We report here tandem mass spectrometry experiments initiated with a gas-phase complex that includes UO22+ coordinated by a 2,6-difluorobenzoate ligand. After decarboxylation to form a difluorophenide coordinated uranyl ion, [UO2(C6F2H3)]+, CID causes elimination of CO, and then CO and C2H2 in sequential dissociation steps, to leave a reactive uranium fluoride ion, [UF2(C2H)]+. Reaction of [UF2(C2H)]+ with CH3OH creates [UF2(OCH3)]+, [UF(OCH3)2]+ and [UF(OCH3)2(CH3OH)]+. Cleavage of C-O bonds within these species results in the elimination of methyl cation (CH3+). Subsequent CID steps convert [UF(OCH3)2]+ to [UO2(F)]+ and similarly, [U(OCH3)3]+ to [UO2(OCH3)]+. Our experiments show removal of both uranyl oxo ligands in "top-down" CID reactions and replacement in "bottom-up" ion-molecule and dissociation steps.
Collapse
Affiliation(s)
- Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., 308 Mellon Hall, Pittsburgh, PA 15282, USA.
| | - Evan H Perez
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., 308 Mellon Hall, Pittsburgh, PA 15282, USA.
| | - Luke J Metzler
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., 308 Mellon Hall, Pittsburgh, PA 15282, USA.
| | - Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave., 308 Mellon Hall, Pittsburgh, PA 15282, USA.
| | | | - Arpad Somogyi
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Parker ML, Jian J, Gibson JK. Bond dissociation energies of low-valent lanthanide hydroxides: lower limits from ion-molecule reactions and comparisons with fluorides. Phys Chem Chem Phys 2021; 23:11314-11326. [PMID: 33973581 DOI: 10.1039/d1cp01362a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite that bond dissociation energies (BDEs) are among the most fundamental and relevant chemical properties they remain poorly characterized for most elementary lanthanide hydroxides and halides. Lanthanide ions Ln+ = Eu+, Tm+ and Yb+ are here shown to react with H2O to yield hydroxides LnOH+. Under low-energy conditions such reactions must be exothermic, which implies a lower limit of 499 kJ mol-1 for the Ln+-OH BDEs. This limit is significantly higher than previously reported for YbOH+ and is unexpectedly similar to the BDE for Yb+-F. To explain this apparent anomaly, it is considered feasible that the inefficient hydrolysis reactions observed here in a quadrupole ion trap mass spectrometer may actually be endothermic. More definitive and broad-based evaluations and comparisons require additional and more reliable BDEs and ionization energies for key lanthanide molecules, and/or energies for ligand-exchange reactions like LnF + OH ↔ LnOH + F. The hydroxide results motivated an assessment of currently available lanthanide monohalide BDEs. Among several intriguing relationships is the distinctively higher BDE for neutral LuF versus cationic LuF+, though quantifying this comparison awaits a more accurate value for the anomalously high ionization energy of LuF.
Collapse
Affiliation(s)
- Mariah L Parker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jiwen Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Mechanism of Deoxygenation and Cracking of Fatty Acids by Gas-Phase Cationic Complexes of Ni, Pd, and Pt. REACTIONS 2021. [DOI: 10.3390/reactions2020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deoxygenation and subsequent cracking of fatty acids are key steps in production of biodiesel fuels from renewable plant sources. Despite the fact that multiple catalysts, including those containing group 10 metals (Ni, Pd, and Pt), are employed for these purposes, little is known about the mechanisms by which they operate. In this work, we utilized tandem mass spectrometry experiments (MSn) to show that multiple types of fatty acids (saturated, mono-, and poly-unsaturated) can be catalytically deoxygenated and converted to smaller hydrocarbons using the ternary metal complexes [(phen)M(O2CR)]+], where phen = 1,10-phenanthroline and M = Ni, Pd, and Pt. The mechanistic description of deoxygenation/cracking processes builds on our recent works describing simple model systems for deoxygenation and cracking, where the latter comes from the ability of group 10 metal ions to undergo chain-walking with very low activation barriers. This article extends our previous work to a number of fatty acids commonly found in renewable plant sources. We found that in many unsaturated acids cracking can occur prior to deoxygenation and show that mechanisms involving group 10 metals differ from long-known charge-remote fragmentation reactions.
Collapse
|
31
|
Parker K, Weragoda GK, Canty AJ, Ryzhov V, O’Hair RAJ. Modeling Metal-Catalyzed Polyethylene Depolymerization: [(Phen)Pd(X)] + (X = H and CH 3) Catalyze the Decomposition of Hexane into a Mixture of Alkenes via a Complex Reaction Network. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Geethika K. Weragoda
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
32
|
Bathie F, Stewart AWE, Canty AJ, O'Hair RAJ. Dissecting transmetalation reactions at the molecular level: C-B versus F-B bond activation in phenyltrifluoroborate silver complexes. Dalton Trans 2021; 50:1496-1506. [PMID: 33439189 DOI: 10.1039/d0dt03309j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gas-phase unimolecular reactions of the silver(i) complex [Ag(PhBF3)2]-, formed via electrospray ionisation mass spectrometry of solutions containing the phenyltrifluoroborate salt and AgNO3, are examined. Upon collision induced dissociation (CID) three major reaction channels were observed for [Ag(PhBF3)2]-: Ph- group transfer via a transmetalation reaction to yield [PhAg(PhBF3)]-; F- transfer to produce [FAg(PhBF3)]-; and release of PhBF3-. The anionic silver product complexes of these reactions, [LAg(PhBF3)]- (where L = Ph and F), were then mass-selected and subjected to a further stage of CID. [PhAg(PhBF3)]- undergoes a Ph- group transfer via transmetalation to yield [Ph2Ag]- with loss of BF3. [FAg(PhBF3)]- solely fragments via loss of BF4-, a reaction that involves Ph- group transfer from B to Ag in conjunction with F- transfer from Ag to B. Density functional theory (DFT) calculations on the various competing pathways reveal that: (i) the overall endothermicities govern the experimentally observed product ion abundances; (ii) the Ph- group and F- transfer reactions proceed via late transition states; and (iii) formation of BF4- from [FAg(PhBF3)]- is a multistep reaction in which Ph- group transfer from B to Ag proceeds first to produce a [FAgPh(BF3)]- complex in which the BF3 moiety is initially weakly bound to the ipso-carbon of the phenyl group and then migrates across the linear [FAgPh]- moiety from C to Ag to F yielding [PhAg(BF4)]-, which can then dissociate via loss of PhAg.
Collapse
Affiliation(s)
- Fiona Bathie
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Adam W E Stewart
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Allan J Canty
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
33
|
Salvitti C, Chiarotto I, Pepi F, Troiani A. Charge-Tagged N-Heterocyclic Carbenes (NHCs): Revealing the Hidden Side of NHC-Catalysed Reactions through Electrospray Ionization Mass Spectrometry. Chempluschem 2020; 86:209-223. [PMID: 33252194 DOI: 10.1002/cplu.202000656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Indexed: 01/08/2023]
Abstract
N-heterocyclic carbenes (NHCs) are key intermediates in a variety of chemical reactions. Owing to their transient nature, the interception and characterization of these reactive species have always been challenging. Similarly, the study of reaction mechanisms in which carbenes act as catalysts is still an active research field. This Minireview describes the contribution of electrospray ionization mass spectrometry (ESI-MS) to the detection of charge-tagged NHCs resulting from the insertion of an ionic group into the molecular scaffold. The use of different mass spectrometric techniques, combined with the charge-tagging strategy, allowed clarification of the involvement of NHCs in archetypal reactions and the study of their intrinsic chemistry.
Collapse
Affiliation(s)
- Chiara Salvitti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| | - Isabella Chiarotto
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Castro Laurenziano 7, Rome, Italy
| | - Federico Pepi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| | - Anna Troiani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Rome, Italy
| |
Collapse
|
34
|
Parker K, Weragoda GK, Canty AJ, Polyzos A, Ryzhov V, O’Hair RAJ. A Two-Step Catalytic Cycle for the Acceptorless Dehydrogenation of Ethane by Group 10 Metal Complexes: Role of the Metal in Reactivity and Selectivity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Geethika K. Weragoda
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Anastasios Polyzos
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
- School of Chemistry, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
35
|
Maurice R, Dau PD, Hodée M, Renault E, Gibson JK. Controlling Cation‐Cation Interactions in Uranyl Coordination Dimers by Varying the Length of the Dicarboxylate Linker. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457 IN2P3/IMT Atlantique/Université de Nantes 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Phuong D. Dau
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| | | | | | - John K. Gibson
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720 Berkeley California United States
| |
Collapse
|
36
|
Bayat P, Lesage D, Cole RB. TUTORIAL: ION ACTIVATION IN TANDEM MASS SPECTROMETRY USING ULTRA-HIGH RESOLUTION INSTRUMENTATION. MASS SPECTROMETRY REVIEWS 2020; 39:680-702. [PMID: 32043643 DOI: 10.1002/mas.21623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/23/2020] [Indexed: 05/16/2023]
Abstract
Tandem mass spectrometry involves isolation of specific precursor ions and their subsequent excitation through collision-, photon-, or electron-mediated activation techniques in order to induce unimolecular dissociation leading to formation of fragment ions. These powerful ion activation techniques, typically used in between mass selection and mass analysis steps for structural elucidation, have not only found a wide variety of analytical applications in chemistry and biology, but they have also been used to study the fundamental properties of ions in the gas phase. In this tutorial paper, a brief overview is presented of the theories that have been used to describe the activation of ions and their subsequent unimolecular dissociation. Acronyms of the presented techniques include CID, PQD, HCD, SORI, SID, BIRD, IRMPD, UVPD, EPD, ECD, EDD, ETD, and EID. The fundamental principles of these techniques are discussed in the context of their implementation on ultra-high resolution tandem mass spectrometers. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Parisa Bayat
- Faculté des Sciences et Ingénierie, Sorbonne Université, IPCM (UMR 8232), F-75252, Paris, France
| | - Denis Lesage
- Faculté des Sciences et Ingénierie, Sorbonne Université, IPCM (UMR 8232), F-75252, Paris, France
| | - Richard B Cole
- Faculté des Sciences et Ingénierie, Sorbonne Université, IPCM (UMR 8232), F-75252, Paris, France
| |
Collapse
|
37
|
Koessler K, Scherer H, Butschke B. Phenyl-Group Exchange in Triphenylphosphine Mediated by Cationic Gold-Platinum Complexes-A Gas-Phase Mimetic Approach. Inorg Chem 2020; 59:9496-9510. [PMID: 32124602 DOI: 10.1021/acs.inorgchem.9b03622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PPh3 ligands in the heterodinuclear AuPt complex [(Ph3P)AuPt(PPh3)3][BAr4F] (BAr4F = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) exhibit a high fluxionality on the AuPt core. Fast intramolecular and slow intermolecular processes for the reversible exchange of the PPh3 ligands have been identified. When [(Ph3P)AuPt(PPh3)3][BAr4F] is heated in solution, the formation of benzene is observed, and a trinuclear, cationic AuPt2 complex is generated. This process is preceded by reversible phenyl-group exchange between the PPh3 ligands present in the reaction mixture as elucidated by deuterium-labeling studies. Both the elimination of benzene and the preceding reversible phenyl-group exchange have originally been observed in mass-spectrometry-based CID experiments (CID = Collision-Induced Dissociation). While CID of mass-selected [Au,Pt,(PPh3)4]+ results exclusively in the loss of PPh3, the resulting cation [Au,Pt,(PPh3)3]+ selectively eliminates C6H6. Thus, the dissociation of a PPh3 ligand from [Au,Pt,(PPh3)3]+ is energetically not able to compete with processes which result in C-H- and C-P-bond cleavage. In both media, the heterobimetallic nature of the employed complexes is the key for the observed reactivity. Only the intimate interplay of the gas-phase investigations, studies in solution, and thorough DFT computations allowed for the elucidation of the mechanistic details of the reactivity of [(Ph3P)AuPt(PPh3)3][BAr4F].
Collapse
Affiliation(s)
- Konstantin Koessler
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Harald Scherer
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| | - Burkhard Butschke
- Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
38
|
Puerta-Oteo R, Munarriz J, Polo V, Jiménez MV, Pérez-Torrente JJ. Carboxylate-Assisted β-(Z) Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by a Zwitterionic Bis-NHC Rhodium(III) Complex. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Raquel Puerta-Oteo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza−CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Julen Munarriz
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry & Biochemistry, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Víctor Polo
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza−CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza−CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
39
|
Mesias-Salazar A, Trofymchuk OS, Daniliuc CG, Antiñolo A, Carrillo-Hermosilla F, Nachtigall FM, Santos LS, Rojas RS. Copper (II) as catalyst for intramolecular cyclization and oxidation of (1,4-phenylene)bisguanidines to benzodiimidazole-diylidenes. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Vallet V, Gong Y, Saab M, Réal F, Gibson JK. Carbon–sulfur bond strength in methanesulfinate and benzenesulfinate ligands directs decomposition of Np(v) and Pu(v) coordination complexes. Dalton Trans 2020; 49:3293-3303. [DOI: 10.1039/d0dt00125b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adjusting intra-ligand bond strengths in actinide sulfinate complexes directs towards alternative cleavage of carbon–sulfur or actinide–sulfinate bonds.
Collapse
Affiliation(s)
- Valérie Vallet
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - Yu Gong
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Mohamad Saab
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - Florent Réal
- Univ. Lille
- CNRS
- UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules
- F-59000 Lille
- France
| | - John K. Gibson
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| |
Collapse
|
41
|
Auth T, Koszinowski K, O’Hair RAJ. Dissecting Transmetalation Reactions at the Molecular Level: Phenyl Transfer in Metal Borate Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Auth
- Insitut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Konrad Koszinowski
- Insitut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Richard A. J. O’Hair
- Insitut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Jian T, Dau PD, Shuh DK, Vasiliu M, Dixon DA, Peterson KA, Gibson JK. Activation of Water by Pentavalent Actinide Dioxide Cations: Characteristic Curium Revealed by a Reactivity Turn after Americium. Inorg Chem 2019; 58:14005-14014. [DOI: 10.1021/acs.inorgchem.9b01997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian Jian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phuong Diem Dau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David K. Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - David A. Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Cheisson T, Jian J, Su J, Eaton TM, Gau MR, Carroll PJ, Batista ER, Yang P, Gibson JK, Schelter EJ. Halide anion discrimination by a tripodal hydroxylamine ligand in gas and condensed phases. Phys Chem Chem Phys 2019; 21:19868-19878. [PMID: 31475264 DOI: 10.1039/c9cp03764k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electrospray ionization of solutions containing a tripodal hydroxylamine ligand, H3TriNOx ([((2-tBuNOH)C6H4CH2)3N]) denoted as L, and a hydrogen halide HX: HCl, HBr and/or HI, yielded gas-phase anion complexes [L(X)]- and [L(HX2)]-. Collision induced dissociation (CID) of mixed-halide complexes, [L(HXaXb)]-, indicated highest affinity for I- and lowest for Cl-. Structures and energetics computed by density functional theory are in accord with the CID results, and indicate that the gas-phase binding preference is a manifestation of differing stabilities of the HX molecules. A high halide affinity of [L(H)]+ in solution was also demonstrated, though with a highest preference for Cl- and lowest for I-, the opposite observation of, but not in conflict with, what is observed in gas phase. The results suggest a connection between gas- and condensed-phase chemistry and computational approaches, and shed light on the aggregation and anion recognition properties of hydroxylamine receptors.
Collapse
Affiliation(s)
- Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gas‐Phase Dehydrogenation of Alkanes: C−H Activation by a Graphene‐Supported Nickel Single‐Atom Catalyst Model. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Borrome M, Gronert S. Gas‐Phase Dehydrogenation of Alkanes: C−H Activation by a Graphene‐Supported Nickel Single‐Atom Catalyst Model. Angew Chem Int Ed Engl 2019; 58:14906-14910. [DOI: 10.1002/anie.201907487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/23/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Borrome
- Department of Chemistry Virginia Commonwealth University 1001 W. Main St. Richmond VA 23284 USA
| | - Scott Gronert
- Department of Chemistry and Biochemistry University of Wisconsin, Milwaukee 3210 N Cramer St Milwaukee WI 53211 USA
| |
Collapse
|
46
|
Brydon SC, Lim SF, Khairallah GN, Maître P, Loire E, da Silva G, O'Hair RAJ, White JM. Reactions of Thiiranium and Sulfonium Ions with Alkenes in the Gas Phase. J Org Chem 2019; 84:10076-10087. [PMID: 31328517 DOI: 10.1021/acs.joc.9b01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ion-molecule reactions between thiiranium ion 11 (m/z 213) and cyclohexene and cis-cyclooctene resulted in the formation of addition products 17a and 17b (m/z 295 and m/z 323, respectively) via an electrophilic addition pathway. Associative π-ligand exchange involving direct transfer of the PhS+ moiety, which has been observed for analogous seleniranium ions in the gas phase, did not occur despite previous solution experiments suggesting it as a valid pathway. DFT calculations at the M06-2X/def2-TZVP level of theory showed high barriers for the exchange reaction, while the addition pathway was more plausible. Further support for this pathway was provided with Hammett plots showing the rate of reaction to increase as the benzylic position of thiiranium ion derivatives became more electrophilic (ρ = +1.69; R2 = 0.974). The more reactive isomeric sulfonium ion 22 was discounted as being responsible for the observed reactivity with infrared spectroscopy and DFT calculations suggesting little possibility for isomerization. To further explore the differences in reactivity, thiiranium ion 25 and sulfonium ion 27 were formed independently, with the latter ion reacting over 260 times faster toward cis-cyclooctene than the thiiranium ion rationalized by calculations suggesting a barrierless pathway for sulfonium ion 27 to react with the cycloalkene.
Collapse
Affiliation(s)
| | | | - George N Khairallah
- Accurate Mass Scientific Pty Ltd , P.O. Box 92, Keilor , VIC 3036 , Australia
| | - Philippe Maître
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS , Université Paris Saclay , Orsay 91405 , France
| | - Estelle Loire
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS , Université Paris Saclay , Orsay 91405 , France
| | | | | | | |
Collapse
|
47
|
Piacentino EL, Parker K, Gilbert TM, O'Hair RAJ, Ryzhov V. Role of Ligand in the Selective Production of Hydrogen from Formic Acid Catalysed by the Mononuclear Cationic Zinc Complexes [(L)Zn(H)] + (L=tpy, phen, and bpy). Chemistry 2019; 25:9959-9966. [PMID: 31090119 DOI: 10.1002/chem.201901360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Indexed: 11/10/2022]
Abstract
A series of zinc-based catalysts was evaluated for their efficiency in decomposing formic acid into molecular hydrogen and carbon dioxide in the gas phase using quadrupole ion trap mass spectrometry experiments. The effectiveness of the catalysts in the series [(L)Zn(H)]+ , where L=2,2':6',2''-terpyridine (tpy), 1,10-phenanthroline (phen) or 2,2'-bipyrydine (bpy), was found to depend on the ligand used, which turned out to be fundamental in tuning the catalytic properties of the zinc complex. Specifically, [(tpy)Zn(H)]+ displayed the fastest reaction with formic acid proceeding by dehydrogenation to produce the zinc formate complex [(tpy)Zn(O2 CH)]+ and H2 . The catalysts [(L)Zn(H)]+ are reformed by decarboxylating the zinc formate complexes [(L)Zn(O2 CH)]+ by collision-induced dissociation, which is the only reaction channel for each of the ligands used. The decarboxylation reaction was found to be reversible, since the zinc hydride complexes [(L)Zn(H)]+ react with carbon dioxide yielding the zinc formate complex. This reaction was again substantially faster for L=tpy than L=phen or bpy. The energetics and mechanisms of these processes were modelled using several levels of density functional theory (DFT) calculations. Experimental results are fully supported by the computational predictions.
Collapse
Affiliation(s)
- Elettra L Piacentino
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Thomas M Gilbert
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
48
|
Baya M, Joven‐Sancho D, Alonso PJ, Orduna J, Menjón B. M−C Bond Homolysis in Coinage‐Metal [M(CF
3
)
4
]
−
Derivatives. Angew Chem Int Ed Engl 2019; 58:9954-9958. [DOI: 10.1002/anie.201903496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Daniel Joven‐Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús Orduna
- Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
49
|
Baya M, Joven‐Sancho D, Alonso PJ, Orduna J, Menjón B. M−C Bond Homolysis in Coinage‐Metal [M(CF
3
)
4
]
−
Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Daniel Joven‐Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Pablo J. Alonso
- Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Jesús Orduna
- Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH)CSIC-Universidad de Zaragoza C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
50
|
O'Hair RAJ, Mravak A, Krstić M, Bonačić‐Koutecký V. Models Facilitating the Design of a New Metal‐Organic Framework Catalyst for the Selective Decomposition of Formic Acid into Hydrogen and Carbon Dioxide. ChemCatChem 2019. [DOI: 10.1002/cctc.201900346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richard A. J. O'Hair
- School of Chemistry and BIO21 Molecular Science and Biotechnology Institute The University of Melbourne 30 Flemington Rd Parkville VIC 3010 Australia
| | - Antonija Mravak
- Center of Excellence for Science and Technology – Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Marjan Krstić
- Center of Excellence for Science and Technology – Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Vlasta Bonačić‐Koutecký
- Center of Excellence for Science and Technology – Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
- Chemistry Department Humboldt University of Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|