1
|
Pullmannová P, Čuříková-Kindlová BA, Ondrejčeková V, Kováčik A, Dvořáková K, Dulanská L, Georgii R, Majcher A, Maixner J, Kučerka N, Zbytovská J, Vávrová K. Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films. ACS OMEGA 2023; 8:422-435. [PMID: 36643519 PMCID: PMC9835644 DOI: 10.1021/acsomega.2c04924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Barbora A. Čuříková-Kindlová
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Veronika Ondrejčeková
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Kristýna Dvořáková
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Lucia Dulanská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Robert Georgii
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748Garching, Germany
| | - Adam Majcher
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Norbert Kučerka
- Faculty
of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32Bratislava, Slovakia
- Frank
Laboratory of Neutron Physics, Joint Institute
for Nuclear Research, Joliot-Curie 6, 141980Dubna, Russia
| | - Jarmila Zbytovská
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
- Faculty
of Chemical Technology, University of Chemistry
and Technology Prague, Technická 5, 166 28Prague, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Ventura AE, Santos TCB, Marquês JT, de Almeida RFM, Silva LC. Biophysical Analysis of Lipid Domains by Fluorescence Microscopy. Methods Mol Biol 2021; 2187:223-245. [PMID: 32770510 DOI: 10.1007/978-1-0716-0814-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The study of the structure and dynamics of membrane domains in vivo is a challenging task. However, major advances could be achieved through the application of microscopic and spectroscopic techniques coupled with the use of model membranes, where the relations between lipid composition and the type, amount and properties of the domains present can be quantitatively studied.This chapter provides protocols to study membrane organization and visualize membrane domains by fluorescence microscopy both in artificial membrane and living cell models of Gaucher Disease (GD ). We describe a bottom-up multiprobe methodology, which enables understanding how the specific lipid interactions established by glucosylceramide, the lipid that accumulates in GD , affect the biophysical properties of model and cell membranes, focusing on its ability to influence the formation, properties and organization of lipid raft domains. In this context, we address the preparation of (1) raft-mimicking giant unilamellar vesicles labeled with a combination of fluorophores that allow for the visualization and comprehensive characterization of those membrane domains and (2) human fibroblasts exhibiting GD phenotype to assess the biophysical properties of biological membrane in living cells using fluorescence microscopy.
Collapse
Affiliation(s)
- Ana E Ventura
- Research Institute for medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- CQFM-IN and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia C B Santos
- Research Institute for medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- CQFM-IN and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim T Marquês
- Centro de Química e Bioquímica, Centro de Química Estrutural, DQB, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Centro de Química Estrutural, DQB, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Liana C Silva
- Research Institute for medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Tassler S, Pawlowska D, Janich C, Giselbrecht J, Drescher S, Langner A, Wölk C, Brezesinski G. Lysine-based amino-functionalized lipids for gene transfection: 3D phase behaviour and transfection performance. Phys Chem Chem Phys 2019; 20:17393-17405. [PMID: 29911233 DOI: 10.1039/c8cp01922c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on previous work, the influence of the chain composition on the physical-chemical properties of five new transfection lipids (TH10, TT10, OH10, OT10 and OO10) containing the same lysine-based head group has been investigated in aqueous dispersions. For this purpose, the chain composition has been gradually varied from saturated tetradecyl (T, C14:0) and hexadecyl (H, C16:0) chains to longer but unsaturated oleyl (O, C18:1) chains with double bonds in the cis configuration. In this work, the lipid dispersions have been investigated in the absence and presence of the helper lipid DOPE and calf thymus DNA by small-angle and wide-angle X-ray scattering (SAXS/WAXS) supplemented by differential scanning calorimetry (DSC), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and Fourier-transform Raman spectroscopy (FTRS). Lamellar and inverted hexagonal mesophases have been observed in single-component systems. In the binary mixtures, the aggregation behaviour changes with an increasing amount of DOPE from lamellar to cubic. The lipid mixtures with DNA show a panoply of mesophases. Interestingly, TT10 and OT10 form cubic lipoplexes, whereas OO10 complexes the DNA sandwich-like between lipid bilayers in a lamellar lipoplex. Surprisingly, the latter is the most effective lipoplex.
Collapse
Affiliation(s)
- Stephanie Tassler
- Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int J Pharm 2018; 552:422-436. [DOI: 10.1016/j.ijpharm.2018.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
|
5
|
Marquês JT, Marinho HS, de Almeida RF. Sphingolipid hydroxylation in mammals, yeast and plants – An integrated view. Prog Lipid Res 2018; 71:18-42. [DOI: 10.1016/j.plipres.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
6
|
Neuhaus F, Mueller D, Tanasescu R, Stefaniu C, Zaffalon PL, Balog S, Ishikawa T, Reiter R, Brezesinski G, Zumbuehl A. Against the rules: pressure induced transition from high to reduced order. SOFT MATTER 2018; 14:3978-3986. [PMID: 29736539 DOI: 10.1039/c8sm00212f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Envisioning the next generation of drug delivery nanocontainers requires more in-depth information on the fundamental physical forces at play in bilayer membranes. In order to achieve this, we combine chemical synthesis with physical-chemical analytical methods and probe the relationship between a molecular structure and its biophysical properties. With the aim of increasing the number of hydrogen bond donors compared to natural phospholipids, a phospholipid compound bearing urea moieties has been synthesized. The new molecules form interdigitated bilayers in aqueous dispersions and self-assemble at soft interfaces in thin layers with distinctive structural order. At lower temperatures, endothermic and exothermic transitions are observed during compression. The LC1 phase is dominated by an intermolecular hydrogen bond network of the urea moieties leading to a very high chain tilt of 52°. During compression and at higher temperatures, presumably this hydrogen bond network is broken allowing a much lower chain tilt of 35°. The extremely different monolayer thicknesses violate the two-dimensional Clausius-Clapeyron equation.
Collapse
Affiliation(s)
- Frederik Neuhaus
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schmitt T, Lange S, Dobner B, Sonnenberger S, Hauß T, Neubert RHH. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1742-1749. [PMID: 28949139 DOI: 10.1021/acs.langmuir.7b01848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutron diffraction was used as a tool to investigate the lamellar as well as molecular nanostructure of ceramide-[NP]/ceramide-[AP]/cholesterol/lignoceric acid model systems with a nativelike 2:1 ratio and a 1:2 ratio to study the influence of the ceramide-[AP]. By using mixtures together with cholesterol and free fatty acids as well as a humidity and temperature chamber while measuring, natural conditions were simulated as closely as possible. Despite its simplicity, the system simulated the native stratum corneum lipid matrix fairly closely, showing a similar lamellar thickness with a repeat distance of 5.45 ± 0.1 nm and a similar arrangement with overlapping long C24 chains. Furthermore, despite the very minor chemical difference between ceramide-[NP] and ceramide-[AP], which is only a single OH group, it was possible to demonstrate substantial differences between the structural influence of the two ceramides. Ceramide-[AP] could be concluded to be arranged in such a way that its C24 chain in both ratios is somehow shorter than that of ceramide-[NP], not overlapping as much with the opposite lamellar leaflet. Furthermore, in the unnatural 1:2 ratio, the higher ceramide-[AP] content causes an increased tilt of the ceramide acyl chains. This leads to even less overlapping within the lamellar midplane, whereas the repeat distance stays the same as for the ceramide-[NP]-rich system. In this nativelike 2:1 ratio, the chains are arranged mostly straight, and the long C24 chains show a broad overlapping region in the lamellar midplane.
Collapse
Affiliation(s)
- Thomas Schmitt
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) , Weinbergweg 23, 06120 Halle/Saale, Germany
| | - Stefan Lange
- Institute of Medical Physics and Biophysics, University of Leipzig , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU) , Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU) , Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Thomas Hauß
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) , Weinbergweg 23, 06120 Halle/Saale, Germany
| |
Collapse
|
8
|
Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RFM. Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9410-9421. [PMID: 26262576 DOI: 10.1021/acs.langmuir.5b02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoceramide is the backbone of major sphingolipids in fungi and plants and is essential in several tissues of animal organisms, such as human skin. Its sphingoid base, phytosphingosine, differs from that usually found in mammals by the addition of a hydroxyl group to the 4-ene, which may be a crucial factor for the different properties of membrane microdomains among those organisms and tissues. Recently, sphingolipid hydroxylation in animal cells emerged as a key feature in several physiopathological processes. Hence, the study of the biophysical properties of phytosphingolipids is also relevant in that context since it helps us to understand the effects of sphingolipid hydroxylation. In this work, binary mixtures of N-stearoyl-phytoceramide (PhyCer) with palmitoyloleoylphosphatidylcholine (POPC) were studied. Steady-state and time-resolved fluorescence of membrane probes, X-ray diffraction, atomic force microscopy, and confocal microscopy were employed. As for other saturated ceramides, highly rigid gel domains start to form with just ∼5 mol % PhyCer at 24 °C. However, PhyCer gel-enriched domains in coexistence with POPC-enriched fluid present additional complexity since their properties (maximal order, shape, and thickness) change at specific POPC/PhyCer molar ratios, suggesting the formation of highly stable stoichiometric complexes with their own properties, distinct from both POPC and PhyCer. A POPC/PhyCer binary phase diagram, supported by the different experimental approaches employed, is proposed with complexes of 3:1 and 1:2 stoichiometries which are stable at least from ∼15 to ∼55 °C. Thus, it provides mechanisms for the in vivo formation of sphingolipid-enriched gel domains that may account for stable membrane compartments and diffusion barriers in eukaryotic cell membranes.
Collapse
Affiliation(s)
- Joaquim T Marquês
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - André M Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt University , Berlin, Germany
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Garidel P, Kaconis Y, Heinbockel L, Wulf M, Gerber S, Munk A, Vill V, Brandenburg K. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications. Open Biochem J 2015; 9:49-72. [PMID: 26464591 PMCID: PMC4598379 DOI: 10.2174/1874091x01509010049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/27/2014] [Accepted: 03/18/2014] [Indexed: 11/22/2022] Open
Abstract
Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance.
Collapse
Affiliation(s)
- Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle/Wittenberg, Mühlpforte 1, D-06108 Halle/Saale, Germany
| | - Yani Kaconis
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| | - Matthias Wulf
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Sven Gerber
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Ariane Munk
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Volkmar Vill
- Institut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee 1-40, D-23845 Borstel, Germany
| |
Collapse
|
10
|
Gupta R, Rai B. Molecular Dynamics Simulation Study of Skin Lipids: Effects of the Molar Ratio of Individual Components over a Wide Temperature Range. J Phys Chem B 2015; 119:11643-55. [DOI: 10.1021/acs.jpcb.5b02093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rakesh Gupta
- Tata Research Development
and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - Beena Rai
- Tata Research Development
and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune - 411013, India
| |
Collapse
|
11
|
Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC): impact of cultivation time. Eur J Pharm Sci 2013; 50:577-85. [PMID: 23770376 DOI: 10.1016/j.ejps.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/01/2013] [Accepted: 06/02/2013] [Indexed: 11/20/2022]
Abstract
Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21 days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14 days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21 days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.
Collapse
|
12
|
Guo S, Moore TC, Iacovella CR, Strickland LA, McCabe C. Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry. J Chem Theory Comput 2013; 9:5116-5126. [PMID: 24501589 DOI: 10.1021/ct400431e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment.
Collapse
Affiliation(s)
- Shan Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - L Anderson Strickland
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA ; Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
13
|
Janůšová B, Zbytovská J, Lorenc P, Vavrysová H, Palát K, Hrabálek A, Vávrová K. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:129-37. [PMID: 21167310 DOI: 10.1016/j.bbalip.2010.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 11/16/2022]
Abstract
Stratum corneum ceramides play an essential role in the barrier properties of skin. However, their structure-activity relationships are poorly understood. We investigated the effects of acyl chain length in the non-hydroxy acyl sphingosine type (NS) ceramides on the skin permeability and their thermotropic phase behavior. Neither the long- to medium-chain ceramides (8-24 C) nor free sphingosine produced any changes of the skin barrier function. In contrast, the short-chain ceramides decreased skin electrical impedance and increased skin permeability for two marker drugs, theophylline and indomethacin, with maxima in the 4-6C acyl ceramides. The thermotropic phase behavior of pure ceramides and model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesterol sulfate was studied by differential scanning calorimetry and infrared spectroscopy. Differences in thermotropic phase behavior of these lipids were found: those ceramides that had the greatest impact on the skin barrier properties displayed the lowest phase transitions and formed the least dense model stratum corneum lipid membranes at 32°C. In conclusion, the long hydrophobic chains in the NS-type ceramides are essential for maintaining the skin barrier function. However, this ability is not shared by their short-chain counterparts despite their having the same polar head structure and hydrogen bonding ability.
Collapse
Affiliation(s)
- Barbora Janůšová
- Department of Inorganic and Organic Chemistry, Charles University in Prague, Hradec Králové, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
14
|
Ryu KR, Lee B, Lee IA, Oh S, Kim DH. Anti-scratching Behavioral Effects of N-Stearoyl-phytosphingosine and 4-Hydroxysphinganine in Mice. Lipids 2010; 45:613-8. [DOI: 10.1007/s11745-010-3441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
|
15
|
The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys Chem 2010; 150:144-56. [PMID: 20457485 DOI: 10.1016/j.bpc.2010.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/06/2010] [Accepted: 03/08/2010] [Indexed: 11/19/2022]
Abstract
The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of ceramides, free palmitic acid and cholesterol may form gel-like domains delimitated by a liquid-crystalline phase boundary. The presented results support the microstructural arrangement of the stratum corneum lipids as suggested by the domain mosaic model.
Collapse
|
16
|
Gerber S, Wulf M, Milkereit G, Vill V, Howe J, Roessle M, Garidel P, Gutsmann T, Brandenburg K. Phase diagrams of monoacylated amide-linked disaccharide glycolipids. Chem Phys Lipids 2009; 158:118-30. [DOI: 10.1016/j.chemphyslip.2009.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/27/2022]
|
17
|
Vezzù K, Bertucco A, Lucien FP. Solid-liquid equilibria of multicomponent lipid mixtures under CO2pressure: Measurement and thermodynamic modeling. AIChE J 2008. [DOI: 10.1002/aic.11543] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Howe J, Garidel P, Wulf M, Gerber S, Milkereit G, Vill V, Roessle M, Brandenburg K. Structural polymorphism of hydrated monoacylated maltose glycolipids. Chem Phys Lipids 2008; 155:31-7. [PMID: 18671955 DOI: 10.1016/j.chemphyslip.2008.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
The physico-chemical properties of three fully hydrated monoacyl maltoside glycolipids were investigated with Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The different synthesized maltoside glycoconjugates vary in the length and saturation of the fatty acid moiety, whereas the constant head group region contains a beta-linked maltose with a OC(2)-NH spacer. The compounds with saturated acyl chains showed a complex pattern of temperature-dependent behaviour, regarding the adopted three-dimensional aggregate structure of the molecules and the main phase transition from the gel to liquid crystalline phase of the acyl chains. A substitution of the saturated acyl chain with an unsaturated acyl chain led to a complete change of the structural preferences, from a high ordered stacking of the bilayers to an unilamellar arrangement of completely disordered and fluid membranes. The presence of the NH group in the spacer, compared to the compounds lacking the NH group allows the formation of a hydrogen bonding network, which influences the observed phase properties. The results of these studies of the hydrated monoacylated maltose glycolipids are discussed in relation to the thermotropic phase properties of the pure compounds in the absence of water.
Collapse
Affiliation(s)
- Jörg Howe
- Forschungszentrum Borstel, LG Biophysik, Parkallee 10, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Garidel P, Boese M. Mid infrared microspectroscopic mapping and imaging: a bio-analytical tool for spatially and chemically resolved tissue characterization and evaluation of drug permeation within tissues. Microsc Res Tech 2007; 70:336-49. [PMID: 17262783 DOI: 10.1002/jemt.20416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The combination of the two classical biophysical methods, microscopy and infrared spectroscopy, has led to the development of a potent analytical technology termed infrared microspectroscopy. It combines high lateral resolution as obtained by microscopy and the chemical identification of the sample components by infrared spectroscopy. The two approaches mainly utilized in microspectroscopy are the mapping and the imaging techniques, which are introduced and presented. Especially, since the development of so called focal plane array detectors, which are implemented in the imaging methods (microspectroscopic imaging) has become a promising bio-analytical tool for ultrastructural medical diagnostics, due to the fact that the time required for analyzing a sample has been reduced dramatically and the lateral resolution improved to approximately 4 microm. Mid infrared microscopy allows a direct access to spatially resolved molecular and structural information of the analyzed area. The image contrast is generated on the basis of the tissue's intrinsic biochemical composition. The current investigation shows how mid infrared microspectroscopic mapping and imaging is used for the bio-analytical characterization and identification of specific molecular components of a tissue sample at high lateral resolution of a few microns (approaching the mid infrared diffraction limit). Furthermore, the potential of these methods for monitoring the penetration and distribution of drugs within biological tissues are presented. Due to the fact, that mid infrared microspectroscopy is a noninvasive, nondestructive technique for the analyzed sample, requiring no complicated and time consuming staining procedures, it is a convenient method for histological and pathological investigations, allowing the generation of a huge amount of biochemical information not yet available with other nonvibrational techniques. The strength of the presented microscopic technique is the fact that the infrared images are directly comparable to outcomes of classical histological staining procedures and can be interpreted by nonspectroscopists.
Collapse
Affiliation(s)
- Patrick Garidel
- Institute of Physical Chemistry, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany.
| | | |
Collapse
|
20
|
Ricci C, Phiriyavityopas P, Curum N, Chan KLA, Jickells S, Kazarian SG. Chemical imaging of latent fingerprint residues. APPLIED SPECTROSCOPY 2007; 61:514-22. [PMID: 17555621 DOI: 10.1366/000370207780807849] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In situ attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopic imaging has been used to obtain chemical images of fingerprints under controlled humidity and temperature. The distribution of lipid and amino acid components in the fingerprints from different donors left on the surface of the ZnSe crystal has been studied using an in situ FT-IR spectroscopic imaging approach under a controlled environment and studied as a function of time. Univariate and multivariate analyses were employed to analyze the spectroscopic dataset. Changes in the spectra of lipids with temperature and time have been detected. This information is needed to understand aging of the fingerprints. The ATR-FT-IR spectroscopic imaging offers a new and complementary means for studying the chemistry of fingerprints that are left pristine for further analysis. This study demonstrates the potential for visualizing the chemical changes of fingerprints for forensic applications by spectroscopic imaging.
Collapse
Affiliation(s)
- Camilla Ricci
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|