1
|
Góbi S, Keresztes B, Schneiker A, Tarczay G. Hydrogen-atom-assisted processes on thioacetamide in para-H 2 matrix - formation of thiol tautomers. Phys Chem Chem Phys 2024; 26:21589-21597. [PMID: 39083030 DOI: 10.1039/d4cp02400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
TA has been isolated in low-temperature para-H2 matrices and it has been exposed to H atoms. In accordance with previous experimental results, TA exclusively exists in its more stable thione tautomeric form in the freshly deposited matrix. However, upon H atom generation, the bands belonging to the precursor start decreasing with the simultaneous appearance of new bands. By comparing the position of these new peaks with earlier results obtained in para-H2, they can be undoubtedly attributed to the presence of the higher-energy thiol tautomeric forms of TA. No other products could be observed, except for NH3. Quantum-chemical computations have been invoked to understand the mechanism behind the observed thione-thiol tautomerization assisted by H atoms. Accordingly, tautomerization starts with barrierless H-atom addition on the S atom of the thione resulting in the formation of the intermediate 1-amino-1-mercapto-ethyl radical (H3C-Ċ(-SH)-NH2), which has been detected tentatively for the first time. The second step is a barrierless H-atom induced H-abstraction from the -NH2 moiety of the H3C-Ċ(-SH)-NH2 radical. A comprehensive mechanism for tautomerization is proposed based on the experimental and theoretical results. Although earlier studies showed the possibility of TA thione-thiol tautomerization in cryogenic matrices achieved by energetic UV irradiation, the present study points out that this can also take place through a barrierless pathway by simply exposing the TA molecules to H atoms. As such, this is the first evidence for the occurrence of such a reaction in a matrix-isolated environment. The current results also help us better understand the mystery behind thione-thiol tautomerization in low-temperature environments.
Collapse
Affiliation(s)
- Sándor Góbi
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary.
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary
| | - Barbara Keresztes
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary.
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary
| | - Anita Schneiker
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary.
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary
| | - György Tarczay
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary.
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary
- Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
2
|
Muddasser I, Nguyen AHM, Strom AI, Hardee AM, Pluid BG, Anderson DT. Infrared Spectroscopic Studies of Oxygen Atom Quantum Diffusion in Solid Parahydrogen. J Phys Chem A 2023; 127:2751-2764. [PMID: 36930520 DOI: 10.1021/acs.jpca.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The thermally induced diffusion of atomic species in noble gas matrices was studied extensively in the 1990s to investigate low-temperature solid-state reactions and to synthesize reactive intermediates. In contrast, much less is known about the diffusion of atomic species in quantum solids such as solid parahydrogen (p-H2). While hydrogen atoms were shown to diffuse in normal-hydrogen solids at 4.2 K as early as 1989, the diffusion of other atomic species in solid p-H2 has not been reported in the literature. The in situ photogeneration of atomic oxygen, by ArF laser irradiation of an O2-doped p-H2 solid at 193 nm, is studied here to investigate the diffusion of O(3P) atoms in a quantum solid. The O(3P) atom mobility is detected by measuring the kinetics of the O(3P) + O2 → O3 reaction after photolysis via infrared spectroscopy of the O3 reaction product. This reaction is barrierless and is thus assumed to be diffusion-controlled under these conditions such that the reaction rate constant can be used to estimate the oxygen atom diffusion coefficient. The O3 growth curves are well fit by single exponential expressions allowing the pseudo-first-order rate constant for the O(3P) + O2 → O3 reaction to be extracted. The reaction rates are affected strongly by the p-H2 crystal morphology and display a non-Arrhenius-type temperature dependence consistent with quantum diffusion of the O(3P) atom. The experimental results are compared to H(2S) atom reaction studies in p-H2, analogous studies in noble gas matrices, and laboratory studies of atomic diffusion in astronomical ices and surfaces.
Collapse
Affiliation(s)
- Ibrahim Muddasser
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Anh H M Nguyen
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Aaron I Strom
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Aaron M Hardee
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Bryan G Pluid
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
3
|
Haupa KA, Joshi PR, Lee Y. Hydrogen‐atom tunneling reactions in solid
para
‐hydrogen and their applications to astrochemistry. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karolina Anna Haupa
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Institute of Physical Chemistry Karlsruhe Institute of Technology Karlsruhe Germany
| | - Prasad Ramesh Joshi
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
4
|
Bazsó G, Csonka IP, Góbi S, Tarczay G. VIZSLA-Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:124104. [PMID: 34972403 DOI: 10.1063/5.0061762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
In this article, a new multi-functional high-vacuum astrophysical ice setup, VIZSLA (Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry), is introduced. The instrument allows for the investigation of astrophysical processes both in a low-temperature para-H2 matrix and in astrophysical analog ices. In the para-H2 matrix, the reaction of astrochemical molecules with H atoms and H+ ions can be studied effectively. For the investigation of astrophysical analog ices, the setup is equipped with various irradiation and particle sources: an electron gun for modeling cosmic rays, an H atom beam source, a microwave H atom lamp for generating H Lyman-α radiation, and a tunable (213-2800 nm) laser source. For analysis, an FT-IR (and a UV-visible) spectrometer and a quadrupole mass analyzer are available. The setup has two cryostats, offering novel features for analysis. Upon the so-called temperature-programmed desorption (TPD), the molecules, desorbing from the substrate of the first cryogenic head, can be mixed with Ar and can be deposited onto the substrate of the other cryogenic head. The efficiency of the redeposition was measured to be between 8% and 20% depending on the sample and the redeposition conditions. The well-resolved spectrum of the molecules isolated in an Ar matrix serves a unique opportunity to identify the desorbing products of a processed ice. Some examples are provided to show how the para-H2 matrix experiments and the TPD-matrix-isolation recondensation experiments can help understand astrophysically important chemical processes at low temperatures. It is also discussed how these experiments can complement the studies carried out by using similar astrophysical ice setups.
Collapse
Affiliation(s)
- Gábor Bazsó
- Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - István Pál Csonka
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| |
Collapse
|
5
|
Schneiker A, Góbi S, Joshi PR, Bazsó G, Lee YP, Tarczay G. Non-energetic, Low-Temperature Formation of C α-Glycyl Radical, a Potential Interstellar Precursor of Natural Amino Acids. J Phys Chem Lett 2021; 12:6744-6751. [PMID: 34264091 DOI: 10.1021/acs.jpclett.1c01306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction of H atoms with glycine was investigated at 3.1 K in para-H2, a quantum-solid host. The reaction was followed by IR spectroscopy, with the spectral analysis aided by quantum chemical computations. Comparison of the experimental IR spectrum with computed anharmonic frequencies and intensities proved that, regardless of the reactant glycine conformation, Cα-glycyl radical is formed in an H-atom-abstraction process with great selectivity. The product of the second H-atom abstraction, iminoacetic acid, was also observed in a smaller amount. The Cα-glycyl radical is sensitive to UV light and decomposes to iminoacetic acid and H atom upon 280 nm radiation. Since the reactive radical center is located on the Cα-atom, it is suggested that natural α-amino acids can be formed from glycine via the Cα-glycyl radical by non-energetic mechanisms in the solid phase of the interstellar medium.
Collapse
Affiliation(s)
- Anita Schneiker
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| | - Prasad Ramesh Joshi
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Gábor Bazsó
- Wigner Research Centre for Physics, P. O. Box 49, H-1525 Budapest, Hungary
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, H-1518 Budapest, Hungary
| |
Collapse
|
6
|
Tahsildaran F FS, Moore B, Bashiri T, Otani H, Djuricanin P, Malekfar R, Farahbod AH, Momose T. VUV photochemistry and nuclear spin conversion of water and water-orthohydrogen complexes in parahydrogen crystals at 4 K. Phys Chem Chem Phys 2021; 23:4094-4106. [PMID: 33586746 DOI: 10.1039/d0cp04523c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Samples of H2O, HDO, and D2O were isolated in solid parahydrogen (pH2) matrices and irradiated by vacuum ultraviolet (VUV) radiation at 147 nm. Fourier-Transform Infrared (FTIR) spectra showed a clear depletion of D2O and an enrichment of both HDO and H2O by 147 nm irradiation. These irradiation-dependent changes are attributed to the production of OH and/or OD radicals through photodissociations of H2O, HDO, and D2O. The radicals subsequently react with the hydrogen matrix, leading to the observed enrichment of H2O. No trace of isolated OH or OD was detected in the FTIR spectra, indicating that the OH/OD radicals react with the surrounding matrix hydrogen molecules via quantum tunneling within our experimental timescale. The observed temporal changes in concentrations, especially the increase of HDO concentration during VUV irradiation, can be interpreted by a model with a rapid conversion from orthohydrogen (oH2) to pH2 in water-oH2 complexes upon VUV photodissociation, indicating either the acceleration of the nuclear spin conversion (NSC) of H2 due to the magnetic moment of the intermediate OH/OD radical, or the preferential reaction of the OH/OD radical with a nearby oH2 molecule over other pH2 molecules. We have also identified and quantified an anomalously slow NSC of H2O and D2O complexed with oH2 in solid pH2.
Collapse
Affiliation(s)
- Fatemeh S Tahsildaran F
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. and Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Brendan Moore
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Termeh Bashiri
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Hatsuki Otani
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Pavle Djuricanin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Rasoul Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Farahbod
- Research School of Plasma Physics and Nuclear Fusion, Research Institute of Nuclear Sciences and Technologies, AEOI, Tehran, Iran
| | - Takamasa Momose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
7
|
Mutunga FM, Olenyik KM, Strom AI, Anderson DT. Hydrogen atom quantum diffusion in solid parahydrogen: The H + N 2O → cis-HNNO → trans-HNNO reaction. J Chem Phys 2021; 154:014302. [PMID: 33412886 DOI: 10.1063/5.0028853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The diffusion and reactivity of hydrogen atoms in solid parahydrogen at temperatures between 1.5 K and 4.3 K are investigated by high-resolution infrared spectroscopy. Hydrogen atoms are produced within solid parahydrogen as the by-products of the 193 nm in situ photolysis of N2O, which induces a two-step tunneling reaction, H + N2O → cis-HNNO → trans-HNNO. The second-order rate constant for the first step to form cis-HNNO is found to be inversely proportional to the N2O concentration after photolysis, indicating that the hydrogen atoms move through solid parahydrogen via quantum diffusion. This reaction only readily occurs at temperatures below 2.8 K, not due to an increased rate constant for the first reaction step at low temperatures but rather due to an increased selectivity to the reaction. The rate constant for the second step of the reaction mechanism involving unimolecular isomerization is shown to be independent of the N2O concentration as expected. The inverse concentration dependence of the rate constant for the reaction step that involves the hydrogen atom demonstrates clearly that quantum diffusion influences the reactivity of the hydrogen atoms in solid parahydrogen, which does not have an analogy in classical reaction kinetics.
Collapse
Affiliation(s)
| | - Kelly M Olenyik
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Aaron I Strom
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | - David T Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| |
Collapse
|
8
|
Amicangelo JC, Lee YP. Hydrogenation of pyrrole: Infrared spectra of the 2,3-dihydropyrrol-2-yl and 2,3-dihydropyrrol-3-yl radicals isolated in solid para-hydrogen. J Chem Phys 2020; 153:164302. [DOI: 10.1063/5.0024495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jay C. Amicangelo
- School of Science, Penn State Erie, The Behrend College, 4205 College Drive, Erie, Pennsylvania 16563, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
9
|
On the correlation of the abundances of HNCO and NH2CHO: Advantages of solid para-H2 to study astrochemical H-atom addition and abstraction reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s1743921319008378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIn dense interstellar clouds that are shielded from high-energy radiation (e.g., UV photons or cosmic rays), H-atom addition and abstraction reactions that take place on grain surfaces play principal roles in the synthesis or decomposition of complex organic molecules (COMs). These reactions are extensively investigated with laboratory experiments by bombarding astrophysical analogue ices with a beam of low-temperature H atoms. Here we demonstrate that, although 2-4 K solid para-H2 does not represent a typical environment of the surface of interstellar grains, para-H2 matrix isolation combined with IR spectroscopy is a complementary tool to sensitively detect astrochemical hydrogenation and dehydrogenation processes.
Collapse
|
10
|
Tsuge M, Chen YH, Lee YP. Infrared Spectra of Monohydrogenated Aniline, ortho- and para-HC 6H 5NH 2, Generated in Solid para-Hydrogen. J Phys Chem A 2020; 124:7500-7510. [PMID: 32808769 DOI: 10.1021/acs.jpca.0c06079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isomers of monohydrogenated aniline (HC6H5NH2) are regarded as important intermediates in reduction reactions of aniline, but their spectral identification has been limited to electron paramagnetic resonance in an adamantane matrix. We report here infrared (IR) spectra of two least-energy isomers of HC6H5NH2, produced on electron bombardment during the deposition of a matrix of aniline and para-hydrogen at 3.2 K. The intensities of IR lines of HC6H5NH2 increased during maintenance of the electron-bombarded matrix in darkness for a prolonged period because of the neutralization of protonated aniline, H+C6H5NH2, by trapped electrons and further reactions between aniline and the unreacted hydrogen atoms that were produced during electron bombardment. The observed lines were grouped according to their behaviors on secondary photolysis with light at 520, 465, and 375 nm. On comparison of experimental spectra with quantum chemically predicted spectra for four possible isomers of HC6H5NH2, lines in one group were assigned to the most stable ortho-HC6H5NH2 and those in the other group were assigned to the secondmost stable para-HC6H5NH2. Their photolytic behaviors at varied wavelengths are consistent with predicted ultraviolet absorption bands. The mechanisms of formation of these isomers are discussed according to semiquantitative analysis.
Collapse
Affiliation(s)
- Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Low Temperature Sciences, Hokkaido University, Sapporo 060-0819, Japan
| | - Yu-Hsuan Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
11
|
|
12
|
Haupa KA, Ong WS, Lee YP. Hydrogen abstraction in astrochemistry: formation of ˙CH2CONH2 in the reaction of H atom with acetamide (CH3CONH2) and photolysis of ˙CH2CONH2 to form ketene (CH2CO) in solid para-hydrogen. Phys Chem Chem Phys 2020; 22:6192-6201. [DOI: 10.1039/c9cp06279c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amide bond of acetamide is unaffected by hydrogen exposure, but the hydrogen abstraction on its methyl site activates this molecule to react with other species to extend its size as a first step to form interstellar complex organic molecules.
Collapse
Affiliation(s)
- Karolina Anna Haupa
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Wei-Siong Ong
- Department of Chemical Science
- Faculty of Science
- Universiti Tunku Abdul Rahman
- Jalan University
- 31900 Kampar
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| |
Collapse
|
13
|
Sundararajan P, Tsuge M, Baba M, Sakurai H, Lee YP. Infrared spectrum of hydrogenated corannulene rim-HC 20H 10 isolated in solid para-hydrogen. J Chem Phys 2019; 151:044304. [PMID: 31370543 DOI: 10.1063/1.5111169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydrogenated polycyclic aromatic hydrocarbons have been proposed to be carriers of the interstellar unidentified infrared (UIR) emission bands and the catalysts for formation of H2; spectral characterizations of these species are hence important. We report the infrared (IR) spectrum of mono-hydrogenated corannulene (HC20H10) in solid para-hydrogen (p-H2). In experiments of electron bombardment of a mixture of corannulene and p-H2 during deposition of a matrix at 3.2 K, two groups of spectral lines increased with time during maintenance of the matrix in darkness after deposition. Lines in one group were assigned to the most stable isomer of hydrogenated corannulene, rim-HC20H10, according to the expected chemistry and a comparison with scaled harmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++G(2d,2p) method. The lines in the other group do not agree with predicted spectra of other HC20H10 isomers and remain unassigned. Alternative hydrogenation was achieved with H atoms produced photochemically in the infrared-induced reaction Cl + H2 (v = 1) → H + HCl in a Cl2/C20H10/p-H2 matrix. With this method, only lines attributable to rim-HC20H10 were observed, indicating that hydrogenation via a quantum-mechanical tunneling mechanism produces preferably the least-energy rim-HC20H10 regardless of similar barrier heights and widths for the formation of rim-HC20H10 and hub-HC20H10. The mechanisms of formation in both experiments are discussed. The bands near 3.3 and 3.4 µm of rim-HC20H10 agree with the UIR emission bands in position and relative intensity, but other bands do not match satisfactorily with the UIR bands.
Collapse
Affiliation(s)
- Pavithraa Sundararajan
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Masaaki Baba
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Haupa KA, Tarczay G, Lee YP. Hydrogen Abstraction/Addition Tunneling Reactions Elucidate the Interstellar H2NCHO/HNCO Ratio and H2 Formation. J Am Chem Soc 2019; 141:11614-11620. [DOI: 10.1021/jacs.9b04491] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - György Tarczay
- HAS-ELTE Laboratory Astrochemistry Lendület Research Group, Pázmány P. S. 1/a, Budapest 1117, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. S. 1/a, Budapest 1117, Hungary
| | - Yuan-Pern Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Amicangelo JC, Lee YP. Infrared spectra of the 1,1-dimethylallyl and 1,2-dimethylallyl radicals isolated in solidpara-hydrogen. J Chem Phys 2018; 149:204304. [DOI: 10.1063/1.5054653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jay C. Amicangelo
- School of Science, Penn State Erie, The Behrend College, 4205 College Drive, Erie, Pennsylvania 16563, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Mendez‐Vega E, Maehara M, Raut AH, Mieres‐Perez J, Tsuge M, Lee Y, Sander W. Activation of Molecular Hydrogen by Arylcarbenes. Chemistry 2018; 24:18801-18808. [DOI: 10.1002/chem.201804657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Enrique Mendez‐Vega
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Mika Maehara
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Akshay Hemant Raut
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Joel Mieres‐Perez
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| | - Masashi Tsuge
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University, Hsinchu 30010 (Taiwan)Institute of Atomic and Molecular SciencesAcademia Sinica Taipei 10617 Taiwan
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
17
|
Amicangelo JC, Lee YP. Infrared Spectra of the 1-Chloromethyl-1-methylallyl and 1-Chloromethyl-2-methylallyl Radicals Isolated in Solid para-Hydrogen. J Phys Chem A 2017; 121:8771-8784. [DOI: 10.1021/acs.jpca.7b07922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jay C. Amicangelo
- School
of Science, Penn State Erie, The Behrend College, 4205 College
Drive, Erie, Pennsylvania 16563, United States
| | - Yuan-Pern Lee
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Haupa KA, Johnson BA, Sibert EL, Lee YP. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen. J Chem Phys 2017; 147:154305. [DOI: 10.1063/1.4996951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karolina A. Haupa
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Britta A. Johnson
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Edwin L. Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
19
|
Chou CY, Lee YP. Infrared absorption of 1-chloro-2-methyl-2-propyl [⋅C(CH3)2CH2Cl] and 2-chloro-2-methylpropyl [⋅CH2C(CH3)2Cl] radicals produced in the addition reactions of Cl with isobutene (i-C4H8) in solidpara-hydrogen. J Chem Phys 2016; 145:134302. [DOI: 10.1063/1.4963383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ching-Yin Chou
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Lee YF, Lee YP. Infrared absorption of iodomethylperoxy (syn-ICH2OO) radical generated upon photolysis of CH2I2and O2in solidpara-H2. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1012129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Paulson LO, Mutunga FM, Follett SE, Anderson DT. Reactions of Atomic Hydrogen with Formic Acid and Carbon Monoxide in Solid Parahydrogen I: Anomalous Effect of Temperature. J Phys Chem A 2014; 118:7640-52. [DOI: 10.1021/jp502470j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leif O. Paulson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Fredrick M. Mutunga
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Shelby E. Follett
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
22
|
Das P, Lee YP. Bimolecular reaction of CH3 + CO in solid p-H2: Infrared absorption of acetyl radical (CH3CO) and CH3-CO complex. J Chem Phys 2014; 140:244303. [DOI: 10.1063/1.4883519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prasanta Das
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Bahou M, Das P, Lee YF, Wu YJ, Lee YP. Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices. Phys Chem Chem Phys 2014; 16:2200-10. [DOI: 10.1039/c3cp54184c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Bahou M, Das P, Lee YF, Wu YJ, Lee YP. Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices. Phys Chem Chem Phys 2014. [DOI: 10.10.1039/c3cp54184c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Raston PL, Kettwich SC, Anderson DT. High-resolution infrared spectroscopy of atomic bromine in solid parahydrogen and orthodeuterium. J Chem Phys 2013; 139:134304. [PMID: 24116565 DOI: 10.1063/1.4820528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work extends our earlier investigation of the near-infrared absorption spectroscopy of atomic bromine (Br) trapped in solid parahydrogen (pH2) and orthodeuterium (oD2) [S. C. Kettwich, L. O. Paulson, P. L. Raston, and D. T. Anderson, J. Phys. Chem. A 112, 11153 (2008)]. We report new spectroscopic observations on a series of double transitions involving excitation of the weak Br-atom spin-orbit (SO) transition ((2)P(1/2) ← (2)P(3/2)) in concert with phonon, rotational, vibrational, and rovibrational excitation of the solid molecular hydrogen host. Further, we utilize the rapid vapor deposition technique to produce pH2 crystals with a non-equilibrium mixture of face centered cubic (fcc) and hexagonal closed packed (hcp) crystal domains in the freshly deposited solid. Gentle annealing (T = 4.3 K) of the pH2 sample irreversibly converts the higher energy fcc crystal domains to the slightly more stable hcp structure. We follow the extent of this conversion process using the intensity of the U1(0) transition of solid pH2 and correlate crystal structure changes with changes in the integrated intensity of Br-atom absorption features. Annealing the pH2 solid causes the integrated intensity of the zero-phonon Br SO transition to increase approximately 45% to a value that is 8 times larger than the gas phase value. We show that the magnitude of the increase is strongly correlated to the fraction of hcp crystal domains within the solid. Theoretical calculations presented in Paper II show that these intensity differences are caused by the different symmetries of single substitution sites for these two crystal structures. For fully annealed Br-atom doped pH2 solids, where the crystal structure is nearly pure hcp, the Br-atom SO transition sharpens considerably and shows evidence for resolved hyperfine structure.
Collapse
Affiliation(s)
- Paul L Raston
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | |
Collapse
|
26
|
Golec B, Das P, Bahou M, Lee YP. Infrared Spectra of the 1-Pyridinium (C5H5NH+) Cation and Pyridinyl (C5H5NH and 4-C5H6N) Radicals Isolated in Solid para-Hydrogen. J Phys Chem A 2013; 117:13680-90. [DOI: 10.1021/jp407668z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barbara Golec
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Prasanta Das
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mohammed Bahou
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yuan-Pern Lee
- Department
of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Bahou M, Huang CW, Huang YL, Glatthaar J, Lee YP. Advances in Use ofp-H2as a Novel Host for Matrix IR Spectroscopy. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Das P, Lee YP. Infrared absorption of 3-propenonyl (⋅CH2CHCO) radical generated upon photolysis of acryloyl chloride [CH2CHC(O)Cl] in solid para-H2. J Chem Phys 2013; 139:084320. [DOI: 10.1063/1.4818880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Bahou M, Witek H, Lee YP. Infrared identification of the σ-complex of Cl-C6H6 in the reaction of chlorine atom and benzene in solid para-hydrogen. J Chem Phys 2013; 138:074310. [DOI: 10.1063/1.4790860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
30
|
Das P, Bahou M, Lee YP. Reactions between atomic chlorine and pyridine in solid para-hydrogen: Infrared spectrum of the 1-chloropyridinyl (C5H5N−Cl) radical. J Chem Phys 2013; 138:054307. [DOI: 10.1063/1.4789407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Bahou M, Wu JY, Tanaka K, Lee YP. Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and Cℓ2 in solid para-hydrogen. J Chem Phys 2012; 137:084310. [DOI: 10.1063/1.4745075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Lee YF, Kong LJ, Lee YP. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices. J Chem Phys 2012; 136:124510. [DOI: 10.1063/1.3696894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Amicangelo JC, Golec B, Bahou M, Lee YP. Infrared spectrum of the 2-chloroethyl radical in solid para-hydrogen. Phys Chem Chem Phys 2012; 14:1014-29. [DOI: 10.1039/c1cp22524c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Lozada-García RR, Ceponkus J, Chevalier M, Chin W, Mestdagh JM, Crépin C. Photochemistry of acetylacetone isolated in parahydrogen matrices upon 266 nm irradiation. Phys Chem Chem Phys 2012; 14:3450-9. [DOI: 10.1039/c2cp23913b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Golec B, Lee YP. Reactions between chlorine atom and acetylene in solid para-hydrogen: Infrared spectrum of the 1-chloroethyl radical. J Chem Phys 2011; 135:174302. [DOI: 10.1063/1.3653988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Paulson LO, Anderson DT, Lundell J, Marushkevich K, Melavuori M, Khriachtchev L. Conformation Resolved Induced Infrared Activity: trans- and cis-Formic Acid Isolated in Solid Molecular Hydrogen. J Phys Chem A 2011; 115:13346-55. [DOI: 10.1021/jp204600v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leif O. Paulson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Lundell
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014 Jyväskylä, Finland
| | | | - Mia Melavuori
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Leonid Khriachtchev
- Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
37
|
Korolkov MV, Manz J, Schild A. Isotope effects of reactions in quantum solids initiated by IR + UV lasers: quantum model simulations for Cl((2)P(3/2)) + X(2)(ν) → XCl + X in X(2) matrices (X = H, D). J Phys Chem A 2010; 114:9795-808. [PMID: 20533845 DOI: 10.1021/jp102809p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six isotope effects (i)-(vi) are discovered for the reactions Cl + H(2)(ν) → HCl + H in solid para-H(2) ( 1 ) versus Cl + D(2)(ν) → DCl + D in ortho-D(2) ( 2 ), by means of quantum reaction dynamics simulations, within the frame of our simple model ( J. Phys. Chem. A 2009 , 113 , 7630 . ). Experimentally, the reactions may be initiated for ν = 0 and ν ≥ 1, by means of "UV only" photodissociation of the matrix-isolated precursor, Cl(2), or by "IR + UV" coirradiation ( Kettwich , S. C. , Raston , P. L. , and Anderson , D. T. J. Phys. Chem. A 2009 , 113 , 7621 . ), respectively. Specifically, (i) various shape and Feshbach reaction resonances correlate with vibrational thresholds of reactants and products, due to the near-thermoneutrality and low barrier of the system. The energetic density of resonances increases as the square root of mass, from M(X) = M(H) to M(D). (ii) The state selective reaction ( 1 ), ν = 1, is supported by a shape resonance, whereas this type of resonance is absent in ( 2 ), ν = 1. As a consequence, time-resolved measurements should monitor different three-step versus direct error-function type evolutions of the formation of the products. (iii) The effective barrier is lower for reaction 1 , ν = 0, enhancing the tunneling rate, as compared to that for reaction 2 , ν = 0. (iv) For reference, the reaction probabilities P versus total energy E(tot) in the gas exhibit sharp resonance peaks or zigzag behaviors of the reaction probability P versus total energy, near the levels of resonances ( Persky , A. and Baer , M. J. Chem. Phys . 1974 , 60 , 133 . ). These features tend to be washed out and broadened for reaction 1 , and even more so for reaction 2 . For comparison, they disappear for reactions in classical solids. (v) The slopes of P versus E(tot) below the potential barrier increase more steeply for reaction 1 , ν = 0, than for reaction 2 , ν = 0. This enhances the tunneling rate of the heavier isotopomer, reaction 2 , ν = 0, compared to that for reaction 1 . (vi) For a given value of the UV frequency, the translational energy E(trans) increases with mass M(X). Again, this effect supports tunneling of the heavier isotopomer. The isotope effects (i)-(iii), (iv)-(v), and (vi) may be classified as energetic, translational amplitude, and kinematic, respectively. Specifically, the effects (iv)-(v) are due to a systematic decrease of the amplitudes of translational motions of the reactant molecules, from quasi infinite in the gas via still rather large values of para-H(2)(ν) and smaller values for ortho-D(2)(ν) to very small values in classical solids. These isotope effects are special phenomena in quantum solids, which do not occur, neither in the gas phase nor in classical solids. Quantitative predictions, e.g., for the effects of increasing UV frequency on the ratio of reactions probabilities for the UV only versus IR + UV experiments, must account for the interplay of various isotope effects, e.g., (vi) combined with the antagonistic effects (iii) versus (iv) and (v).
Collapse
Affiliation(s)
- M V Korolkov
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | | | | |
Collapse
|
38
|
Korolkov M, Manz J. Resonant versus off-resonant quantum reaction dynamics in quantum solids: Model simulations for in solid para-hydrogen. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2009.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Huang CW, Lee YC, Lee YP. Diminished cage effect in solid p-H2: Infrared spectra of ClSCS, ClCS, and ClSC in an irradiated p-H2 matrix containing Cl2 and CS2. J Chem Phys 2010; 132:164303. [DOI: 10.1063/1.3386578] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Kühn O, Manz J, Schild A. Quantum effects of translational motions in solid para-hydrogen and ortho-deuterium: anharmonic extension of the Einstein model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:135401. [PMID: 21389514 DOI: 10.1088/0953-8984/22/13/135401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An anharmonic extension of the Einstein model is developed in order to describe the effect of translational zero point motion on structural and thermodynamic properties of para-H(2) and ortho-D(2) crystals in the zero temperature limit. Accordingly, the molecules carry out large amplitude translational motions in their matrix cage, which are formed by the frozen environment of all other molecules. These translations lead from the molecular equilibrium positions via the harmonic to the anharmonic domain of the potential energy surface. The resulting translational distributions are roughly isotropic, and they have approximately Gaussian shapes, with rather broad full widths at half-maximum, FWHM(para-H(2)/ortho-D(2)) = 1.36/1.02 Å. The translational zero point energies induce expansions of the crystals, in nearly quantitative agreement with experimental results. Furthermore, they make significant contributions to the sublimation energies and zero pressure bulk moduli. These quantum effects decrease with heavier molecular masses. The corresponding isotope effects for ortho-D(2) compared to para-H(2) are confirmed by application of the model to Ar crystals. The results imply consequences for laser induced reaction dynamics of dopants with their host crystals.
Collapse
Affiliation(s)
- O Kühn
- Institut für Physik, Universität Rostock, Rostock, Germany
| | | | | |
Collapse
|
41
|
Korolkov MV, Manz J, Schild A. The Cl + H2 --> HCl + H reaction induced by IR + UV irradiation of Cl2 in solid para-H2: quantum model simulation. J Phys Chem A 2009; 113:7630-46. [PMID: 19378981 DOI: 10.1021/jp9003455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experimental investigations by the group of D. T. Anderson (Kettwich, S. C.; Raston, P. L.; Anderson, D. T. J. Phys. Chem. A 2009, 113, DOI 10.1021/jp811206a) show that the reaction Cl + H(2) --> HCl + H in the para-H(2) crystal can be induced by infrared (IR) + ultraviolet (UV) coirradiations causing vibrational pre-excitation of the molecular reactant, H(2)(v=1), and generation of the atomic reactant, Cl((2)P(3/2)), by near-resonant photodissociation of a matrix-isolated Cl(2) molecule in the C (1)Pi(u) state, respectively. The corresponding reaction probability P(v=1) for the reactants Cl + H(2)(v=1) is approximately 0.15; this is approximately 25 times larger than P(v=0) for Cl + H(2)(v=0) (as initiated by pure UV irradiation). We present a simple three-step quantum model which accounts for some important parts of the experimental results and allows predictions for other scenarios, for example, UV photodissociation of the Cl(2) molecule by a laser pulse. The first step, vibrational pre-excitation of H(2), yields the molecular initial state which is described using the Einstein model of the para-H(2) crystal. The second step, photodissociation of Cl(2), generates the Cl((2)P(3/2)) atom approaching H(2)(v=1). In the third step, Cl reacts with H(2)(v=1) much more efficiently than with H(2)(v=0) close to threshold. The ultrashort time domains (approximately 100 fs) of steps 2 plus 3 support one- and then two-dimensional models of photodissociation of Cl(2) by short laser pulses and of the subsequent reaction of the system Cl-H-H embedded in frozen environments. The widths of the corresponding wave function describing the translational motion of the reactants is revealed as a significant parameter which is determined not only by the duration of the laser pulse but, even more importantly, by the width of the Gaussian-type distribution of the center of mass of the H(2) molecule in its Einstein cell. As a consequence, the resulting P(v) are quite robust versus variations of the UV pulse durations, allowing extrapolations to continuous wave irradiation. Quantum dynamics simulations of the reaction reveal that the experimental results are due to energetic and dynamical effects.
Collapse
Affiliation(s)
- M V Korolkov
- Institut für Chemie and Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
42
|
Kettwich SC, Raston PL, Anderson DT. The Cl + H2 → HCl + H Reaction Induced by IR + UV Irradiation of Cl2 in Solid para-H2: Experiment. J Phys Chem A 2009; 113:7621-9. [DOI: 10.1021/jp811206a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharon C. Kettwich
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and Institut für Experimentalphysik, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195, Berlin, Germany
| | - Paul L. Raston
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and Institut für Experimentalphysik, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195, Berlin, Germany
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, and Institut für Experimentalphysik, Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195, Berlin, Germany
| |
Collapse
|
43
|
Kettwich SC, Paulson LO, Raston PL, Anderson DT. Photodissociation of Molecular Bromine in Solid H2 and D2: Spectroscopy of the Atomic Bromine Spin−Orbit Transition. J Phys Chem A 2008; 112:11153-8. [DOI: 10.1021/jp8029314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Leif O. Paulson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071
| | - Paul L. Raston
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071
| | - David T. Anderson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
44
|
Kettwich SC, Pinelo LF, Anderson DT. Synthesis and infrared characterization of Br–HBr and Br–DBr entrance channel complexes in solid parahydrogen. Phys Chem Chem Phys 2008; 10:5564-73. [DOI: 10.1039/b806276e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Fushitani M, Miyamoto Y, Hoshina H, Momose T. In Situ Photolysis of CD3I in Solid Orthodeuterium. J Phys Chem A 2007; 111:12629-34. [DOI: 10.1021/jp0761113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mizuho Fushitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver BC, V6T1Z1, Canada
| | - Yuki Miyamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver BC, V6T1Z1, Canada
| | - Hiromichi Hoshina
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver BC, V6T1Z1, Canada
| | - Takamasa Momose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver BC, V6T1Z1, Canada
| |
Collapse
|
46
|
Lorenz BD, Anderson DT. Infrared spectra of N2O–(ortho-D2)N and N2O–(HD)N clusters trapped in bulk solid parahydrogen. J Chem Phys 2007; 126:184506. [PMID: 17508810 DOI: 10.1063/1.2723740] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.
Collapse
Affiliation(s)
- Britney D Lorenz
- Department of Chemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | | |
Collapse
|
47
|
Raston PL, Anderson DT. The spin-orbit transition of atomic chlorine in solid H2, HD, and D2. J Chem Phys 2007; 126:021106. [PMID: 17228934 DOI: 10.1063/1.2430701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Essential to understanding the reaction dynamics of spin-orbit (SO) excited atomic chlorine (2P1/2) with molecular hydrogen is experimental measurements of the SO splitting of Cl in the van der Waals region of the entrance channel to reaction. Here we report high-resolution direct absorption studies of the SO transition (2P1/2<--2P3/2) of atomic chlorine isolated in solid molecular hydrogen (H2, HD, and D2).
Collapse
Affiliation(s)
- Paul L Raston
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|