1
|
Kumari A, Tapwal A, Thakur N. Ganoderma lucidum: Insights on host range, diagnosis, and management strategies. J Basic Microbiol 2024; 64:e2300769. [PMID: 38686908 DOI: 10.1002/jobm.202300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Forest ecosystems play an important role in upholding life on our planet. However, the onslaught of fungal pathogens like Ganoderma lucidum, poses a threat by decimating numerous tree species. G. lucidum identified as a root pathogen, causing root rot in numerous tree species of horticulture and forestry importance. The fungus initiates infection through basidiospores, which germinate and penetrate within roots and start to degrade lignocellulosic components of plant cells. Early-stage detection of G. lucidum, is challenging, while in advance stages, the wood undergoes softening and a loss of tensile strength, rendering the disease incurable. Hence, effective management of G. lucidum necessitates a pivotal role of disease diagnostic techniques, which are currently underutilized or inadequately accessible. Subsequent implementation of suitable control measures becomes imperative to thwart disease occurrence and mitigate its impact in early stages, thus preserving the vitality of forest ecosystems. This study provides comprehensive overview of G. lucidum, covering taxonomy, pathogenicity, disease cycle, diagnosis and effective control measures, which will be helpful in formulating effective diagnostic techniques for early management of root rot disease.
Collapse
Affiliation(s)
- Ashwani Kumari
- Forest Protection Division, ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, India
| | - Ashwani Tapwal
- Forest Protection Division, ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, India
| | - Neha Thakur
- Forest Protection Division, ICFRE-Himalayan Forest Research Institute, Shimla, Himachal Pradesh, India
| |
Collapse
|
2
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Microfluidic-based blood immunoassays. J Pharm Biomed Anal 2023; 228:115313. [PMID: 36868029 DOI: 10.1016/j.jpba.2023.115313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobilization, reduced sample and reagent volumes, fast analysis and response times, lower power requirements, lower cost and disposability, improved portability and sensitivity, and greater integration and automation capability. Immunoassay is a specific bioanalytical method based on the interaction of antigens and antibodies, which is utilized to detect bacteria, viruses, proteins, and small molecules in several areas such as biopharmaceutical analysis, environmental analysis, food safety, and clinical diagnostics. Because of the advantages of both techniques, the combination of immunoassays and microfluidic technology is considered one of the most potential biosensor systems for blood samples. This review presents the current progress and important developments in microfluidic-based blood immunoassays. After providing several basic information about blood analysis, immunoassays, and microfluidics, the review points out in-depth information about microfluidic platforms, detection techniques, and commercial microfluidic blood immunoassay platforms. In conclusion, some thoughts and future perspectives are provided.
Collapse
|
4
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
5
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
6
|
Guo J, Liang Z, Huang Y, Kim K, Vandeventer P, Fan D. Acceleration of Biomolecule Enrichment and Detection with Rotationally Motorized Opto-Plasmonic Microsensors and the Working Mechanism. ACS NANO 2020; 14:15204-15215. [PMID: 33095572 DOI: 10.1021/acsnano.0c05429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vigorous research efforts have advanced the state-of-the-art nanosensors with ultrahigh sensitivity for bioanalysis. However, a dilemmatic challenge remains: it is extremely difficult to obtain nanosensors that are both sensitive and high-speed for the detection of low-concentration molecules in aqueous samples. Herein, we report how the controlled mechanical rotation (or rotary motorization) of designed opto-plasmonic microsensors can substantially and robustly accelerate the enrichment and detection speed of deoxyribonucleic acid (DNA) with retained high sensitivity. At least 4-fold augmentation of the capture speed of DNA molecules is obtained from a microsensor rotating at 1200 rpm. Theoretical analysis and modeling shed light on the underlying working mechanism, governed by the molecule-motor-flow interaction as well as its application range and limitation. This work provides a device scheme that alleviates the dilemmatic challenge in biomolecule sensing and offers the understanding of the complex interactions of molecules and moving microobjects in suspension. The results may assist the rational design of efficient microrobotic systems for the capture, translocation, sensing, and release of biocargoes.
Collapse
Affiliation(s)
- Jianhe Guo
- Texas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zexi Liang
- Texas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yun Huang
- Texas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kwanoh Kim
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Peter Vandeventer
- Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060, United States
| | - Donglei Fan
- Texas Materials Institute and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Traynor SM, Wang GA, Pandey R, Li F, Soleymani L. Dynamic Bio‐Barcode Assay Enables Electrochemical Detection of a Cancer Biomarker in Undiluted Human Plasma: A Sample‐In‐Answer‐Out Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah M. Traynor
- Department of Biomedical Engineering McMaster University 1280 Main St. W. Hamilton ON Canada
| | - Guan A. Wang
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines ON Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main St. W. Hamilton ON Canada
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Brock University Canada
| | - Leyla Soleymani
- Department of Biomedical Engineering McMaster University 1280 Main St. W. Hamilton ON Canada
| |
Collapse
|
8
|
Traynor SM, Wang GA, Pandey R, Li F, Soleymani L. Dynamic Bio‐Barcode Assay Enables Electrochemical Detection of a Cancer Biomarker in Undiluted Human Plasma: A Sample‐In‐Answer‐Out Approach. Angew Chem Int Ed Engl 2020; 59:22617-22622. [DOI: 10.1002/anie.202009664] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Sarah M. Traynor
- Department of Biomedical Engineering McMaster University 1280 Main St. W. Hamilton ON Canada
| | - Guan A. Wang
- Department of Chemistry Brock University 1812 Sir Isaac Brock Way St. Catharines ON Canada
| | - Richa Pandey
- Department of Engineering Physics McMaster University 1280 Main St. W. Hamilton ON Canada
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Brock University Canada
| | - Leyla Soleymani
- Department of Biomedical Engineering McMaster University 1280 Main St. W. Hamilton ON Canada
| |
Collapse
|
9
|
El-Sayed A, Kamel M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19200-19213. [PMID: 31529348 DOI: 10.1007/s11356-019-06459-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 09/06/2019] [Indexed: 05/18/2023]
Abstract
In the last decades, nanotechnology-based tools started to draw the attention of research worldwide. They offer economic, rapid, effective, and highly specific solutions for most medical issues. As a result, the international demand of nanomaterials is expanding very rapidly. It was estimated that the market of nanomaterials was about $2.6 trillion in 2015. In medicine, various applications of nanotechnology proved their potential to revolutionize medical diagnosis, immunization, treatment, and even health care products. The loading substances can be coupled with a large set of nanoparticles (NPs) by many means: chemically (conjugation), physically (encapsulation), or via adsorption. The use of the suitable loading nanosubstance depends on the application purpose. They can be used to deliver various chemicals (drugs, chemotherapeutic agents, or imaging substances), or biological substances (antigens, antibodies, RNA, or DNA) through endocytosis. They can even be used to deliver light and heat to their target cells when needed. The present review provides a brief overview about the structure and shape of available NPs and discusses their applications in the medical sciences.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
10
|
Wu C, Shan Y, Wu X, Wang S, Liu F. Quantitative protein detection using single molecule imaging enzyme-linked immunosorbent assay (iELISA). Anal Biochem 2019; 587:113466. [DOI: 10.1016/j.ab.2019.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
|
11
|
Xu Y, Shi L, Li S, Guan T, Zhong S, Zhou X, Li D, Guo C, Yang Y, Wang X, Li Z, He Y, Xie L, Gan Z. Detection of Macromolecular Content in a Mixed Solution of Protein Macromolecules and Small Molecules Using a Weak Measurement Linear Differential System. Anal Chem 2019; 91:11576-11581. [PMID: 31407571 DOI: 10.1021/acs.analchem.9b01657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper, we propose a linear differential detection system based on a frequency domain weak measurement. The system can be used for detecting optical substances. Moreover, we completed an experiment to detect himan serum albumin (HSA) content in a mixture of human serum albumin and l-proline via dialysis. This work also proves the differential function of the system. This experiment can be further extended to detecting protein content in a mixed solution that contains protein macromolecules and various small molecules. It is very important for detecting molecules without photomarking in solutions of complex biological samples. In this paper, the system has an optical resolution of 1.39 × 10-5, and resolution of 4.06 × 10-8 mol/L for himan serum protein solution.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China
| | - Lixuan Shi
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,Department of Physics , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Shaoxin Li
- School of Basic Medicine , Guangdong Medical University , Dongguan 523808 , China
| | - Tian Guan
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Suyi Zhong
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xuesi Zhou
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China
| | - Dongmei Li
- Center for Optics & Optoelectronics Research, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science , Zhejiang University of Technology , Hangzhou 310023 , China
| | - Cuixia Guo
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,Department of Physics , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yuxuan Yang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Xiangnan Wang
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zhangyan Li
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,Department of Physics , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Yonghong He
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,Department of Physics , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Luyuan Xie
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.,School of Medicine , Tsinghua University , Beijing 100084 , People's Republic of China
| | - Zonghan Gan
- School of Medicine , Glasgow University , Dumbarton Rd, Glasgow G12 8QQ , England
| |
Collapse
|
12
|
Gabrys PA, Zornberg LZ, Macfarlane RJ. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805424. [PMID: 30970182 DOI: 10.1002/smll.201805424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale "artificial atoms" to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP-based crystals are not always as well-understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA-grafted NPs have emerged as a strong candidate for such a "programmable atom equivalent" (PAE), because the predictable nature of DNA base-pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.
Collapse
Affiliation(s)
- Paul A Gabrys
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leonardo Z Zornberg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
13
|
Barbosa AI, Reis NM. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst 2018; 142:858-882. [PMID: 28217778 DOI: 10.1039/c6an02445a] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.
Collapse
Affiliation(s)
- Ana I Barbosa
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Nuno M Reis
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Affiliation(s)
- Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Kaur R, Bariwal J, Voskressensky LG, Van der Eycken EV. Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2259-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Advances in Nano Based Biosensors for Food and Agriculture. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-70166-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ahmad R, Jang H, Batule BS, Park HG. Barcode DNA-Mediated Signal Amplifying Strategy for Ultrasensitive Biomolecular Detection on Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry. Anal Chem 2017; 89:8966-8973. [DOI: 10.1021/acs.analchem.7b01535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Raheel Ahmad
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bhagwan S. Batule
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and
Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Lee H, Lee D, Park JH, Song SH, Jeong IG, Kim CS, Searson PC, Lee KH. High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine. Biomaterials 2017; 135:23-29. [DOI: 10.1016/j.biomaterials.2017.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
|
19
|
Christodoulides NJ, McRae MP, Abram TJ, Simmons GW, McDevitt JT. Innovative Programmable Bio-Nano-Chip Digitizes Biology Using Sensors That Learn Bridging Biomarker Discovery and Clinical Implementation. Front Public Health 2017; 5:110. [PMID: 28589118 PMCID: PMC5441161 DOI: 10.3389/fpubh.2017.00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
The lack of standard tools and methodologies and the absence of a streamlined multimarker approval process have hindered the translation rate of new biomarkers into clinical practice for a variety of diseases afflicting humankind. Advanced novel technologies with superior analytical performance and reduced reagent costs, like the programmable bio-nano-chip system featured in this article, have potential to change the delivery of healthcare. This universal platform system has the capacity to digitize biology, resulting in a sensor modality with a capacity to learn. With well-planned device design, development, and distribution plans, there is an opportunity to translate benchtop discoveries in the genomics, proteomics, metabolomics, and glycomics fields by transforming the information content of key biomarkers into actionable signatures that can empower physicians and patients for a better management of healthcare. While the process is complicated and will take some time, showcased here are three application areas for this flexible platform that combines biomarker content with minimally invasive or non-invasive sampling, such as brush biopsy for oral cancer risk assessment; serum, plasma, and small volumes of blood for the assessment of cardiac risk and wellness; and oral fluid sampling for drugs of abuse testing at the point of need.
Collapse
Affiliation(s)
- Nicolaos J. Christodoulides
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | - Michael P. McRae
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | | | - Glennon W. Simmons
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| | - John T. McDevitt
- Department of Biomaterials, Bioengineering Institute, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
20
|
Sub-attomolar electrochemical measurement of DNA hybridization based on the detection of high coverage biobarcode latex labels at PNA-modified screen printed electrodes. Talanta 2017; 167:14-20. [PMID: 28340704 DOI: 10.1016/j.talanta.2017.01.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
Abstract
We have constructed biobarcode labels based on 468nm diameter latex spheres. Modification with polyallylamine and then glutaraldehyde was used to attach a high DNA loading, consisting of aminated probe DNA (approx. 1.01×102 molecules per sphere) and biobarcode DNA (approx. 1.66×104 molecules per sphere). Detection of the biobarcodes was performed by application of a Ag enhancer solution, causing association of the Ag+ ions with the phosphate groups of the DNA. The deposited Ag was detected by differential pulse voltammetry. A 30 mer sequence from the BL21 strain of E. coli was detected with an LOD of 2.6fM (calibration range 10 aM to 0.1pM, r2=0.91, n=45). The LOD was lowered to 0.56aM (calibration range 100zM to 0.1nM, r2=0.991, n=50) by utilizing a sandwich assay with PNA-modified screen printed electrodes, which lowered the Ag background current. The sandwich assay platform was used to calibrate E. coli strain BL2(DE3) with an LOD of 17.0 CFU mL-1 (calibration range 10 to 106 CFU mL-1, r2=0.99, n=33) with good discrimination against Salmonella.
Collapse
|
21
|
Towards One-Step Quantitation of Prostate-Specific Antigen (PSA) in Microfluidic Devices: Feasibility of Optical Detection with Nanoparticle Labels. BIONANOSCIENCE 2017; 7:718-726. [PMID: 29214121 PMCID: PMC5698394 DOI: 10.1007/s12668-016-0390-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rapid and quantitative prostate-specific antigen (PSA) biomarker detection would be beneficial to cancer diagnostics, improving early detection and therefore increasing chances of survival. Nanoparticle-based detection is routinely used in one-step nitrocellulose-based lateral flow (LF) immunoassays; however, it is well established within the scientific diagnostic community that LF technology lacks sensitivity for measuring biomarkers, such as prostate-specific antigen (PSA). A trend in point-of-care (POC) protein biomarker quantitation is the miniaturization of immunoassays in microfluidic devices. This work aimed at testing the feasibility of carbon and gold nanoparticles as immunoassay labels for PSA detection with cost-effective optical detection in a novel microfluidic POC platform called microcapillary film (MCF), consisting of a parallel array of fluoropolymer microcapillaries with 200-μm internal diameter. With neutravidin-coated carbon, nanoparticles were able to quantify an immobilized biotinylated monoclonal antibody (coating solution from 10 to 40 μg/ml) and PSA was successfully quantified in a sandwich assay using silver-enhanced gold nanoparticles and a flatbed scanner; yet, the dynamic range was limited to 10–100 ng/ml. Although direct optical detection of PSA without enzymatic amplification or fluorophores is possible and technically appealing for the simplified fluidics and signal scanning setups involved, ultimately, the binding of a thin layer of nanoparticles onto the wall of transparent microcapillaries is not sufficient to cause a significant drop on the optical colorimetric signal. Future studies will explore the use of fluorescence nanoparticles.
Collapse
|
22
|
Interactions of Bimodal Magnetic and Fluorescent Nanoparticles Based on Carbon Quantum Dots and Iron-Carbon Nanocomposites with Cell Cultures. Bull Exp Biol Med 2016; 162:248-251. [PMID: 27905035 DOI: 10.1007/s10517-016-3587-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 10/20/2022]
Abstract
Interactions of bimodal (fluorescent and magnetic) nanoparticles with HeLa cells were studied. The nanoparticles, characterized by high magnetic moment and relaxing capacity, exhibited fluorescence sufficient for their use as labels in confocal microscopy and flow cytometry. Penetration of these nanoparticles into the cell depended on their surface charge: positively charged nanoparticles of this structure penetrated inside, while negatively charged particles were not found in the cells.
Collapse
|
23
|
Theranostic barcoded nanoparticles for personalized cancer medicine. Nat Commun 2016; 7:13325. [PMID: 27830705 PMCID: PMC5109543 DOI: 10.1038/ncomms13325] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Personalized medicine promises to revolutionize cancer therapy by matching the most effective treatment to the individual patient. Using a nanoparticle-based system, we predict the therapeutic potency of anticancer medicines in a personalized manner. We carry out the diagnostic stage through a multidrug screen performed inside the tumour, extracting drug activity information with single cell sensitivity. By using 100 nm liposomes, loaded with various cancer drugs and corresponding synthetic DNA barcodes, we find a correlation between the cell viability and the drug it was exposed to, according to the matching barcodes. Based on this screen, we devise a treatment protocol for mice bearing triple-negative breast-cancer tumours, and its results confirm the diagnostic prediction. We show that the use of nanotechnology in cancer care is effective for generating personalized treatment protocols. Determining the most effective treatment for each cancer patient is a key challenge in cancer therapy. In this article, the authors show, in a mouse model of breast cancer, that DNA barcoded nanoparticles can be used for pre-screening the efficacy of anticancer drugs.
Collapse
|
24
|
Scott AW, Garimella V, Calabrese CM, Mirkin CA. Universal Biotin-PEG-Linked Gold Nanoparticle Probes for the Simultaneous Detection of Nucleic Acids and Proteins. Bioconjug Chem 2016; 28:203-211. [PMID: 27740740 DOI: 10.1021/acs.bioconjchem.6b00529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel biotin-polyethylene glycol (biotin-PEG) gold nanoparticle probes have been synthesized and used as universal constructs for the detection of protein (prostate-specific antigen, PSA) and nucleic acid targets (microRNAs) from a single sample. Microarray assays based upon these probes enabled sensitive detection of biomarker targets (50 fM for nucleic acid targets and 1 pg/μL for the PSA target). Ways of detecting biomarkers, including nucleic acids and proteins, are necessary for the clinical diagnosis of many diseases, but currently available diagnostic platforms rely primarily on the independent detection of proteins or nucleic acids. In addition to the economic benefits associated with the use of a single platform to detect both classes of analytes, studies have shown that the simultaneous identification of multiple classes of biomarkers in the same sample could be useful for the detection and management of early stage diseases, especially when sample amounts are limited. Therefore, these new probes and the assays based upon them open the door for high-sensitivity combination-target assays for studying and tracking biological pathways and diseases.
Collapse
Affiliation(s)
- Alexander W Scott
- International Institute for Nanotechnology, ‡Department of Biomedical Engineering, and §Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Viswanadham Garimella
- International Institute for Nanotechnology, ‡Department of Biomedical Engineering, and §Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Colin M Calabrese
- International Institute for Nanotechnology, ‡Department of Biomedical Engineering, and §Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, ‡Department of Biomedical Engineering, and §Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Torres-Sangiao E, Holban AM, Gestal MC. Advanced Nanobiomaterials: Vaccines, Diagnosis and Treatment of Infectious Diseases. Molecules 2016; 21:molecules21070867. [PMID: 27376260 PMCID: PMC6273484 DOI: 10.3390/molecules21070867] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 11/16/2022] Open
Abstract
The use of nanoparticles has contributed to many advances due to their important properties such as, size, shape or biocompatibility. The use of nanotechnology in medicine has great potential, especially in medical microbiology. Promising data show the possibility of shaping immune responses and fighting severe infections using synthetic materials. Different studies have suggested that the addition of synthetic nanoparticles in vaccines and immunotherapy will have a great impact on public health. On the other hand, antibiotic resistance is one of the major concerns worldwide; a recent report of the World Health Organization (WHO) states that antibiotic resistance could cause 300 million deaths by 2050. Nanomedicine offers an innovative tool for combating the high rates of resistance that we are fighting nowadays, by the development of both alternative therapeutic and prophylaxis approaches and also novel diagnosis methods. Early detection of infectious diseases is the key to a successful treatment and the new developed applications based on nanotechnology offer an increased sensibility and efficiency of the diagnosis. The aim of this review is to reveal and discuss the main advances made on the science of nanomaterials for the prevention, diagnosis and treatment of infectious diseases. Highlighting innovative approaches utilized to: (i) increasing the efficiency of vaccines; (ii) obtaining shuttle systems that require lower antibiotic concentrations; (iii) developing coating devices that inhibit microbial colonization and biofilm formation.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Department of Microbiology and Parasitology, University Santiago de Compostela, Galicia 15782, Spain.
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest 060101, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Bucharest 060042, Romania.
| | - Monica Cartelle Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens (UGA), GA 30602, USA.
| |
Collapse
|
26
|
|
27
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
28
|
Dak P, Ebrahimi A, Swaminathan V, Duarte-Guevara C, Bashir R, Alam MA. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms. BIOSENSORS 2016; 6:14. [PMID: 27089377 PMCID: PMC4931474 DOI: 10.3390/bios6020014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 01/09/2023]
Abstract
Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.
Collapse
Affiliation(s)
- Piyush Dak
- Purdue University, West Lafayette 47906, IN, USA.
| | | | | | | | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA.
| | | |
Collapse
|
29
|
Zhang Y, McKelvie ID, Cattrall RW, Kolev SD. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta 2016; 152:410-22. [PMID: 26992537 DOI: 10.1016/j.talanta.2016.02.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Localised surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) has been exploited for two decades in analytical science and has proven to be a powerful tool for the detection of various kinds of substances including small molecules, ions, macro biomolecules and microbes. Detection can be performed by visual colour change observations, photometry or resonance light scattering. A wide range of applications have been studied in the areas of environmental, pharmaceutical and biological analysis and clinical diagnosis. In this article, some fundamental aspects and important applications involving LSPR of AuNPs are reviewed. Several inherent shortcomings of these techniques and possible strategies to circumvent them are discussed.
Collapse
Affiliation(s)
- Yanlin Zhang
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Ian D McKelvie
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL4 8AA, United Kingdom.
| | - Robert W Cattrall
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia; Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
30
|
Sicilia G, Davis AL, Spain SG, Magnusson JP, Boase NRB, Thurecht KJ, Alexander C. Synthesis of 19F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polym Chem 2016. [DOI: 10.1039/c5py01883h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of novel 19F nucleic acid–polymer conjugates as sensitive and selective in vitro reporters of DNA binding events is demonstrated through a number of rapid-acquisition MR sequences.
Collapse
Affiliation(s)
| | | | | | | | - Nathan R. B. Boase
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | | |
Collapse
|
31
|
Dharanivasan G, Mohammed Riyaz SU, Michael Immanuel Jesse D, Raja Muthuramalingam T, Rajendran G, Kathiravan K. DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 2016. [DOI: 10.1039/c5ra25559g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The DNA templated self-assembly of gold nanoparticles clustered in different configurations (nn = 2–∞) was investigated in the colorimetric detection of ToLCNDV DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe.
Collapse
Affiliation(s)
- G. Dharanivasan
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| | | | | | | | - G. Rajendran
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| | - K. Kathiravan
- Department of Biotechnology
- University of Madras
- Chennai 600 025
- India
| |
Collapse
|
32
|
Breault-Turcot J, Poirier-Richard HP, Couture M, Pelechacz D, Masson JF. Single chip SPR and fluorescent ELISA assay of prostate specific antigen. LAB ON A CHIP 2015; 15:4433-4440. [PMID: 26467689 DOI: 10.1039/c5lc01045d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multi-channel system combining fluidics and micropatterned plasmonic materials with wavelength interrogation surface plasmon resonance (SPR) and fluorescence detection was integrated from the combination of a small and motorized fluorescence microscope mounted on a portable 4-channel SPR instrument. The SPR and fluorescent measurements were performed based on the same detection area in a multi-channel fluidic, with a sensing scheme for prostate-specific antigen (PSA) consisting of a sandwich assay with a capture anti-PSA immobilized onto the SPR sensor and a detection anti-PSA modified with horseradish peroxidase (HRP). In this dual-detection instrument, fluorescence was measured from the solution side of the micropatterned gold film, while the interface between the glass prism and the gold film served to interrogate the SPR response. The SPR sensors were comprised of microhole arrays fabricated by photolithography to enhance the instrumental response for PSA detection by approximately a factor of 2 to 3 and they were coated with a self-assembled monolayer of a peptide (3-MPA-HHHDD-OH) to minimize nonspecific adsorption. PSA was successfully detected at clinical concentrations from 10 pM to 50 nM with this integrated system in a single assay lasting 12 minutes, almost centering on the desired range for PSA diagnostic tests (>4 ng mL(-1) or >150 pM). The combination of two robust techniques in a single chip and instrument has led to a simple and effective assay that can be carried out on a small and portable instrument providing rapid biodetection of an important cancer biomarker with a dynamic range of nearly 4 orders of magnitude in the clinical range.
Collapse
Affiliation(s)
- J Breault-Turcot
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - H-P Poirier-Richard
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - M Couture
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - D Pelechacz
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada.
| | - J-F Masson
- Département de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada. and Centre for Self-Assembled Chemical Structures (CSACS), Canada
| |
Collapse
|
33
|
|
34
|
Narayan SP, Choi CHJ, Hao L, Calabrese CM, Auyeung E, Zhang C, Goor OJ, Mirkin CA. The Sequence-Specific Cellular Uptake of Spherical Nucleic Acid Nanoparticle Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4173-82. [PMID: 26097111 PMCID: PMC4560454 DOI: 10.1002/smll.201500027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/24/2015] [Indexed: 04/14/2023]
Abstract
The sequence-dependent cellular uptake of spherical nucleic acid nanoparticle conjugates (SNAs) is investigated. This process occurs by interaction with class A scavenger receptors (SR-A) and caveolae-mediated endocytosis. It is known that linear poly(guanine) (poly G) is a natural ligand for SR-A, and it has been proposed that interaction of poly G with SR-A is dependent on the formation of G-quadruplexes. Since G-rich oligonucleotides are known to interact strongly with SR-A, it is hypothesized that SNAs with higher G contents would be able to enter cells in larger amounts than SNAs composed of other nucleotides, and as such, cellular internalization of SNAs is measured as a function of constituent oligonucleotide sequence. Indeed, SNAs with enriched G content show the highest cellular uptake. Using this hypothesis, a small molecule (camptothecin) is chemically conjugated with SNAs to create drug-SNA conjugates and it is observed that poly G SNAs deliver the most camptothecin to cells and have the highest cytotoxicity in cancer cells. Our data elucidate important design considerations for enhancing the intracellular delivery of spherical nucleic acids.
Collapse
Affiliation(s)
- Suguna P. Narayan
- International Institute of Nanotechnology, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chung Hang J. Choi
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Liangliang Hao
- International Institute of Nanotechnology, Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Colin M. Calabrese
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Evelyn Auyeung
- International Institute of Nanotechnology, Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208, USA
| | - Chuan Zhang
- International Institute of Nanotechnology, Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Olga J.G.M. Goor
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Chad A. Mirkin
- International Institute of Nanotechnology, Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
35
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 629] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Aliofkhazraei M, Pedrosa P, Carlos FF, Veigas B, Baptista PV. Gold Nanoparticles for DNA/RNA-Based Diagnostics. HANDBOOK OF NANOPARTICLES 2015. [PMCID: PMC7123017 DOI: 10.1007/978-3-319-15338-4_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.
Collapse
|
37
|
Christodoulides N, De La Garza R, Simmons GW, McRae MP, Wong J, Newton TF, Smith R, Mahoney JJ, Hohenstein J, Gomez S, Floriano PN, Talavera H, Sloan DJ, Moody DE, Andrenyak DM, Kosten TR, Haque A, McDevitt JT. Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids. Drug Alcohol Depend 2015; 153:306-13. [PMID: 26048639 PMCID: PMC4509839 DOI: 10.1016/j.drugalcdep.2015.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/27/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable bio-nano-chip (p-BNC) platform for the detection of drugs of abuse. METHOD The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. RESULTS Rapid (∼10min), sensitive detection (∼ng/mL) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. CONCLUSIONS This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace.
Collapse
Affiliation(s)
- Nicolaos Christodoulides
- Department of Bioengineering, Rice University, Houston TX.,Department of Chemistry, Rice University, Houston TX
| | - Richard De La Garza
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston TX.,Department of Pharmacology, Baylor College of Medicine, Houston TX.,Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Glennon W. Simmons
- Department of Bioengineering, Rice University, Houston TX.,Department of Chemistry, Rice University, Houston TX
| | | | - Jorge Wong
- Department of Bioengineering, Rice University, Houston TX.,Department of Chemistry, Rice University, Houston TX
| | - Thomas F. Newton
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston TX.,Department of Pharmacology, Baylor College of Medicine, Houston TX.,Department of Veterans Affairs Medical Center, Houston, TX
| | - Regina Smith
- Department of Bioengineering, Rice University, Houston TX
| | - James J. Mahoney
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston TX
| | | | - Sobeyda Gomez
- Department of Bioengineering, Rice University, Houston TX
| | - Pierre N. Floriano
- Department of Bioengineering, Rice University, Houston TX.,Department of Chemistry, Rice University, Houston TX
| | | | | | - David E. Moody
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
| | - David M. Andrenyak
- Center for Human Toxicology, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
| | - Thomas R. Kosten
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston TX.,Department of Pharmacology, Baylor College of Medicine, Houston TX.,Department of Neuroscience, Baylor College of Medicine, Houston TX.,Department of Veterans Affairs Medical Center, Houston, TX
| | - Ahmed Haque
- Department of Bioengineering, Rice University, Houston TX
| | - John T. McDevitt
- Department of Bioengineering, Rice University, Houston TX.,Department of Chemistry, Rice University, Houston TX.,Department Biomaterials, Bioengineering Institute, New York University, 433 First Avenue, Room 820, New York, NY 10010-4086, USA,Send correspondence to: John T. McDevitt, Chair, Department Biomaterials, Bioengineering Institute, New York University, 433 First Avenue, Room 820, New York, NY 10010-4086, USA, , Phone: 212-998-9204
| |
Collapse
|
38
|
Li N, Su X, Lu Y. Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 2015; 140:2916-43. [PMID: 25763412 DOI: 10.1039/c4an02376e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.
Collapse
Affiliation(s)
- Ning Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 3 Research Link, 117602 Singapore.
| | | | | |
Collapse
|
39
|
Wang Z, Chen B, Duan J, Hao T, Jiang X, Guo Z, Wang S. A test strip for lead(II) based on gold nanoparticles multi-functionalized by DNAzyme and barcode DNA. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815030247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Kang W, Giraldo-Vela JP, Nathamgari SSP, McGuire T, McNaughton RL, Kessler JA, Espinosa HD. Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. LAB ON A CHIP 2014; 14:4486-95. [PMID: 25205561 PMCID: PMC4251430 DOI: 10.1039/c4lc00721b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
New techniques to deliver nucleic acids and other molecules for gene editing and gene expression profiling, which can be performed with minimal perturbation to cell growth or differentiation, are essential for advancing biological research. Studying cells in their natural state, with temporal control, is particularly important for primary cells that are derived by differentiation from stem cells and are adherent, e.g., neurons. Existing high-throughput transfection methods either require cells to be in suspension or are highly toxic and limited to a single transfection per experiment. Here we present a microfluidic device that couples on-chip culture of adherent cells and transfection by localized electroporation. Integrated microchannels allow long-term cell culture on the device and repeated temporal transfection. The microfluidic device was validated by first performing electroporation of HeLa and HT1080 cells, with transfection efficiencies of ~95% for propidium iodide and up to 50% for plasmids. Application to primary cells was demonstrated by on-chip differentiation of neural stem cells and transfection of postmitotic neurons with a green fluorescent protein plasmid.
Collapse
Affiliation(s)
- Wonmo Kang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Grilli S, Miccio L, Gennari O, Coppola S, Vespini V, Battista L, Orlando P, Ferraro P. Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range. Nat Commun 2014; 5:5314. [PMID: 25408128 DOI: 10.1038/ncomms6314] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023] Open
Abstract
Highly sensitive detection of biomolecules is of paramount interest in many fields including biomedicine, safety and eco-pollution. Conventional analyses use well-established techniques with detection limits ~1 pM. Here we propose a pyro-concentrator able to accumulate biomolecules directly onto a conventional binding surface. The operation principle is relatively simple but very effective. Tiny droplets are drawn pyro-electro-dynamically and released onto a specific site, thus increasing the sensitivity. The reliability of the technique is demonstrated in case of labelled oligonucleotides diluted serially. The results show the possibility to detect very diluted oligonucleotides, down to a few hundreds of attomoles. Excellent results are shown also in case of a sample of clinical interest, the gliadin, where a 60-fold improved detection limit is reached, compared with standard ELISA. This method could open the way to a mass-based technology for sensing molecules at very low concentrations, in environmental as well as in diagnostics applications.
Collapse
Affiliation(s)
- S Grilli
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - L Miccio
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - O Gennari
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - S Coppola
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - V Vespini
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - L Battista
- National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - P Orlando
- 1] National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy [2] Institute of Protein Biochemistry, National Council of Research (CNR-IBP), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - P Ferraro
- 1] National Institute of Optics, National Council of Research (CNR-INO), Via Campi Flegrei 34, 80078 Pozzuoli, Italy [2] CNR-INO &CNR, "E. Caianiello", Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
42
|
Cho M, Chung S, Jung JH, Rhie GE, Jeon JH, Seo TS. Combination of biobarcode assay with on-chip capillary electrophoresis for ultrasensitive and multiplex biological agent detection. Biosens Bioelectron 2014; 61:172-6. [DOI: 10.1016/j.bios.2014.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
43
|
Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. Plant pathogen nanodiagnostic techniques: forthcoming changes? BIOTECHNOL BIOTEC EQ 2014; 28:775-785. [PMID: 26740775 PMCID: PMC4684063 DOI: 10.1080/13102818.2014.960739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/09/2014] [Indexed: 01/17/2023] Open
Abstract
Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens.
Collapse
Affiliation(s)
- Mohammad A Khiyami
- King Abdulaziz City for Science and Technology (KACST) , Riyadh , Saudi Arabia
| | - Hassan Almoammar
- King Abdulaziz City for Science and Technology (KACST) , Riyadh , Saudi Arabia
| | - Yasser M Awad
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University , Ismailia , Egypt
| | - Mousa A Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University , Alquwayiyah , Saudi Arabia
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt; Unit of Excellence in Nano-Molecular Plant Pathology Research (ARC), Giza, Egypt
| |
Collapse
|
44
|
Zhou Z, Li T, Huang H, Chen Y, Liu F, Huang C, Li N. A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality. Chem Commun (Camb) 2014; 50:13373-6. [DOI: 10.1039/c4cc05554c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Garvey G, Shakarisaz D, Ruiz-Ruiz F, Hagström AEV, Raja B, Pascente C, Kar A, Kourentzi K, Rito-Palomares M, Ruchhoeft P, Willson RC. Microretroreflector-sedimentation immunoassays for pathogen detection. Anal Chem 2014; 86:9029-35. [PMID: 25133758 PMCID: PMC4165457 DOI: 10.1021/ac501491t] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Point-of-care detection of pathogens
is medically valuable but
poses challenging trade-offs between instrument complexity and clinical
and analytical sensitivity. Here we introduce a diagnostic platform
utilizing lithographically fabricated micron-scale forms of cubic
retroreflectors, arguably one of the most optically detectable human
artifacts, as reporter labels for use in sensitive immunoassays. We
demonstrate the applicability of this novel optical label in a simple
assay format in which retroreflector cubes are first mixed with the
sample. The cubes are then allowed to settle onto an immuno-capture
surface, followed by inversion for gravity-driven removal of nonspecifically
bound cubes. Cubes bridged to the capture surface by the analyte are
detected using inexpensive, low-numerical aperture optics. For model
bacterial and viral pathogens, sensitivity in 10% human serum was
found to be 104 bacterial cells/mL and 104 virus
particles/mL, consistent with clinical utility.
Collapse
Affiliation(s)
- Gavin Garvey
- Department of Chemical and Biomolecular Engineering, †Materials Engineering Program, ‡Department of Electrical and Computer Engineering, ⊥Department of Biology and Biochemistry, University of Houston , 4800 Calhoun Road, Houston, Texas 77004, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bao G, Bazilevs Y, Chung JH, Decuzzi P, Espinosa HD, Ferrari M, Gao H, Hossain SS, Hughes TJR, Kamm RD, Liu WK, Marsden A, Schrefler B. USNCTAM perspectives on mechanics in medicine. J R Soc Interface 2014; 11:20140301. [PMID: 24872502 PMCID: PMC4208360 DOI: 10.1098/rsif.2014.0301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/07/2014] [Indexed: 01/09/2023] Open
Abstract
Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies.
Collapse
Affiliation(s)
- Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yuri Bazilevs
- Department of Structural Engineering, University of California, San Diego, CA, USA
| | - Jae-Hyun Chung
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Paolo Decuzzi
- Department of Translational Imaging, The Methodist Hospital Research Institute in Houston, Houston, TX 77030, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mauro Ferrari
- Department of Translational Imaging, The Methodist Hospital Research Institute in Houston, Houston, TX 77030, USA
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Shaolie S Hossain
- Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, MC 2-255, Houston, TX 77030, USA
| | - Thomas J R Hughes
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712-1229, USA
| | - Roger D Kamm
- Mechanical Engineering, Biological Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, MA, USA
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Alison Marsden
- Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Bernhard Schrefler
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
48
|
Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce. Food Chem 2014; 150:99-105. [DOI: 10.1016/j.foodchem.2013.10.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 10/09/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
|
49
|
Du S, Guo Z, Chen B, Sha Y, Jiang X, Li X, Gan N, Wang S. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres. Biosens Bioelectron 2014; 53:135-41. [DOI: 10.1016/j.bios.2013.09.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023]
|
50
|
Chandra H, Reddy PJ, Srivastava S. Protein microarrays and novel detection platforms. Expert Rev Proteomics 2014; 8:61-79. [DOI: 10.1586/epr.10.99] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|