1
|
Yuan S, Sun JC, Zhao XM, Zhu J, Zheng SC. Design and Synthesis of C 4-Symmetric Axially Chiral β-Aryl Porphyrins and Application for Supporting Ir(III)-Catalyzed Enantioselective C-H Alkylation. Angew Chem Int Ed Engl 2024; 63:e202404329. [PMID: 38683742 DOI: 10.1002/anie.202404329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
A hitherto unknown class of C4-symmetric Caryl-Cβ (C3, C8, C13, C18) axially chiral porphyrins has been synthesized and the application of their iridium (Ir) complexes in catalytic asymmetric C(sp3)-H functionalization is documented. Cyclotetramerization of enantioenriched axially chiral 2-hydroxymethyl-3-naphthyl pyrroles under mild acidic conditions affords, after oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the C4-symmetric α,α,α,α-atropenantiomer as an only isolable diastereomer. Both regioisomeric Ir(Por*)(CO)(Cl) complexes catalyze the carbene C-H insertion reaction affording the same enantiomer, albeit with slight difference in enantioselectivity. With the optimum Ir-complex 3 e, the 2-substituted arylacetic acid derivatives were generated from diazo compounds and cyclohexadiene in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jun-Chao Sun
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Xiao-Ming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P.R. China
| |
Collapse
|
2
|
Lee WCC, Wang DS, Zhu Y, Zhang XP. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat Chem 2023; 15:1569-1580. [PMID: 37679462 PMCID: PMC10842623 DOI: 10.1038/s41557-023-01317-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Metalloradical catalysis (MRC) exploits the metal-centred radicals present in open-shell metal complexes as one-electron catalysts for the generation of metal-stabilized organic radicals-key intermediates that control subsequent one-electron homolytic reactions. Cobalt(II) complexes of porphyrins, as stable 15e-metalloradicals with a well-defined low-spin d7 configuration, have dominated the ongoing development of MRC. Here, to broaden MRC beyond the use of Co(II)-based metalloradical catalysts, we describe systematic studies that establish the operation of Fe(III)-based MRC and demonstrate an initial application for asymmetric radical transformations. Specifically, we report that five-coordinate iron(III) complexes of porphyrins with an axial ligand, which represent another family of stable 15e-metalloradicals with a d5 configuration, are potent metalloradical catalysts for olefin cyclopropanation with different classes of diazo compounds via a stepwise radical mechanism. This work lays a foundation and mechanistic blueprint for future exploration of Fe(III)-based MRC towards the discovery of diverse stereoselective radical reactions.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
3
|
Epping RF, Vesseur D, Zhou M, de Bruin B. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catal 2023; 13:5428-5448. [PMID: 37123600 PMCID: PMC10127290 DOI: 10.1021/acscatal.3c00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings. The field has matured to employ densely functionalized chiral porphyrin-based platforms that exhibit high enantio-, regio-, and stereoselectivity. Thus far the focus has largely been on cobalt-based systems, but interest has been growing for the past few years to expand the application of carbene radicals to other transition metals. This Perspective covers the advances made since 2011 and gives an overview on the coordination chemistry, reactivity, and catalytic application of carbene radical species using transition metal complexes and catalysts.
Collapse
Affiliation(s)
- Roel F.J. Epping
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Vesseur
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ma C, Wang S, Sheng Y, Zhao XL, Xing D, Hu W. Synthesis and Characterization of Donor-Acceptor Iron Porphyrin Carbenes and Their Reactivities in N-H Insertion and Related Three-Component Reaction. J Am Chem Soc 2023; 145:4934-4939. [PMID: 36811995 DOI: 10.1021/jacs.2c12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Iron porphyrin carbenes (IPCs) have been extensively recognized as the reactive intermediates in various iron porphyrin-catalyzed carbene transfer reactions. While donor-acceptor diazo compounds have been frequently used for such transformations, the structures and reactivities of donor-acceptor IPCs are less explored. To date, no crystal structures of donor-acceptor IPC complexes have been reported, and therefore, the involvement of IPC intermediacy for such transformations lacks direct evidence. Here we report the synthesis and NMR characterization of several donor-acceptor IPC complexes from iron porphyrin and corresponding donor-acceptor diazo compounds. The X-ray crystal structure of an IPC complex derived from a morpholine-substituted diazo amide was obtained. The carbene transfer reactivities of those IPCs were tested by the N-H insertion reactions with aniline or morpholine as well as the three-component reaction with aniline and γ,δ-unsaturated α-keto ester based on electrophilic trapping of an ammonium ylide intermediate. Based on these results, IPCs were identified as the real intermediates for iron porphyrin-catalyzed carbene transfer reactions from donor-acceptor diazo compounds.
Collapse
Affiliation(s)
- Chaoqun Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yuan Sheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Hakey BM, Leary DC, Martinez JC, Darmon JM, Akhmedov NG, Petersen JL, Milsmann C. Carbene Transfer from a Pyridine Dipyrrolide Iron–Carbene Complex: Reversible Migration of a Diphenylcarbene Ligand into an Iron–Nitrogen Bond. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brett M. Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C. Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jordan C. Martinez
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jonathan M. Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
Hakey BM, Leary DC, Xiong J, Harris CF, Darmon JM, Petersen JL, Berry JF, Guo Y, Milsmann C. High Magnetic Anisotropy of a Square-Planar Iron-Carbene Complex. Inorg Chem 2021; 60:18575-18588. [PMID: 34431660 PMCID: PMC9106389 DOI: 10.1021/acs.inorgchem.1c01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among Earth-abundant catalyst systems, iron-carbene intermediates that perform C-C bond forming reactions such as cyclopropanation of olefins and C-H functionalization via carbene insertion are rare. Detailed descriptions of the possible electronic structures for iron-carbene bonds are imperative to obtain better mechanistic insights and enable rational catalyst design. Here, we report the first square-planar iron-carbene complex (MesPDPPh)Fe(CPh2), where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. The compound was prepared via reaction of the disubstituted diazoalkane N2CPh2 with (MesPDPPh)Fe(thf) and represents a rare example of a structurally characterized, paramagnetic iron-carbene complex. Temperature-dependent magnetic susceptibility measurements and applied-field Mössbauer spectroscopic studies revealed an orbitally near-degenerate S = 1 ground state with large unquenched orbital angular momentum resulting in high magnetic anisotropy. Spin-Hamiltonian analysis indicated that this S = 1 spin system has uniaxial magnetic properties arising from a ground MS = ±1 non-Kramers doublet that is well-separated from the MS = 0 sublevel due to very large axial zero-field splitting (D = -195 cm-1, E/D = 0.02 estimated from magnetic susceptibility data). This remarkable electronic structure gives rise to a very large, positive magnetic hyperfine field of more than +60 T for the 57Fe nucleus along the easy magnetization axis observed by Mössbauer spectroscopy. Computational analysis with complete active space self-consistent field (CASSCF) calculations provides a detailed electronic structure analysis and confirms that (MesPDPPh)Fe(CPh2) exhibits a multiconfigurational ground state. The majority contribution originates from a configuration best described as a singlet carbene coordinated to an intermediate-spin FeII center with a (dxy)2{(dxz),(dz2)}3(dyz)1(dx2-y2)0 configuration featuring near-degenerate dxz and dz2 orbitals.
Collapse
Affiliation(s)
- Brett M Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Caleb F Harris
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Cailler LP, Kroitor AP, Martynov AG, Gorbunova YG, Sorokin AB. Selective carbene transfer to amines and olefins catalyzed by ruthenium phthalocyanine complexes with donor substituents. Dalton Trans 2021; 50:2023-2031. [PMID: 33443525 DOI: 10.1039/d0dt04090h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich ruthenium phthalocyanine complexes were evaluated in carbene transfer reactions from ethyl diazoacetate (EDA) to aromatic and aliphatic olefins as well as to a wide range of aromatic, heterocyclic and aliphatic amines for the first time. It was revealed that the ruthenium octabutoxyphthalocyanine carbonyl complex [(BuO)8Pc]Ru(CO) is the most efficient catalyst converting electron-rich and electron-poor aromatic olefins to cyclopropane derivatives with high yields (typically 80-100%) and high TON (up to 1000) under low catalyst loading and nearly equimolar substrate/EDA ratio. This catalyst shows a rare efficiency in the carbene insertion into amine N-H bonds. Using a 0.05 mol% catalyst loading, a high amine concentration (1 M) and 1.1 eq. of EDA, a number of structurally divergent amines were selectively converted to mono-substituted glycine derivatives with up to quantitative yields and turnover numbers reaching 2000. High selectivity, large substrate scope, low catalyst loading and practical reaction conditions place [(BuO)8Pc]Ru(CO) among the most efficient catalysts for the carbene insertion into amines.
Collapse
Affiliation(s)
- Lucie P Cailler
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| | - Andrey P Kroitor
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Alexander G Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia.
| | - Yulia G Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leniskii pr., 31, bldg. 4, 119071 Moscow, Russia. and N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leniskii pr., 31, 11991 Moscow, Russia.
| | - Alexander B Sorokin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 av. A. Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
8
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
9
|
Rodríguez M, Font G, Nadal‐Moradell J, Hernán‐Gómez A, Costas M. Iron‐Catalyzed Intermolecular Functionalization of Non‐Activated Aliphatic C−H Bonds
via
Carbene Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mònica Rodríguez
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus de Montilivi 17071 Girona Spain
| | - Gemma Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus de Montilivi 17071 Girona Spain
| | - Joel Nadal‐Moradell
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus de Montilivi 17071 Girona Spain
| | - Alberto Hernán‐Gómez
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805 Alcalá de Henares-Madrid Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus de Montilivi 17071 Girona Spain
| |
Collapse
|
10
|
Casali E, Gallo E, Toma L. An In-Depth Computational Study of Alkene Cyclopropanation Catalyzed by Fe(porphyrin)(OCH 3) Complexes. The Environmental Effects on the Energy Barriers. Inorg Chem 2020; 59:11329-11336. [PMID: 32799510 PMCID: PMC8009515 DOI: 10.1021/acs.inorgchem.0c00912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron porphyrin methoxy complexes, of the general formula [Fe(porphyrin)(OCH3)], are able to catalyze the reaction of diazo compounds with alkenes to give cyclopropane products with very high efficiency and selectivity. The overall mechanism of these reactions was thoroughly investigated with the aid of a computational approach based on density functional theory calculations. The energy profile for the processes catalyzed by the oxidized [FeIII(Por)(OCH3)] (Por = porphine) as well as the reduced [FeII(Por)(OCH3)]- forms of the iron porphyrin was determined. The main reaction step is the same in both of the cases, that is, the one leading to the terminal-carbene intermediate [Fe(Por)(OCH3)(CHCO2Et)] with simultaneous dinitrogen loss; however, the reduced species performs much better than the oxidized one. Contrarily to the iron(III) profile in which the carbene intermediate is directly obtained from the starting reactant complex, the favored iron(II) process is more intricate. The initially formed reactant adduct between [FeII(Por)(OCH3)]- and ethyl diazoacetate (EDA) is converted into a closer reactant adduct, which is in turn converted into the terminal iron porphyrin carbene [Fe(Por)(OCH3)(CHCO2Et)]-. The two corresponding transition states are almost isoenergetic, thus raising the question of whether the rate-determining step corresponds to dinitrogen loss or to the previous structural and electronic rearrangement. The ethylene addition to the terminal carbene is a downhill process, which, on the open-shell singlet surface, presents a defined but probably short-living diradicaloid intermediate, though other spin-state surfaces do not show this intermediate allowing a direct access to the cyclopropane product. For the crucial stationary points, the more complex catalyst [Fe(2)(OCH3)], in which a sterically hindered chiral bulk is mounted onto the porphyrin, was investigated. The corresponding computational data disclose the very significant effect of the porphyrin skeleton on the reaction energy profile. Though the geometrical features around the reactive core of the system remain unchanged, the energy barriers become much lower, thus revealing the profound effects that can be exerted by the three-dimensional organic scaffold surrounding the reaction site.
Collapse
Affiliation(s)
- Emanuele Casali
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Emma Gallo
- Dipartimento di Chimica, Università di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Lucio Toma
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
11
|
Affiliation(s)
- Vasco F. Batista
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Empel C, Jana S, Koenigs RM. C-H Functionalization via Iron-Catalyzed Carbene-Transfer Reactions. Molecules 2020; 25:molecules25040880. [PMID: 32079259 PMCID: PMC7070285 DOI: 10.3390/molecules25040880] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
The direct C-H functionalization reaction is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. Over time, iron complexes have emerged as versatile catalysts for carbine-transfer reactions with diazoalkanes under mild and sustainable reaction conditions. In this review, we discuss the advances that have been made using iron catalysts to perform C-H functionalization reactions with diazoalkanes. We give an overview of early examples employing stoichiometric iron carbene complexes and continue with recent advances in the C-H functionalization of C(sp2)-H and C(sp3)-H bonds, concluding with the latest developments in enzymatic C-H functionalization reactions using iron-heme-containing enzymes.
Collapse
|
13
|
Weissenborn MJ, Koenigs RM. Iron‐porphyrin Catalyzed Carbene Transfer Reactions – an Evolution from Biomimetic Catalysis towards Chemistry‐inspired Non‐natural Reactivities of Enzymes. ChemCatChem 2020. [DOI: 10.1002/cctc.201901565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry Weinberg 3 Halle 06120 Germany
- Institute of ChemistryMartin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 Halle 06120 Germany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| |
Collapse
|
14
|
Damiano C, Sonzini P, Gallo E. Iron catalysts with N-ligands for carbene transfer of diazo reagents. Chem Soc Rev 2020; 49:4867-4905. [DOI: 10.1039/d0cs00221f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of the catalytic activity of iron complexes of nitrogen ligands in driving carbene transfers towards CC, C–H and X–H bonds. The reactivity of diazo reagents is discussed as well as the proposed reaction mechanisms.
Collapse
Affiliation(s)
| | - Paolo Sonzini
- Department of Chemistry
- University of Milan
- 20133 Milan
- Italy
| | - Emma Gallo
- Department of Chemistry
- University of Milan
- 20133 Milan
- Italy
| |
Collapse
|
15
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
16
|
Cailler LP, Clémancey M, Barilone J, Maldivi P, Latour JM, Sorokin AB. Comparative Study of the Electronic Structures of μ-Oxo, μ-Nitrido, and μ-Carbido Diiron Octapropylporphyrazine Complexes and Their Catalytic Activity in Cyclopropanation of Olefins. Inorg Chem 2019; 59:1104-1116. [DOI: 10.1021/acs.inorgchem.9b02718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lucie P. Cailler
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne cedex, France
| | - Martin Clémancey
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Jessica Barilone
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, Grenoble 38000, France
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Pascale Maldivi
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, Grenoble 38000, France
| | - Jean-Marc Latour
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, Grenoble 38000, France
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256, CNRS - Université Lyon 1, 2 avenue A. Einstein, 69626 Villeurbanne cedex, France
| |
Collapse
|
17
|
Carminati DM, Fasan R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal 2019; 9:9683-9697. [PMID: 32257582 DOI: 10.1021/acscatal.9b02272] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% de and ee). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.
Collapse
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
18
|
Zhang Y. Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions. Chemistry 2019; 25:13231-13247. [DOI: 10.1002/chem.201901984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology 1 Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
19
|
Moore EJ, Fasan R. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Tetrahedron 2019; 75:2357-2363. [PMID: 31133770 PMCID: PMC6534480 DOI: 10.1016/j.tet.2019.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineered myoglobins were recently shown to be effective catalysts for abiological carbene and nitrene transfer reactions. Here, we investigated the impact of substituting the conserved heme-coordinating histidine residue with both proteinogenic (Cys, Ser, Tyr, Asp) and non-proteinogenic Lewis basic amino acids (3-(3'-pyridyl)-alanine, p-aminophenylalanine, and β-(3-thienyl)-alanine), on the reactivity of this metalloprotein toward these abiotic transformations. These studies showed that mutation of the proximal histidine residue with both natural and non-natural amino acids result in stable myoglobin variants that can function as both carbene and nitrene transferases. In addition, substitution of the proximal histidine with an aspartate residue led to a myoglobin-based catalyst capable of promoting stereoselective olefin cyclopropanation under nonreducing conditions. Overall, these studies demonstrate that proximal ligand substitution provides a promising strategy to tune the reactivity of myoglobin-based carbene and nitrene transfer catalysts and provide a first, proof-of-principle demonstration of the viability of pyridine-, thiophene-, and aniline-based unnatural amino acids for metalloprotein engineering.
Collapse
Affiliation(s)
- Eric J Moore
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
20
|
Tinoco A, Wei Y, Bacik JP, Carminati DM, Moore EJ, Ando N, Zhang Y, Fasan R. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. ACS Catal 2019; 9:1514-1524. [PMID: 31134138 DOI: 10.1021/acscatal.8b04073] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in metalloprotein engineering have led to the development of a myoglobin-based catalyst, Mb(H64V,V68A), capable of promoting the cyclopropanation of vinylarenes with high efficiency and high diastereo- and enantioselectivity. Whereas many enzymes evolved in nature often exhibit catalytic proficiency and exquisite stereoselectivity, how these features are achieved for a non-natural reaction has remained unclear. In this work, the structural determinants responsible for chiral induction and high stereocontrol in Mb(H64V,V68A)-catalyzed cyclopropanation were investigated via a combination of crystallographic, computational (DFT), and structure-activity analyses. Our results show the importance of steric complementarity and non-covalent interactions involving first-sphere active site residues, heme-carbene, and the olefin substrate, in dictating the stereochemical outcome of the cyclopropanation reaction. High stereocontrol is achieved through two major mechanisms. First, by enforcing a specific conformation of the heme-bound carbene within the active site. Second, by controlling the geometry of attack of the olefin on the carbene via steric occlusion, attractive van der Waals forces and protein-mediated π-π interactions with the olefin substrate. These insights could be leveraged to expand the substrate scope of the myoglobin-based cyclopropanation catalyst toward non-activated olefins and to increase its cyclopropanation activity in the presence of a bulky α-diazo-ester. This work sheds first light into the origin of enzyme-catalyzed enantioselective cyclopropanation, furnishing a mechanistic framework for both understanding the reactivity of current systems and guiding the future development of biological catalysts for this class of synthetically important, abiotic transformations.
Collapse
Affiliation(s)
- Antonio Tinoco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - John-Paul Bacik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Eric J. Moore
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
21
|
Torrent-Sucarrat M, Arrastia I, Arrieta A, Cossío FP. Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
- Ikerbasque, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Iosune Arrastia
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| | - Ana Arrieta
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
| | - Fernando P. Cossío
- Department of Organic Chemistry I, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO−CINQA), Manuel Lardizabal Ibilbidea 3, 20018 San Sebastián/Donostia, Spain
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 San Sebastián/Donostia, Spain
| |
Collapse
|
22
|
Yazdely TM, Ghorbanloo M, Hosseini-Monfared H. Polymeric ionic liquid material-anchored Mn-porphyrin anion: Heterogeneous catalyst for aerobic oxidation of olefins. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tahereh Mokary Yazdely
- Department of Chemistry, Faculty of Science; University of Zanjan; 45371-38791 Zanjan Iran
| | - Massomeh Ghorbanloo
- Department of Chemistry, Faculty of Science; University of Zanjan; 45371-38791 Zanjan Iran
| | | |
Collapse
|
23
|
Thomas KE, McCormick LJ, Carrié D, Vazquez-Lima H, Simonneaux G, Ghosh A. Halterman Corroles and Their Use as a Probe of the Conformational Dynamics of the Inherently Chiral Copper Corrole Chromophore. Inorg Chem 2018; 57:4270-4276. [PMID: 29608308 DOI: 10.1021/acs.inorgchem.7b02767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Halterman corroles have been synthesized for the first time from pyrrole and Halterman's aldehyde via Gryko's "water-methanol method". These were derivatized to the corresponding copper complexes and subsequently to the β-octabromo complexes. Electronic circular dichroism spectra were recorded for the enantiopure copper complexes, affording the first such measurements for the inherently chiral Cu corrole chromophore. Interestingly, for a given configuration of the Halterman substituents, X-ray crystallographic studies revealed both P and M conformations of the Cu-corrole core, proving that the substituents, even in conjunction with β-octabromination, are unable to lock the Cu-corrole core into a given chirality. The overall body of evidence strongly indicates a dynamic equilibrium between the P and M conformations. Such an interconversion, which presumably proceeds via saddling inversion, provides a rationale for our failure so far to resolve sterically hindered Cu corroles into their constituent enantiomers by means of chiral HPLC.
Collapse
Affiliation(s)
- Kolle E Thomas
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Laura J McCormick
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720-8229 , United States
| | - Daniel Carrié
- Institut des Sciences Chimiques de Rennes, UMR 6226 , Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes , France
| | - Hugo Vazquez-Lima
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Gérard Simonneaux
- Institut des Sciences Chimiques de Rennes, UMR 6226 , Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes , France
| | - Abhik Ghosh
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
24
|
Wei Y, Tinoco A, Steck V, Fasan R, Zhang Y. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. J Am Chem Soc 2018; 140:1649-1662. [PMID: 29268614 PMCID: PMC5875692 DOI: 10.1021/jacs.7b09171] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Catalytic carbene
transfer to olefins is a useful approach to synthesize
cyclopropanes, which are key structural motifs in many drugs and biologically
active natural products. While catalytic methods for olefin cyclopropanation
have largely relied on rare transition-metal-based catalysts, recent
studies have demonstrated the promise and synthetic value of iron-based
heme-containing proteins for promoting these reactions with excellent
catalytic activity and selectivity. Despite this progress, the mechanism
of iron-porphyrin and hemoprotein-catalyzed olefin cyclopropanation
has remained largely unknown. Using a combination of quantum chemical
calculations and experimental mechanistic analyses, the present study
shows for the first time that the increasingly useful C=C functionalizations
mediated by heme carbenes feature an FeII-based, nonradical,
concerted nonsynchronous mechanism, with early transition state character.
This mechanism differs from the FeIV-based, radical, stepwise
mechanism of heme-dependent monooxygenases. Furthermore, the effects
of the carbene substituent, metal coordinating axial ligand, and porphyrin
substituent on the reactivity of the heme carbenes was systematically
investigated, providing a basis for explaining experimental reactivity
results and defining strategies for future catalyst development. Our
results especially suggest the potential value of electron-deficient
porphyrin ligands for increasing the electrophilicity and thus the
reactivity of the heme carbene. Metal-free reactions were also studied
to reveal temperature and carbene substituent effects on catalytic
vs noncatalytic reactions. This study sheds new light into the mechanism
of iron-porphyrin and hemoprotein-catalyzed cyclopropanation reactions
and it is expected to facilitate future efforts toward sustainable
carbene transfer catalysis using these systems.
Collapse
Affiliation(s)
- Yang Wei
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology , 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States of America
| | - Antonio Tinoco
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Viktoria Steck
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Rudi Fasan
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States of America
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology , 1 Castle Point on Hudson, Hoboken, New Jersey 07030, United States of America
| |
Collapse
|
25
|
Khade RL, Zhang Y. C-H Insertions by Iron Porphyrin Carbene: Basic Mechanism and Origin of Substrate Selectivity. Chemistry 2017; 23:17654-17658. [PMID: 29071754 DOI: 10.1002/chem.201704631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 11/09/2022]
Abstract
Recent experimental reports of heme carbene C-H insertions show promising results for sustainable chemistry due to good yield and selectivity, low cost of iron, and low/no toxicity of hemes. But mechanistic details are mostly unknown. Despite structural similarity and isoelectronic nature between heme carbene and the FeIV =O intermediate, our quantum chemical studies with detailed geometric and electronic information for the first time reveal an FeII -based, concerted, hydride-transfer mechanism, which is different from the FeIV -based stepwise hydrogen atom transfer mechanism for C-H functionalization by native heme enzymes. A trend of broad range experimental C-H insertion yields (0-88 %) of five different C-H bonds, including mostly non-functionalized moieties, was well reproduced. Results suggest that the substrate selectivity originates from the hydride formation capability. The predicted kinetic isotope effects were also in excellent agreement with experiment. Useful geometry, charge, and energy parameters well correlated with barriers were reported. These results provide the first theoretical evidence that carbene formation is the overall rate-limiting step, and suggest a key role of the formation of strong electrophilic heme carbene in developing heme-based C-H insertion catalysts and biocatalysts.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
| |
Collapse
|
26
|
Sreenilayam G, Moore EJ, Steck V, Fasan R. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catal 2017; 7:7629-7633. [PMID: 29576911 DOI: 10.1021/acscatal.7b02583] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myoglobin has recently emerged as a promising biocatalyst for catalyzing carbene-mediated cyclopropanation, a synthetically valuable transformation not found in nature. Having naturally evolved for binding dioxygen, the carbene transferase activity of this metalloprotein is severely inhibited by it, imposing the need for strictly anaerobic conditions to conduct these reactions. In this report, we describe how substitution of the native heme cofactor with an iron-chlorin e6 complex enabled the development of a biocatalyst capable of promoting the cyclopropanation of vinylarenes with high catalytic efficiency (up to 6,970 TON), turnover rate (>2,000 turnovers/min), and stereoselectivity (up to 99% de and ee) in the presence of oxygen. The artificial metalloenzyme can be recombinantly expressed in bacterial cells, enabling its application also in the context of whole-cell biotransformations. This work makes available a robust and easy-to-use oxygen-tolerant biocatalyst for asymmetric cyclopropanations and demonstrates the value of porphyrin ligand substitution as a strategy for tuning and enhancing the catalytic properties of hemoproteins in the context of abiological reactions.
Collapse
Affiliation(s)
| | - Eric J. Moore
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
27
|
Liu P, Zhu C, Xu G, Sun J. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines. Org Biomol Chem 2017; 15:7743-7746. [DOI: 10.1039/c7ob02115a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed formal [4 + 1]-cycloaddition of diazo compounds with hexahydro-1,3,5-triazines has been achieved.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Chenghao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
28
|
Designing ‘Totem’C2-Symmetrical Iron Porphyrin Catalysts for Stereoselective Cyclopropanations. Chemistry 2016; 22:13599-612. [DOI: 10.1002/chem.201602289] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 11/07/2022]
|
29
|
Rybicka-Jasińska K, Ciszewski ŁW, Gryko DT, Gryko D. C–C bond forming reactions catalyzed by chiral metalloporphyrins. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrins are abundant in nature facilitating many enzymatic reactions by being present in the active sites of many enzymes. Consequently, over the years, a number of chiral metalloporphyrins have been synthesized and have proved efficient in catalyzing C–C bond forming reactions. Herein, we review the synthesis of chiral metalloporphyrins and their catalytic activity in cyclopropanation, cyclopropenation, and C–H insertion reactions.
Collapse
Affiliation(s)
| | - Łukasz W. Ciszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Affiliation(s)
- Yaya Duan
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Hong Lin
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott’s
Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
31
|
Hyster TK, Ward TR. Genetische Optimierung von Metalloenzymen: Weiterentwicklung von Enzymen für nichtnatürliche Reaktionen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508816] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Todd K. Hyster
- Department of Chemistry; Princeton University; Princeton NJ 08544 USA
| | - Thomas R. Ward
- Departement Chemie; Universität Basel; Spitalstrasse 51 CH-4056 Basel Schweiz
| |
Collapse
|
32
|
Hyster TK, Ward TR. Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions. Angew Chem Int Ed Engl 2016; 55:7344-57. [PMID: 26971363 DOI: 10.1002/anie.201508816] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Indexed: 12/30/2022]
Abstract
Artificial metalloenzymes have received increasing attention over the last decade as a possible solution to unaddressed challenges in synthetic organic chemistry. Whereas traditional transition-metal catalysts typically only take advantage of the first coordination sphere to control reactivity and selectivity, artificial metalloenzymes can modulate both the first and second coordination spheres. This difference can manifest itself in reactivity profiles that can be truly unique to artificial metalloenzymes. This Review summarizes attempts to modulate the second coordination sphere of artificial metalloenzymes by using genetic modifications of the protein sequence. In doing so, successful attempts and creative solutions to address the challenges encountered are highlighted.
Collapse
Affiliation(s)
- Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland.
| |
Collapse
|
33
|
Gober JG, Rydeen AE, Gibson-O'Grady EJ, Leuthaeuser JB, Fetrow JS, Brustad EM. Mutating a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropanation. Chembiochem 2016; 17:394-7. [PMID: 26690878 PMCID: PMC5241096 DOI: 10.1002/cbic.201500624] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 11/07/2022]
Abstract
Cytochrome P450s and other heme-containing proteins have recently been shown to have promiscuous activity for the cyclopropanation of olefins using diazoacetate reagents. Despite the progress made thus far, engineering selective catalysts for all possible stereoisomers for the cyclopropanation reaction remains a considerable challenge. Previous investigations of a model P450 (P450BM3 ) revealed that mutation of a conserved active site threonine (Thr268) to alanine transformed the enzyme into a highly active and selective cyclopropanation catalyst. By incorporating this mutation into a diverse panel of P450 scaffolds, we were able to quickly identify enantioselective catalysts for all possible diastereomers in the model reaction of styrene with ethyl diazoacetate. Some alanine variants exhibited selectivities that were markedly different from the wild-type enzyme, with a few possessing moderate to high diastereoselectivity and enantioselectivities up to 97 % for synthetically challenging cis-cyclopropane diastereomers.
Collapse
Affiliation(s)
- Joshua G Gober
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd CB 3290, Chapel Hill, NC, 27599-3290, USA
| | - Amy E Rydeen
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd CB 3290, Chapel Hill, NC, 27599-3290, USA
| | - Evan J Gibson-O'Grady
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd CB 3290, Chapel Hill, NC, 27599-3290, USA
| | - Janelle B Leuthaeuser
- Department of Molecular Genetics and Genomics, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jacquelyn S Fetrow
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, 28 Westhampton Way, Richmond, VA, 23173, USA
| | - Eric M Brustad
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Rd CB 3290, Chapel Hill, NC, 27599-3290, USA.
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
34
|
Cyclopropanation reactions catalysed by dendrimers possessing one metalloporphyrin active site at the core: linear and sigmoidal kinetic behaviour for different dendrimer generations. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Intrieri D, Carminati DM, Gallo E. The ligand influence in stereoselective carbene transfer reactions promoted by chiral metal porphyrin catalysts. Dalton Trans 2016; 45:15746-15761. [DOI: 10.1039/c6dt02094a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Perspective illustrates the state-of-the-art of stereoselective carbene transfer reactions catalysed by chiral metal porphyrin complexes. A particular attention is focused on the active role of the porphyrin ligand to drive the carbene insertion into the target organic skeleton.
Collapse
Affiliation(s)
| | | | - Emma Gallo
- Chemistry Department of Milan University
- 20133 Milan
- Italy
| |
Collapse
|
36
|
Khade RL, Zhang Y. Catalytic and Biocatalytic Iron Porphyrin Carbene Formation: Effects of Binding Mode, Carbene Substituent, Porphyrin Substituent, and Protein Axial Ligand. J Am Chem Soc 2015; 137:7560-3. [PMID: 26067900 PMCID: PMC4482416 DOI: 10.1021/jacs.5b03437] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 11/28/2022]
Abstract
Iron porphyrin carbenes (IPCs) are important intermediates in various chemical reactions catalyzed by iron porphyrins and engineered heme proteins, as well as in the metabolism of various xenobiotics by cytochrome P450. However, there are no prior theoretical reports to help understand their formation mechanisms and identify key information governing the binding mode, formation feasibility, and stability/reactivity. A systematic quantum chemical study was performed to investigate the effects of carbene substituent, porphyrin substituent, and axial ligand on IPC formation pathways. Results not only are consistent with available experimental data but also provide a number of unprecedented insights into electronic, steric, and H-bonding effects of various structural factors on IPC formation mechanisms. These results shall facilitate research on IPC and related systems for sustainable chemical catalysis and biocatalysis.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| |
Collapse
|
37
|
Affiliation(s)
- Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
38
|
|
39
|
Shen JJ, Zhu SF, Cai Y, Xu H, Xie XL, Zhou QL. Enantioselective iron-catalyzed intramolecular cyclopropanation reactions. Angew Chem Int Ed Engl 2014; 53:13188-91. [PMID: 25283384 DOI: 10.1002/anie.201406853] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/15/2014] [Indexed: 12/30/2022]
Abstract
An iron-catalyzed asymmetric intramolecular cyclopropanation was realized in high yields and excellent enantioselectivity (up to 97% ee) by using the iron complexes of chiral spiro-bisoxazoline ligands as catalysts. The superiority of iron catalysts exhibited in this reaction demonstrated the potential abilities of this sustainable metal in asymmetric carbenoid transformation reactions.
Collapse
Affiliation(s)
- Jun-Jie Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China)
| | | | | | | | | | | |
Collapse
|
40
|
Gallo E, Rose E, Boitrel B, Legnani L, Toma L. DFT Conformational Studies of Chiral Bis-Binaphthyl Porphyrins and Their Metal Complexes Employed as Cyclopropanation Catalysts. Organometallics 2014. [DOI: 10.1021/om500746q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emma Gallo
- Dipartimento
di Chimica, Università di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eric Rose
- IPCM,
UMR CNRS 7201, Université P. et M. Curie, UPMC Paris 06, Bâtiment
F, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Bernard Boitrel
- Institut
des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, 263 avenue du Général Leclerc, CS
74205, 35042 Rennes Cedex, France
| | - Laura Legnani
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Lucio Toma
- Dipartimento
di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
41
|
Shen JJ, Zhu SF, Cai Y, Xu H, Xie XL, Zhou QL. Enantioselective Iron-Catalyzed Intramolecular Cyclopropanation Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
|
43
|
Khade RL, Fan W, Ling Y, Yang L, Oldfield E, Zhang Y. Iron porphyrin carbenes as catalytic intermediates: structures, Mössbauer and NMR spectroscopic properties, and bonding. Angew Chem Int Ed Engl 2014; 53:7574-8. [PMID: 24910004 DOI: 10.1002/anie.201402472] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/08/2014] [Indexed: 11/07/2022]
Abstract
Iron porphyrin carbenes (IPCs) are thought to be intermediates involved in the metabolism of various xenobiotics by cytochrome P450, as well as in chemical reactions catalyzed by metalloporphyrins and engineered P450s. While early work proposed IPCs to contain Fe(II), more recent work invokes a double-bond description of the iron-carbon bond, similar to that found in Fe(IV) porphyrin oxenes. Reported herein is the first quantum chemical investigation of IPC Mössbauer and NMR spectroscopic properties, as well as their electronic structures, together with comparisons to ferrous heme proteins and an Fe(IV) oxene model. The results provide the first accurate predictions of the experimental spectroscopic observables as well as the first theoretical explanation of their electrophilic nature, as deduced from experiment. The preferred resonance structure is Fe(II)←{:C(X)Y}(0) and not Fe(IV)={C(X)Y}(2-), a result that will facilitate research on IPC reactivities in various chemical and biochemical systems.
Collapse
Affiliation(s)
- Rahul L Khade
- Department of Chemistry, Chemical Biology, and Biomedical, Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (USA)
| | | | | | | | | | | |
Collapse
|
44
|
Khade RL, Fan W, Ling Y, Yang L, Oldfield E, Zhang Y. Iron Porphyrin Carbenes as Catalytic Intermediates: Structures, Mössbauer and NMR Spectroscopic Properties, and Bonding. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Ma C, Xing D, Zhai C, Che J, Liu S, Wang J, Hu W. Iron porphyrin-catalyzed three-component reaction of ethyl diazoacetate with aliphatic amines and β,γ-unsaturated α-keto esters. Org Lett 2013; 15:6140-3. [PMID: 24251920 DOI: 10.1021/ol403011r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An iron porphyrin-catalyzed three-component reaction of ethyl diazoacetate with aliphatic amines and β,γ-unsaturated α-keto esters is reported. The use of iron porphyrin catalyst allows aliphatic amines to be used as the substrate without encountering catalyst poisoning issue and a series of β-hydroxy-α-amino esters are produced in high yields with excellent regioselectivities.
Collapse
Affiliation(s)
- Chaoqun Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University , 3663 North Zhongshan Rd., Shanghai 200062, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Roiban GD, Reetz MT. Enzympromiskuität: ein P450-Enzym als Carbentransferkatalysator. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Roiban GD, Reetz MT. Enzyme promiscuity: using a P450 enzyme as a carbene transfer catalyst. Angew Chem Int Ed Engl 2013; 52:5439-40. [PMID: 23592495 DOI: 10.1002/anie.201301083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Gheorghe-Doru Roiban
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
48
|
|
49
|
Wang P, Ling L, Liao SH, Zhu JB, Wang SR, Li YX, Tang Y. Reactions of Iron Carbenes with α,β-Unsaturated Esters by Using an Umpolung Approach: Mechanism and Applications. Chemistry 2013; 19:6766-73. [DOI: 10.1002/chem.201204182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/21/2013] [Indexed: 11/10/2022]
|
50
|
Affiliation(s)
- Kovuru Gopalaiah
- Department
of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|