1
|
Gravelle S, Holm C, Schlaich A. Transport of thin water films: from thermally activated random walks to hydrodynamics. J Chem Phys 2022; 157:104702. [DOI: 10.1063/5.0099646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Under ambient atmospheric conditions, a thin film of water wets many solid surfaces, including insulators, ice, and salt. The film thickness as well as its transport behavior sensitively depend on the surrounding humidity. Understanding this intricate interplay is of highest relevance for water transport through porous media, particularly in the context of soil salinization induced by evaporation. Here, we use molecular simulations to evaluate the transport properties of thin water films on prototypical salt and soil interfaces, namely NaCl and silica solid surfaces. Our results showtwo distinct regimes for water transport: at low water coverage, the film permeance scales linearly with the adsorbed amount, in agreement with the activated random walk model.For thicker water films, the permeance scales as the adsorbed amount to the power of 3, in line with the Stokes equation. By comparing results obtained for silica and NaCl surfaces, we find that, at low water coverage, water permeance at the silica surface is considerably lower than at the NaCl surface, which we attribute to difference in hydrogen bonding. We also investigate the effect of atomic surface defects on the transport properties. Finally, in the context of water transport through porous material, we determine the humidity-dependent crossover between a vapor dominated and a thin film dominated transport regimes depending on the pore size.
Collapse
Affiliation(s)
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Germany
| | | |
Collapse
|
2
|
Domański Z, Grzybowski AZ. Simulation Study of Chain-like Body Translocation through Conical Pores in Thick Membranes. MEMBRANES 2022; 12:membranes12020138. [PMID: 35207060 PMCID: PMC8878698 DOI: 10.3390/membranes12020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Artificial membranes with conical pores and controllable thickness reveal ionic-transport capabilities that are superior compared with those offered by cylindrical pores. By simulating the translocation of an abstract chain-like body through a conical pore in a membrane with a variable thickness, we formulate a statistical model of the translocation time τ. Our rough model encodes the biochemical details of a given real chain-like molecule as evolving sequences of the allowed chain-like body’s conformations. In our simulation experiments, we focus primarily on pore geometry and kinetic aspects of the translocation process. We study the impact of the membrane thickness L, and both conical-pore diameters ϕcis,ϕtrans on the probability distribution of τ. We have found that for all considered simulation setups, the randomness of τ is accurately described by the family of Moyal distributions while its expected value τ is proportional to Lξ, with ξ being dependent on ϕcis,ϕtrans.
Collapse
|
3
|
Riza Putra B, Tshwenya L, Buckingham MA, Chen J, Jeremiah Aoki K, Mathwig K, Arotiba OA, Thompson AK, Li Z, Marken F. Microscale Ionic Diodes: An Overview. ELECTROANAL 2021. [DOI: 10.1002/elan.202060614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Budi Riza Putra
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
- Department of Chemistry Faculty of Mathematics and Natural Sciences Bogor Agricultural University Bogor, West Java Indonesia
| | - Luthando Tshwenya
- Department of Chemical Sciences University of Johannesburg Johannesburg, Doornfontein 2028 South Africa
| | - Mark A. Buckingham
- Department of Chemistry Britannia House King's College London London SE1 1DB UK
| | - Jingyuan Chen
- University of Fukui Department of Applied Physics 3-9-1 Bunkyo Fukui 9100017 Japan
| | - Koichi Jeremiah Aoki
- University of Fukui Department of Applied Physics 3-9-1 Bunkyo Fukui 9100017 Japan
| | - Klaus Mathwig
- Stichting imec Nederland within OnePlanet Research Center Bronland 10 6708 WH Wageningen Netherlands
| | - Omotayo A. Arotiba
- Department of Chemical Sciences University of Johannesburg Johannesburg, Doornfontein 2028 South Africa
- Centre for Nanomaterials Science Research University of Johannesburg South Africa
| | | | - Zhongkai Li
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
| | - Frank Marken
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
| |
Collapse
|
4
|
Blonskaya I, Lizunov N, Olejniczak K, Orelovich O, Yamauchi Y, Toimil-Molares M, Trautmann C, Apel P. Elucidating the roles of diffusion and osmotic flow in controlling the geometry of nanochannels in asymmetric track-etched membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Liu YL, Zhu J, Weng GJ, Li JJ, Zhao JW. Gold nanotubes: synthesis, properties and biomedical applications. Mikrochim Acta 2020; 187:612. [PMID: 33064202 DOI: 10.1007/s00604-020-04460-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
This review (with 106 references) summarizes the latest progress in the synthesis, properties and biomedical applications of gold nanotubes (AuNTs). Following an introduction into the field, a first large section covers two popular AuNTs synthesis methods. The hard template method introduces anodic alumina oxide template (AAO) and track-etched membranes (TeMs), while the sacrificial template method based on galvanic replacement introduces bimetallic, trimetallic AuNTs and AuNT-semiconductor hybrid materials. Then, the factors affecting the morphology of AuNTs are discussed. The next section covers their unique surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and their catalytic properties. This is followed by overviews on the applications of AuNTs in biosensors, protein transportation, photothermal therapy and imaging. Several tables are presented that give an overview on the wealth of synthetic methods, morphology factors and biological application. A concluding section summarizes the current status, addresses current challenges and gives an outlook on potential applications of AuNTs in biochemical detection and drug delivery.Graphical abstract.
Collapse
Affiliation(s)
- Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Chen X, Wang C, Roozbahani GM, Chang HC, Guan X. Chemically functionalized conical PET nanopore for protein detection at the single-molecule level. Biosens Bioelectron 2020; 165:112289. [PMID: 32729470 DOI: 10.1016/j.bios.2020.112289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
Proteins are essential for all living organisms, and perform a wide variety of functions in the cell and human body, including structural, mechanical, biochemical, and signaling. Since proteins can serve as valuable biomarkers for health status and diseases states, and enable personalized medicine, sensitive and rapid detection of proteins is of paramount importance. Herein, we report a chemically functionalized conical shaped poly-(ethylene terephthalate) nanopore (PET nanopore) as a stochastic sensing element for detection of proteins at the single-molecule level. We demonstrate that the PET nanopore sensor is not only sensitive and selective, but also can differentiate proteins rapidly, offering the potential for label-free protein detection and characterization. Our developed PET nanopore sensing strategy not only provides a general platform for exploring fundamental protein dynamics and rapid detection of proteins at the single-molecule level, but also opens new avenues toward advanced deeper understanding of enzymes, development of more efficient biosensing technologies, and constructing novel biomimetic nanopore systems.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Golbarg M Roozbahani
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL, 60616, USA.
| |
Collapse
|
7
|
Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts 2019. [DOI: 10.3390/catal9090737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study considers the effect of various doses of electron irradiation on the crystal structure and properties of composite catalysts based on polyethylene terephthalate track-etched membranes and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and irradiated with electrons with 3.8 MeV energy in the dose range of 100–250 kGy in increments of 50 kGy. The original and irradiated samples of composites were investigated by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The improved catalytic activity of composite membranes with copper nanotubes was demonstrated by the example of the reduction reaction of p-nitrophenol in the presence of sodium borohydride. Irradiation with electrons at doses of 100 and 150 kGy led to reaction rate constant increases by 35 and 59%, respectively, compared to the non-irradiated sample. This enhancing catalytic activity could be attributed to the changing of the crystallite size of copper, as well as the surface roughness of the composite membrane.
Collapse
|
8
|
Apel PY. Fabrication of functional micro- and nanoporous materials from polymers modified by swift heavy ions. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Apel PY, Bobreshova OV, Volkov AV, Volkov VV, Nikonenko VV, Stenina IA, Filippov AN, Yampolskii YP, Yaroslavtsev AB. Prospects of Membrane Science Development. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619020021] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging Nanopores with Analyte Scope and Environment. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00092-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Park T, Lee SJ, Cha JH, Choi W. Scalable fabrication of nanopores in membranes via thermal annealing of Au nanoparticles. NANOSCALE 2018; 10:22623-22634. [PMID: 30484792 DOI: 10.1039/c8nr06441e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanopores are promising candidates for versatile sensing of micro- and nanomaterials. However, the fabrication of isolated nanopores with optimal dimensions and distributions requires complex processes that involve the use of high-cost equipment. Herein, we report a scalable fabrication of isolated conical nanopores with adjustable dimensions and distribution densities on a Si3N4 membrane via thermal annealing of Au nanoparticles (AuNPs). The AuNP-dispersed solution was dropped and evaporated on the membrane, while the pH value and concentration of AuNPs controlled the zeta potential difference and the distribution density of the attached AuNPs. The optimized thermal annealing directly fabricated conical nanopores at the positions of the AuNPs because of the quasi-liquid state of the AuNPs and their interaction with the Si3N4 lattices. The 50, 100, and 200 nm AuNPs enabled one-step fabrication of 8-, 26-, and 63 nm nanopores, while the inter-distances and distribution densities were controllable over the membrane. The physicochemical analyses elucidated the underlying mechanisms of direct nanopore formation, and the precise adjustment of thermal annealing developed three unique nanopores that differently interacted with the AuNPs: (1) Au-residue-embedded nanopores, (2) isolated nanopores, and (3) nanopores with the remaining Au droplet. The AuNPs-driven fabrication of versatile nanopore membranes enables new applications for sensing and transporting small-scale materials.
Collapse
Affiliation(s)
- Taeyoung Park
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | | | | | | |
Collapse
|
12
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
13
|
Wang Y, Shan X, Tao N. Emerging tools for studying single entity electrochemistry. Faraday Discuss 2018; 193:9-39. [PMID: 27722354 DOI: 10.1039/c6fd00180g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemistry studies charge transfer and related processes at various microscopic structures (atomic steps, islands, pits and kinks on electrodes), and mesoscopic materials (nanoparticles, nanowires, viruses, vesicles and cells) made by nature and humans, involving ions and molecules. The traditional approach measures averaged electrochemical quantities of a large ensemble of these individual entities, including the microstructures, mesoscopic materials, ions and molecules. There is a need to develop tools to study single entities because a real system is usually heterogeneous, e.g., containing nanoparticles with different sizes and shapes. Even in the case of "homogeneous" molecules, they bind to different microscopic structures of an electrode, assume different conformations and fluctuate over time, leading to heterogeneous reactions. Here we highlight some emerging tools for studying single entity electrochemistry, discuss their strengths and weaknesses, and provide personal views on the need for tools with new capabilities for further advancing single entity electrochemistry.
Collapse
Affiliation(s)
- Yixian Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Xiaonan Shan
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Pérez-Mitta G, Peinetti AS, Cortez ML, Toimil-Molares ME, Trautmann C, Azzaroni O. Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties. NANO LETTERS 2018; 18:3303-3310. [PMID: 29697265 DOI: 10.1021/acs.nanolett.8b01281] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | - Ana S Peinetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Technische Universität Darmstadt , 64287 Darmstadt , Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina
| |
Collapse
|
15
|
Das RN, Kumar YP, Kumar SA, Schütte OM, Steinem C, Dash J. Self-Assembly of a Guanosine Derivative To Form Nanostructures and Transmembrane Channels. Chemistry 2018; 24:4002-4005. [DOI: 10.1002/chem.201800205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Rabindra Nath Das
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Y. Pavan Kumar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - S. Arun Kumar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Ole Mathis Schütte
- Institute for Organic and Biomolecular Chemistry; Georg August University Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry; Georg August University Göttingen; Tammannstr. 2 37077 Göttingen Germany
| | - Jyotirmayee Dash
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| |
Collapse
|
16
|
Apel PY, Bashevoy VV, Blonskaya IV, Lizunov NE, Orelovitch OL, Trautmann C. Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Phys Chem Chem Phys 2018; 18:25421-25433. [PMID: 27722562 DOI: 10.1039/c6cp05465j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The method of producing single track-etched conical nanopores has received considerable attention and found many applications in diverse fields such as biosensing, nanofluidics, information processing and others. The performance of an asymmetric nanopore is largely determined by its geometry, especially by the size and shape of its tip. In this paper we reconstruct the profiles of so-called conical pores fabricated by asymmetric chemical etching of ion tracks in polymer foil. Conductometric measurements during etching and field emission scanning electron microscopy examinations of the resulting pores were employed in order to determine the pore geometry. We demonstrate that the pore constriction geometry evolves through a variety of configurations with advancing time after breakthrough. While immediately after breakthrough the pore tips are trumpet-shaped, further etching is strongly affected by osmotic effects which eventually lead to bullet-shaped pore tips. We evidence that the osmotic flow appearing during asymmetric track etching has a determinative effect on pore formation. A convection-diffusion model is presented that semi-quantitatively explains the effect of osmotic processes under asymmetric track etching conditions. In addition, a phenomenon of reagent contaminant precipitation in nanopores is reported and discussed.
Collapse
Affiliation(s)
- Pavel Y Apel
- Joint Institute for Nuclear Research, Joliot-Curie Street 6, 141980 Dubna, Russian Federation. and Dubna State University, Universitetskaya Street 19, 141980 Dubna, Russian Federation
| | - Valery V Bashevoy
- Joint Institute for Nuclear Research, Joliot-Curie Street 6, 141980 Dubna, Russian Federation.
| | - Irina V Blonskaya
- Joint Institute for Nuclear Research, Joliot-Curie Street 6, 141980 Dubna, Russian Federation.
| | - Nikolay E Lizunov
- Joint Institute for Nuclear Research, Joliot-Curie Street 6, 141980 Dubna, Russian Federation.
| | - Oleg L Orelovitch
- Joint Institute for Nuclear Research, Joliot-Curie Street 6, 141980 Dubna, Russian Federation.
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| |
Collapse
|
17
|
Apel PY, Blonskaya IV, Lizunov NE, Olejniczak K, Orelovitch OL, Sartowska BA, Dmitriev SN. Asymmetrical nanopores in track membranes: Fabrication, the effect of nanopore shape and electric charge of pore walls, promising applications. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Bioinspired integrated nanosystems based on solid-state nanopores: " iontronic" transduction of biological, chemical and physical stimuli. Chem Sci 2017; 8:890-913. [PMID: 28572900 PMCID: PMC5452273 DOI: 10.1039/c6sc04255d] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, e.g. transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing "iontronic" signals, is now a reality thanks to the combination of "soft" surface science with nanofabrication techniques. The interplay between the functional richness of predesigned molecular components and the remarkable physical characteristics of nanopores plays a critical role in the rational integration of molecular functions into nanopore environments, permitting us to envisage nanopore-based biomimetic integrated nanosystems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined "iontronic" response can be amplified by exploiting nanoconfinement and physico-chemical effects such as charge distribution, steric constraints, equilibria displacement, or local changes in ionic concentration, to name but a few examples. While in past decades the focus has been mostly on their fundamental aspects and the in-depth study of their interesting transport properties, for several years now nanopore research has started to shift towards specific practical applications. This work is dedicated to bringing together the latest developments in the use of nanopores as "iontronic" transducing elements. Our aim is to show the wide potential of abiotic nanopores in sensing and signal transduction and also to promote the potential of this technology among doctoral students, postdocs, and researchers. We believe that even a casual reader of this perspective will not fail to be impressed by the wealth of opportunities that solid-state nanopores can offer to the transduction of biological, physical and chemical stimuli.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
- Technische Universität Darmstadt , Darmstadt , Germany
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| |
Collapse
|
19
|
Dwyer JR, Bandara YMNDY, Whelan JC, Karawdeniya BI, Nichols JW. Silicon Nitride Thin Films for Nanofluidic Device Fabrication. NANOFLUIDICS 2016. [DOI: 10.1039/9781849735230-00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Silicon nitride is a ubiquitous and well-established nanofabrication material with a host of favourable properties for creating nanofluidic devices with a range of compelling designs that offer extraordinary discovery potential. Nanochannels formed between two thin silicon nitride windows can open up vistas for exploration by freeing transmission electron microscopy to interrogate static structures and structural dynamics in liquid-based samples. Nanopores present a strikingly different architecture—nanofluidic channels through a silicon nitride membrane—and are one of the most promising tools to emerge in biophysics and bioanalysis, offering outstanding capabilities for single molecule sensing. The constrained environments in such nanofluidic devices make surface chemistry a vital design and performance consideration. Silicon nitride has a rich and complex surface chemistry that, while too often formidable, can be tamed with new, robust surface functionalization approaches. We will explore how a simple structural element—a ∼100 nm-thick silicon nitride window—can be used to fabricate devices to wrest unprecedented insights from the nanoscale world. We will detail the intricacies of native silicon nitride surface chemistry, present surface chemical modification routes that leverage the richness of available surface moieties, and examine the effect of engineered chemical surface functionality on nanofluidic device character and performance.
Collapse
Affiliation(s)
- J. R. Dwyer
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | | | - J. C. Whelan
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | - B. I. Karawdeniya
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| | - J. W. Nichols
- University of Rhode Island, Department of Chemistry Kingston RI 02881 USA
| |
Collapse
|
20
|
Pérez-Mitta G, Tuninetti JS, Knoll W, Trautmann C, Toimil-Molares ME, Azzaroni O. Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. J Am Chem Soc 2015; 137:6011-7. [DOI: 10.1021/jacs.5b01638] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata − CONICET, CC
16 Suc. 4, (1900) La Plata, Argentina
| | - Jimena S. Tuninetti
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata − CONICET, CC
16 Suc. 4, (1900) La Plata, Argentina
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Donau Strasse 1, Vienna, Austria
| | | | | | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Universidad Nacional de La Plata − CONICET, CC
16 Suc. 4, (1900) La Plata, Argentina
| |
Collapse
|
21
|
Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. Surface charge modulated aptasensor in a single glass conical nanopore. Biosens Bioelectron 2015; 71:37-43. [PMID: 25884732 DOI: 10.1016/j.bios.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/06/2015] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
Abstract
In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation.
Collapse
Affiliation(s)
- Sheng-Lin Cai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Bin Zheng
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Lei Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
22
|
Wang L, Zhang H, Yang Z, Zhou J, Wen L, Li L, Jiang L. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics. Phys Chem Chem Phys 2015; 17:6367-73. [DOI: 10.1039/c4cp05915h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics.
Collapse
Affiliation(s)
- Linlin Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Huacheng Zhang
- Laboratory of Bio-inspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Zhe Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Jianjun Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Liping Wen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Lin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry
- Beijing Normal University
- Beijing
- China
| | - Lei Jiang
- Laboratory of Bio-inspired Smart Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
23
|
Kumar YP, Das RN, Kumar S, Schütte OM, Steinem C, Dash J. Triazole-tailored guanosine dinucleosides as biomimetic ion channels to modulate transmembrane potential. Chemistry 2014; 20:3023-8. [PMID: 24677317 DOI: 10.1002/chem.201304530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Indexed: 11/09/2022]
Abstract
A “click” ion channel platform has been established by employing a clickable guanosine azide or alkyne with covalent spacers. The resulting guanosine derivatives modulated the traffic of ions across the phospholipid bilayer, exhibiting a variation in conductance spanning three orders of magnitude (pS to nS). Förster resonance energy transfer studies of the dansyl fluorophore with the membrane binding fluorophore Nile red revealed that the dansyl fluorophore is deeply embedded in the phospholipid bilayer. Complementary cytosine can inhibit the conductance of the supramolecular guanosine channels in the phospholipid bilayers.
Collapse
|
24
|
Myhra S, Falzone N, Chakalova R. Alpha and recoil track detection in poly(methyl methacrylate) (PMMA)--towards a method for in vitro assessment of radiopharmaceuticals internalized in cancer cells. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:034302. [PMID: 24689602 DOI: 10.1063/1.4868505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method for detection and characterization of single MeV α-particle and recoil tracks in PMMA photoresist by atomic force microscopy (AFM) analysis has been demonstrated. The energy deposition along the track is shown to lead to a latent pattern in the resist due to contrast reversal. It has been shown that the pattern, consisting of conical spikes, can be developed by conventional processing as a result of the dissolution rate of poly(methyl methacrylate) (PMMA) being greater than that for the modified material in the cylindrical volume of the track core. The spikes can be imaged and counted by routine AFM analysis. Investigations by angular-resolved near-grazing incidence reveal additional tracks that correspond to recoil tracks. The observations have been correlated with modelling, and shown to be in qualitative agreement with prevailing descriptions of collision cascades. The results may be relevant to technologies that are based on detection and characterization of single energetic ions. In particular, the direct visualization of the collision cascade may allow more accurate estimates of the actual interaction volume, which in turn will permit more precise assessment of dose distribution of α-emitting radionuclides used for targeted radiotherapy. The results could also be relevant to other diagnostic or process technologies based on interaction of energetic ions with matter.
Collapse
Affiliation(s)
- S Myhra
- Oxford University Begbroke Science Park, University of Oxford, Oxford, United Kingdom
| | - N Falzone
- MRC/CRUK Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom and Department of Biomedical Science, Tshwane University of Technology, Pretoria, South Africa
| | - R Chakalova
- Oxford University Begbroke Science Park, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Sugawara M, Shoji A, Sakamoto M. Pore-forming compounds as signal transduction elements for highly sensitive biosensing. ANAL SCI 2014; 30:119-28. [PMID: 24420253 DOI: 10.2116/analsci.30.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pore-forming compounds are attracting much attention due to the signal transduction ability for the development of highly sensitive biosensing. In this review, we describe an overview of the recent advances made by our group in the design of molecular sensing interfaces of spherical and planar lipid bilayers and natural bilayers. The potential uses of pore-forming compounds, such as gramicidin and MCM-41, in lipid bilayers and natural glutamate receptor channels in biomembrane are presented.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of Chemistry, College of Humanities and Sciences, Nihon University
| | | | | |
Collapse
|
26
|
Apel PY, Ramirez P, Blonskaya IV, Orelovitch OL, Sartowska BA. Accurate characterization of single track-etched, conical nanopores. Phys Chem Chem Phys 2014; 16:15214-23. [DOI: 10.1039/c4cp01686f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deviation from cone geometry significantly influences the ion current rectification through track-etched nanopores with tip radii smaller than 10 nm.
Collapse
Affiliation(s)
- Pavel Yu. Apel
- Flerov Laboratory of Nuclear Reactions
- Joint Institute for Nuclear Research
- 141980 Dubna, Russia
- Dubna International University
- 141980 Dubna, Russia
| | - Patricio Ramirez
- Departament de Física Aplicada
- Universitat Politècnica de València
- E-46022 Valencia, Spain
| | - Irina V. Blonskaya
- Flerov Laboratory of Nuclear Reactions
- Joint Institute for Nuclear Research
- 141980 Dubna, Russia
| | - Oleg L. Orelovitch
- Flerov Laboratory of Nuclear Reactions
- Joint Institute for Nuclear Research
- 141980 Dubna, Russia
| | | |
Collapse
|
27
|
Falzone N, Myhra S, Chakalova R, Hill MA, Thomson J, Vallis KA. Characterization of single α-tracks by photoresist detection and AFM analysis-focus on biomedical science and technology. Phys Med Biol 2013; 58:7673-82. [PMID: 24113400 DOI: 10.1088/0031-9155/58/21/7673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm); detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 10(9) cm(-2)); sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.
Collapse
Affiliation(s)
- Nadia Falzone
- Department of Oncology, University of Oxford, MRC/CRUK Gray Institute for Radiation Oncology and Biology, Oxford, UK. Department of Biomedical Science, Tshwane University of Technology, Pretoria, South Africa
| | | | | | | | | | | |
Collapse
|
28
|
Jang GG, Blake P, Roper DK. Rate-limited electroless gold thin film growth: a real-time study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5476-5486. [PMID: 23560793 DOI: 10.1021/la304154u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Time-resolved, in situ spectroscopy of electroless (EL) gold (Au) films combined with electron microscopy showed that the deposition rate increased up to two-fold on surfaces swept by the bulk flow of adjacent fluid at Reynolds numbers less than 1.0, compared to batch immersion. Deposition rates from 5.0 to 9.0 nm/min and thicknesses of the EL Au film from 20 to 100 nm, respectively, increased predictably with flow rate at conditions when the deposition was limited primarily by Fickian diffusion. Time-frames were identified for metal island nucleation, growth, and subsequent film development during EL Au deposition by real-time UV-visible spectroscopy of photoluminescence (PL) and surface plasmon features of nanoscale metal deposits. Film thicknesses measured by scanning electron microscopy and X-ray photoelectron spectroscopy paired with real-time optical spectroscopy of kinetic aspects of plasmon and PL optical features indicated that Au film deposition on surfaces swept by a steady flow of adjacent fluid can be primarily diffusion limited.
Collapse
Affiliation(s)
- Gyoung Gug Jang
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Arkansas 72701, United States
| | | | | |
Collapse
|
29
|
|
30
|
Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 2013; 4:655-663. [PMID: 23991282 PMCID: PMC3753817 DOI: 10.1039/c2sc21502k] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Solid-state nanopores have been widely employed in sensing applications from Coulter counters to DNA sequencing devices. The analytical signal in such experiments is the change in ionic current flowing through the orifice caused by the large molecule or nanoparticle translocation through the pore. Conceptually similar nanopipette-based sensors can offer several advantages including the ease of fabrication and small physical size essential for local measurements and experiments in small spaces. This paper describes the first evaluation of nanopipettes with well characterized geometry for resistive-pulse sensing of Au nanoparticles (AuNP), nanoparticles coated with an allergen epitope peptide layer, and AuNP-peptide particles with bound antipeanut antibodies (IgY) on the peptide layer. The label-free signal produced by IgY-conjugated particles was strikingly different from those obtained with other analytes, thus suggesting the possibility of selective and sensitive resistive-pulse sensing of antibodies.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367, USA. Fax: +1 7189975531; Tel: +1 7189974111
| | - Kaan Kececi
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367, USA. Fax: +1 7189975531; Tel: +1 7189974111
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, New York 11367, USA. Fax: +1 7189975531; Tel: +1 7189974111
| | - Vigneshwaran Mani
- Department of Chemistry, U-60, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269-3060, USA. Fax: +1 860-486-2981; Tel: +1 860-486-4909
| | - Naimish Sardesai
- Department of Chemistry, U-60, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269-3060, USA. Fax: +1 860-486-2981; Tel: +1 860-486-4909
| | - James F. Rusling
- Department of Chemistry, U-60, University of Connecticut, 55 N. Eagleville Rd., Storrs, CT 06269-3060, USA. Fax: +1 860-486-2981; Tel: +1 860-486-4909
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
- School of Chemistry, National University of Ireland at Galway, Ireland
| |
Collapse
|
31
|
Hashemi M, Moazed B, Achenbach S, Klymyshyn D. Functional analysis of single Poly(methyl-methacrylate)-based submicron pore electrophoretic flow detectors via translocation of differently sized silica nanoparticles. IET Nanobiotechnol 2012; 6:149-55. [PMID: 23101868 DOI: 10.1049/iet-nbt.2011.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Detection and discrimination of nanoparticles is a vital step in several analytical and diagnostic procedures. Towards this, the authors present in the current study, for the first time, an all poly(methyl-methacrylate) (PMMA) polymer membrane-based solid-state sensor capable of detecting single silica nanoparticles. The sensor is based on a single cylindrical submicron pore of 450 nm in diameter and 1 [micro sign]m in length, patterned by electron beam lithography in a PMMA membrane. It was subsequently integrated into a PMMA-based electrophoretic flow detector system containing two electrolyte reservoirs. Silica nanoparticles of 100 nm in diameter were dispersed in an electrolyte and detected as they temporarily block the current flow during translocation through the submicron pore, driven by an electric field. The submicron pore was highly stable, and able to not only detect but also discriminate between silica nanoparticles of different dimensions recognised by different amounts of current blockade produced as they translocated through the pore. The translocations of individual 100 and 150 nm diameter silica nanoparticles through the single submicron pore, and thus the amounts of current blockade they produce, were shown in very close agreement with the results evaluated mathematically using the model presented in this study.
Collapse
Affiliation(s)
- M Hashemi
- University of Saskatchewan, Department of Electrical and Computer Engineering, Saskatoon, Canada.
| | | | | | | |
Collapse
|
32
|
Nanopore sensors: From hybrid to abiotic systems. Biosens Bioelectron 2012; 38:1-10. [DOI: 10.1016/j.bios.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/02/2012] [Accepted: 05/12/2012] [Indexed: 11/22/2022]
|
33
|
Apel PY, Blonskaya IV, Orelovitch OL, Sartowska BA, Spohr R. Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements. NANOTECHNOLOGY 2012; 23:225503. [PMID: 22572471 DOI: 10.1088/0957-4484/23/22/225503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We reconstruct the profile of asymmetric ion track nanopores from an algorithm developed for conductometric measurements of symmetric nanopores. The validity of the reconstruction is supported by FESEM observations. Our analysis reveals that asymmetric pores fabricated by one-sided etching are funnel-like and not conical. The analysis provides the constriction diameter and the pore profile as a function of etching time. The reconstruction of the pore profile defines the starting conditions of asymmetric nanopores at breakthrough. The deviation from the conical shape is most pronounced at the pore tip. This critical zone dominates transport properties relevant to ion conductance, selectivity, current rectification, resistive pulse sensing and biosensors. The classical cone approximation used until now underestimates the tip diameter by a factor of two. As transport processes in nanopores depend in a highly nonlinear way on the constriction diameter the presented reconstruction must be taken into account when studying ionic and molecular transport processes in asymmetric pores.
Collapse
Affiliation(s)
- Pavel Yu Apel
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie street 6, 141980 Dubna, Russia. The International University 'Dubna', Faculty of Natural and Engineering Sciences, Universitetskaya street 19, 141980 Dubna, Russia
| | | | | | | | | |
Collapse
|
34
|
Wen L, Ma J, Tian Y, Zhai J, Jiang L. A photo-induced, and chemical-driven, smart-gating nanochannel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:838-842. [PMID: 22294519 DOI: 10.1002/smll.201101661] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Liping Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100191, P. R. China
| | | | | | | | | |
Collapse
|
35
|
Chen MY, Klunk MD, Diep VM, Sailor MJ. Electric-field-assisted protein transport, capture, and interferometric sensing in carbonized porous silicon films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4537-4542. [PMID: 21997305 DOI: 10.1002/adma.201102090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/21/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Michelle Y Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
36
|
Guo Z, Wang J, Ren J, Wang E. pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification. NANOSCALE 2011; 3:3767-3773. [PMID: 21826328 DOI: 10.1039/c1nr10434a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ion current through a nascent nanochannel with conically shaped geometry in PET (polyethylene terephthalate) membrane sandwiched between two same buffer solutions at pH ≤ 3 was routinely considered to exhibit no rectification and, if any, much weaker rectification than that for a nanochannel with a negative surface charge, since the surface charge on the membrane decreases to zero along with decreasing the pH value of the buffer solution down to the pK(a) of carboxylic acid. However, in this study, we discovered that in the buffer solution with low ionic strength at pH values below 3, the conically shaped nanochannels exhibited distinct ion current rectification, as expected for nanochannels with a positive surface charge, if voltages beyond ±2V range were scanned. We reasoned that the current rectification engendered by the positive surface charge of a conical nanochannel was due to further protonation of the hydrogen bonded hydrogel layer or neutral carboxylic acid inside the nanochannel. Therefore, our results enrich the knowledge about nanochannel technology and indicate that a nanofluidic diode based on pH-reversed ion current rectification through a conical nanochannel can be achieved without any modification of the PET membrane.
Collapse
Affiliation(s)
- Zhijun Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun 130022, Jilin, PR China
| | | | | | | |
Collapse
|
37
|
Apel PY, Blonskaya IV, Orelovitch OL, Ramirez P, Sartowska BA. Effect of nanopore geometry on ion current rectification. NANOTECHNOLOGY 2011; 22:175302. [PMID: 21411914 DOI: 10.1088/0957-4484/22/17/175302] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present the results of systematic studies of ion current rectification performed on artificial asymmetric nanopores with different geometries and dimensions. The nanopores are fabricated by the ion track etching method using surfactant-doped alkaline solutions. By varying the alkali concentration in the etchant and the etching time, control over the pore profile and dimensions is achieved. The pore geometry is characterized in detail using field-emission scanning electron microscopy. The dependence of the ion current rectification ratio on the pore length, tip diameter, and the degree of pore taper is analysed. The experimental data are compared to the calculations based on the Poisson-Nernst-Planck equations. A strong effect of the tip geometry on the diode-like behaviour is confirmed.
Collapse
Affiliation(s)
- Pavel Yu Apel
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia.
| | | | | | | | | |
Collapse
|
38
|
Ai Y, Qian S. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach. Electrophoresis 2011; 32:996-1005. [DOI: 10.1002/elps.201000503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/23/2010] [Indexed: 02/01/2023]
|
39
|
Observations of the Effect of Confined Space on Fluorescence and Diffusion Properties of Molecules in Single Conical Nanopore Channels. J Fluoresc 2011; 21:1865-70. [DOI: 10.1007/s10895-011-0881-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
40
|
Holden DA, Hendrickson G, Lyon LA, White HS. Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011; 115:2999-3004. [PMID: 27347278 PMCID: PMC4920357 DOI: 10.1021/jp111244v] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Deformation of 570-nm radius poly(N-isopropylacrylamide-co-acrylic acid) microgels passing through individual 375- to 915-nm radius nanopores in glass has been investigated by the resistive-pulse method. Particle translocation through nanopores of dimensions smaller than the microgel yields electrical signatures reflecting the dynamics of microgel deformation. Translocation rates, and event duration and peak shape, are functions of the conductivities of microgel and electrolyte. Our results demonstrate that nanopore resistive-pulse methods provide new fundamental insights into microgel permeation through porous membranes.
Collapse
Affiliation(s)
- Deric A. Holden
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112
| | - Grant Hendrickson
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute for Bioengineering & Bioscience, 901 Atlantic Drive, NW, Atlanta, GA 30332-0400
| | - L. Andrew Lyon
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute for Bioengineering & Bioscience, 901 Atlantic Drive, NW, Atlanta, GA 30332-0400
| | - Henry S. White
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112
| |
Collapse
|
41
|
Holden DA, Hendrickson G, Lyon LA, White HS. Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2011. [PMID: 27347278 DOI: 10.1021/jp204839j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Deformation of 570-nm radius poly(N-isopropylacrylamide-co-acrylic acid) microgels passing through individual 375- to 915-nm radius nanopores in glass has been investigated by the resistive-pulse method. Particle translocation through nanopores of dimensions smaller than the microgel yields electrical signatures reflecting the dynamics of microgel deformation. Translocation rates, and event duration and peak shape, are functions of the conductivities of microgel and electrolyte. Our results demonstrate that nanopore resistive-pulse methods provide new fundamental insights into microgel permeation through porous membranes.
Collapse
Affiliation(s)
- Deric A Holden
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112
| | - Grant Hendrickson
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute for Bioengineering & Bioscience, 901 Atlantic Drive, NW, Atlanta, GA 30332-0400
| | - L Andrew Lyon
- Georgia Institute of Technology, School of Chemistry and Biochemistry and Petit Institute for Bioengineering & Bioscience, 901 Atlantic Drive, NW, Atlanta, GA 30332-0400
| | - Henry S White
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112
| |
Collapse
|
42
|
Abstract
Nanoparticle electrophoretic translocation through a single nanopore induces a detectable change in the ionic current, which enables the nanopore-based sensing for various bio-analytical applications. In this study, a transient continuum-based model is developed for the first time to investigate the electrokinetic particle translocation through a nanopore by solving the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential and the Navier-Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian (ALE) method. When the applied electric field is relatively low, a current blockade is expected. In addition, the particle could be trapped at the entrance of the nanopore when the electrical double layer (EDL) adjacent to the charged particle is relatively thick. When the electric field imposed is relatively high, the particle can always pass through the nanopore by electrophoresis. However, a current enhancement is predicted if the EDL of the particle is relatively thick. The obtained numerical results qualitatively agree with the existing experimental results. It is also found that the initial orientation of the particle could significantly affect the particle translocation and the ionic current through a nanopore. Furthermore, a relatively high electric field tends to align the particle with its longest axis parallel to the local electric field. However, the particle's initial lateral offset from the centerline of the nanopore acts as a minor effect.
Collapse
Affiliation(s)
- Ye Ai
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | | |
Collapse
|
43
|
Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2010; 77:417-23. [PMID: 21093587 DOI: 10.1016/j.ejpb.2010.11.010] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/16/2022]
Abstract
Spherical and rod-shaped gold nanoparticles with surface poly(ethylene glycol) (PEG) chains were characterized for size, shape, charge, poly dispersity and surface plasmon resonance. The nanoparticles were injected intravenously to 6-8-week-old female nu/nu mice bearing orthotopic ovarian tumors, and their biodistribution in vital organs was compared. Gold nanorods were taken up to a lesser extent by the liver, had longer circulation time in the blood, and higher accumulation in the tumors, compared with their spherical counterparts. The cellular uptake of PEGylated gold nanoparticles by a murine macrophage-like cell line as a function of geometry was examined. Compared to nanospheres, PEGylated gold nanorods were taken up to a lesser extent by macrophages. These studies point to the importance of gold nanoparticle geometry and surface properties on transport across biological barriers.
Collapse
Affiliation(s)
- Arnida
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84108, USA
| | | | | | | | | |
Collapse
|
44
|
Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.06.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010; 30:212-7. [PMID: 19902477 DOI: 10.1002/jat.1486] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using a series of gold nanoparticles with incremental increase in dimensions but varying geometries (spherical vs rods) we have evaluated the influence of shape, size, surface properties and concentration on cellular uptake, adsorption of proteins and toxicity in a human prostate cancer cell line (PC-3). In the range of 30-90 nm diameter studied, spherical particles of 50 nm in diameter without polyethylene glycol (PEG) had the highest uptake. Surface attachment of PEG reduced cellular uptake. PEGylated gold nanorods had a net positive charge compared with their spherical counterparts and particle geometry influenced cellular uptake. In the absence of serum proteins the uptake of plain spherical GNPs increased. These studies pave the way for the tailoring of gold nanoparticles for targeted tumor therapy applications.
Collapse
Affiliation(s)
-
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | |
Collapse
|
46
|
Basore JR, Lavrik NV, Baker LA. Single-pore membranes gated by microelectromagnetic traps. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2759-2763. [PMID: 20408136 DOI: 10.1002/adma.201000566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Joseph R Basore
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
47
|
Ali M, Yameen B, Cervera J, Ramírez P, Neumann R, Ensinger W, Knoll W, Azzaroni O. Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. J Am Chem Soc 2010; 132:8338-48. [DOI: 10.1021/ja101014y] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mubarak Ali
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Basit Yameen
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Javier Cervera
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Patricio Ramírez
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Reinhard Neumann
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Wolfgang Ensinger
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Wolfgang Knoll
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| | - Omar Azzaroni
- Fachbereich Material-u. Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany, Departament de Física de la Terra i Termodinámica, Universitat de Valéncia, E-46100 Burjassot, Spain, Departament de Física Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291
| |
Collapse
|
48
|
Sexton LT, Mukaibo H, Katira P, Hess H, Sherrill SA, Horne LP, Martin CR. An Adsorption-Based Model for Pulse Duration in Resistive-Pulse Protein Sensing. J Am Chem Soc 2010; 132:6755-63. [DOI: 10.1021/ja100693x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lindsay T. Sexton
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Hitomi Mukaibo
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Parag Katira
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Henry Hess
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Stefanie A. Sherrill
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Lloyd P. Horne
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | - Charles R. Martin
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, Department of Biomedical Engineering, Columbia University, New York, New York 10027, and Department of Chemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
49
|
ORELOVICH O, SARTOWSKA B, PRESZ A, APEL PYU. Analysis of channel shapes in track membranes by scanning electron microscopy. J Microsc 2010; 237:404-6. [DOI: 10.1111/j.1365-2818.2009.03272.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Piruska A, Gong M, Sweedler JV, Bohn PW. Nanofluidics in chemical analysis. Chem Soc Rev 2010; 39:1060-72. [DOI: 10.1039/b900409m] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|