1
|
Hemmer S, Schulte M, Knieps-Grünhagen E, Granzin J, Willbold D, Jaeger KE, Batra-Safferling R, Panwalkar V, Krauss U. Residue alterations within a conserved hydrophobic pocket influence light, oxygen, voltage photoreceptor dark recovery. Photochem Photobiol Sci 2022; 22:713-727. [PMID: 36480084 DOI: 10.1007/s43630-022-00346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
AbstractLight, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch). Such mutations, however, should ideally only influence sensor kinetics, while being benign with regard to the nature of the structural changes that are induced by illumination, i.e., they should not result in a disruption of signal transduction. In the present study, we identify a conserved hydrophobic pocket for which mutations have a strong impact on the adduct-state lifetime across different LOV photoreceptor families. Using the slow cycling bacterial short LOV photoreceptor PpSB1-LOV, we show that the I48T mutation within this pocket, which accelerates adduct rupture, is otherwise structurally and mechanistically benign, i.e., light-induced structural changes, as probed by NMR spectroscopy and X-ray crystallography, are not altered in the variant. Additional mutations within the pocket of PpSB1-LOV and the introduction of homologous mutations in the LOV photoreceptor YtvA of Bacillus subtilis and the Avena sativa LOV2 domain result in similarly altered kinetics. Given the conserved nature of the corresponding structural region, the here identified mutations should find application in dark-recovery tuning of optogenetic tools and LOV photoreceptors, alike.
Graphical abstract
Collapse
Affiliation(s)
- Stefanie Hemmer
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marianne Schulte
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Esther Knieps-Grünhagen
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dieter Willbold
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Vineet Panwalkar
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Biozentrum University of Basel, CH-4056, Basel, Switzerland
| | - Ulrich Krauss
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
2
|
Photoreaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112252. [PMID: 34265548 DOI: 10.1016/j.jphotobiol.2021.112252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes PCC 7420 (mPAC), which consists of a Per-Arnt-Sim (PAS), a light‑oxygene-voltage (LOV), and an adenylate cyclase (AC) domain, was investigated mainly using the time-resolved transient grating method. An absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 0.66 μs. After this reaction, a significant diffusion coefficient (D)-change was observed with a time constant of 38 ms. The determined D-value was concentration-dependent indicating a rapid equilibrium between the dimer and tetramer. Combining the results of size exclusion chromatography and CD spectroscopy, we concluded that the photoinduced D-change was mainly attributed to the equilibrium shift from the dimer rich to the tetramer rich states upon light exposure. Since the reaction rate does not depend on concentration, the rate determining step of the tetramer formation is not the collision of proteins by diffusion, but a conformation change. The roles of the PAS and AC domains as well as the N- and C-terminal flanking helices of the LOV domain (A'α- and Jα-helices) were investigated using various truncated mutants. The PAS domain was found to be a strong dimerization site and is related to efficient signal transduction. It was found that simultaneous existence of the A'α- and Jα-helices in mPAC is important for the light-induced conformation change to lead the conformation change which induces the tetramer formation. The results suggest that the angle changes of the coiled-coil structures in the A'α and Jα-helices are essential for this conformation change. The reaction scheme of mPAC is proposed.
Collapse
|
3
|
Choi S, Nakasone Y, Hellingwerf KJ, Terazima M. Photoreaction Dynamics of a Full-Length Protein YtvA and Intermolecular Interaction with RsbRA. Biochemistry 2020; 59:4703-4710. [PMID: 33287544 DOI: 10.1021/acs.biochem.0c00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
YtvA from Bacillus subtilis is a sensor protein that responds to blue light stress and regulates the activity of transcription factor σB. It is composed of the N-terminal LOV (light-oxygen-voltage) domain, the C-terminal STAS (sulfate transporter and anti-sigma factor antagonist) domain, and a linker region connecting them. In this study, the photoreaction and kinetics of full-length YtvA and the intermolecular interaction with a downstream protein, RsbRA, were revealed by the transient grating method. Although N-YLOV-linker, which is composed of the LOV domain of YtvA with helices A'α and Jα, exhibits a diffusion change due to the rotational motion of the helices, the YtvA dimer does not show the diffusion change. This result suggests that the STAS domain inhibits the rotational movement of helices A'α and Jα. We found that the YtvA dimer formed a heterotetramer with the RsbRA dimer probably via the interaction between the STAS domains, and we showed the diffusion change upon blue light illumination with a time constant faster than 70 μs. This result suggests a conformational change of the STAS domains; i.e., the interface between the STAS domains of the proteins changes to enhance the friction with water by the rotation structural change of helices A'α and Jα of YtvA.
Collapse
Affiliation(s)
- Seokwoo Choi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Guerreiro DN, Arcari T, O'Byrne CP. The σ B-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front Microbiol 2020; 11:1505. [PMID: 32733414 PMCID: PMC7358398 DOI: 10.3389/fmicb.2020.01505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Talia Arcari
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
5
|
Magerl K, Dick B. Dimerization of LOV domains of Rhodobacter sphaeroides (RsLOV) studied with FRET and stopped-flow experiments. Photochem Photobiol Sci 2020; 19:159-170. [DOI: 10.1039/c9pp00424f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LOV (light-oxygen-voltage) proteins function as light sensors in plants, fungi, and bacteria. RsLOV is unique as the light state is a monomer but the dark state is a dimer. These dimers exchange their monomer units on a time-scale of seconds.
Collapse
Affiliation(s)
- Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
6
|
Kerruth S, Langner P, Raffelberg S, Gärtner W, Heberle J. Characterization of the Blue-Light-Activated Adenylyl Cyclase mPAC by Flash Photolysis and FTIR Spectroscopy. Photochem Photobiol 2018; 93:857-864. [PMID: 28500710 DOI: 10.1111/php.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/08/2017] [Indexed: 11/29/2022]
Abstract
The recently discovered photo-activated adenylyl cyclase (mPAC from Microcoleus chthonoplastes) is the first PAC that owes a light-, oxygen- and voltage-sensitive (LOV) domain for blue-light sensing. The photoreaction of the mPAC receptor was studied by time-resolved UV/vis and light-induced Fourier transform infrared (FTIR) absorption difference spectroscopy. The photocycle comprises of the typical triplet state LOV715 and the thio-adduct state LOV390 . While the adduct state decays with a time constant of 8 s, the lifetime of the triplet state is with 656 ns significantly shorter than in all other reported LOV domains. The light-induced FTIR difference spectrum shows the typical bands of the LOV390 and LOV450 intermediates. The negative S-H stretching vibration at 2573 cm-1 is asymmetric suggesting two rotamer configurations of the protonated side chain of C194. A positive band at 3632 cm-1 is observed, which is assigned to an internal water molecule. In contrast to other LOV domains, mPAC exhibits a second positive feature at 3674 cm-1 which is due to the O-H stretch of a second intrinsic water molecule and the side chain of Y476. We conclude that the latter might be involved in the dimerization of the cyclase domain which is crucial for ATP binding.
Collapse
Affiliation(s)
- Silke Kerruth
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Sarah Raffelberg
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Wolfgang Gärtner
- Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
8
|
Gregor C, Sidenstein SC, Andresen M, Sahl SJ, Danzl JG, Hell SW. Novel reversibly switchable fluorescent proteins for RESOLFT and STED nanoscopy engineered from the bacterial photoreceptor YtvA. Sci Rep 2018; 8:2724. [PMID: 29426833 PMCID: PMC5807511 DOI: 10.1038/s41598-018-19947-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
The reversibly switchable fluorescent proteins (RSFPs) commonly used for RESOLFT nanoscopy have been developed from fluorescent proteins of the GFP superfamily. These proteins are bright, but exhibit several drawbacks such as relatively large size, oxygen-dependence, sensitivity to low pH, and limited switching speed. Therefore, RSFPs from other origins with improved properties need to be explored. Here, we report the development of two RSFPs based on the LOV domain of the photoreceptor protein YtvA from Bacillus subtilis. LOV domains obtain their fluorescence by association with the abundant cellular cofactor flavin mononucleotide (FMN). Under illumination with blue and ultraviolet light, they undergo a photocycle, making these proteins inherently photoswitchable. Our first improved variant, rsLOV1, can be used for RESOLFT imaging, whereas rsLOV2 proved useful for STED nanoscopy of living cells with a resolution of down to 50 nm. In addition to their smaller size compared to GFP-related proteins (17 kDa instead of 27 kDa) and their usability at low pH, rsLOV1 and rsLOV2 exhibit faster switching kinetics, switching on and off 3 times faster than rsEGFP2, the fastest-switching RSFP reported to date. Therefore, LOV-domain-based RSFPs have potential for applications where the switching speed of GFP-based proteins is limiting.
Collapse
Affiliation(s)
- Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Sven C Sidenstein
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077, Göttingen, Germany
| | - Martin Andresen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Johann G Danzl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany. .,Max Planck Institute for Medical Research, Department of Optical Nanoscopy, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of LOV1 and LOV2 of Phototropin from Chlamydomonas reinhardtii. J Phys Chem B 2018; 122:1801-1815. [DOI: 10.1021/acs.jpcb.7b10266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Nakasone
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masumi Ohshima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Graduate
School of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Choi S, Nakasone Y, Hellingwerf KJ, Terazima M. Photochemical Reactions of the LOV and LOV-Linker Domains of the Blue Light Sensor Protein YtvA. Biochemistry 2016; 55:3107-15. [PMID: 27203230 DOI: 10.1021/acs.biochem.6b00263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
YtvA is a blue light sensor protein composed of an N-terminal LOV (light-oxygen-voltage) domain, a linker helix, and the C-terminal sulfate transporter and anti-σ factor antagonist domain. YtvA is believed to act as a positive regulator for light and salt stress responses by regulating the σB transcription factor. Although its biological function has been studied, the reaction dynamics and molecular mechanism underlying the function are not well understood. To improve our understanding of the signaling mechanism, we studied the reaction of the LOV domain (YLOV, amino acids 26-127), the LOV domain with its N-terminal extension (N-YLOV, amino acids 1-127), the LOV domain with its C-terminal linker helix (YLOV-linker, amino acids 26-147), and the YLOV domain with the N-terminal extension and the C-terminal linker helix (N-YLOV-linker, amino acids 1-147) using the transient grating method. The signals of all constructs showed adduct formation, thermal diffusion, and molecular diffusion. YLOV showed no change in the diffusion coefficient (D), while the other three constructs showed a significant decrease in D within ∼70 μs of photoexcitation. This indicates that conformational changes in both the N- and C-terminal helices of the YLOV domain indeed do occur. The time constant in the YtvA derivatives was much faster than the corresponding dynamics of phototropins. Interestingly, an additional reaction was observed as a volume expansion as well as a slight increase in D only when both helices were included. These findings suggest that although the rearrangement of the N- and C-terminal helices occurs independently on the fast time scale, this change induces an additional conformational change only when both helices are present.
Collapse
Affiliation(s)
- Seokwoo Choi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto, Japan
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam , 1090 GE Amsterdam, The Netherlands
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto, Japan
| |
Collapse
|
11
|
Lee R, Gam J, Moon J, Lee SG, Suh YG, Lee BJ, Lee J. A critical element of the light-induced quaternary structural changes in YtvA-LOV. Protein Sci 2015; 24:1997-2007. [PMID: 26402155 DOI: 10.1002/pro.2810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/27/2023]
Abstract
YtvA, a photosensory LOV (light-oxygen-voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light-sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA-LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA-LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo-induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA-LOV than the local disruption of Jα helix in the As-LOV domain.
Collapse
Affiliation(s)
- Rang Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Jongsik Gam
- Department of Medicinal Bioscience, College of Interdisciplinary & Creative Studies, Konyang University, Nonsan-Si, 320-711, Korea
| | - Jayoung Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - Young-Ger Suh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Bong-Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| | - Jeeyeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
12
|
Nohr D, Rodriguez R, Weber S, Schleicher E. How can EPR spectroscopy help to unravel molecular mechanisms of flavin-dependent photoreceptors? Front Mol Biosci 2015; 2:49. [PMID: 26389123 PMCID: PMC4555020 DOI: 10.3389/fmolb.2015.00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a well-established spectroscopic method for the examination of paramagnetic molecules. Proteins can contain paramagnetic moieties in form of stable cofactors, transiently formed intermediates, or spin labels artificially introduced to cysteine sites. The focus of this review is to evaluate potential scopes of application of EPR to the emerging field of optogenetics. The main objective for EPR spectroscopy in this context is to unravel the complex mechanisms of light-active proteins, from their primary photoreaction to downstream signal transduction. An overview of recent results from the family of flavin-containing, blue-light dependent photoreceptors is given. In detail, mechanistic similarities and differences are condensed from the three classes of flavoproteins, the cryptochromes, LOV (Light-oxygen-voltage), and BLUF (blue-light using FAD) domains. Additionally, a concept that includes spin-labeled proteins and examination using modern pulsed EPR is introduced, which allows for a precise mapping of light-induced conformational changes.
Collapse
Affiliation(s)
- Daniel Nohr
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Ryan Rodriguez
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Stefan Weber
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| | - Erik Schleicher
- Department of Physical Chemistry, Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg Freiburg, Germany
| |
Collapse
|
13
|
Nakatani Y, Hisatomi O. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1. Biochemistry 2015; 54:3302-13. [DOI: 10.1021/acs.biochem.5b00320] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoichi Nakatani
- Department of Earth and Space
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space
Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Pudasaini A, El-Arab KK, Zoltowski BD. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2015; 2:18. [PMID: 25988185 PMCID: PMC4428443 DOI: 10.3389/fmolb.2015.00018] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The Light-Oxygen-Voltage domain family of proteins is widespread in biology where they impart sensory responses to signal transduction domains. The small, light responsive LOV modules offer a novel platform for the construction of optogenetic tools. Currently, the design and implementation of these devices is partially hindered by a lack of understanding of how light drives allosteric changes in protein conformation to activate diverse signal transduction domains. Further, divergent photocycle properties amongst LOV family members complicate construction of highly sensitive devices with fast on/off kinetics. In the present review we discuss the history of LOV domain research with primary emphasis on tuning LOV domain chemistry and signal transduction to allow for improved optogenetic tools.
Collapse
Affiliation(s)
- Ashutosh Pudasaini
- Department of Chemistry, Center for Drug Discovery, Design and Delivery at Dedman College, Southern Methodist University Dallas, TX, USA
| | - Kaley K El-Arab
- Department of Chemistry, Center for Drug Discovery, Design and Delivery at Dedman College, Southern Methodist University Dallas, TX, USA
| | - Brian D Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design and Delivery at Dedman College, Southern Methodist University Dallas, TX, USA
| |
Collapse
|
15
|
El-Arab KK, Pudasaini A, Zoltowski BD. Short LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms. PLoS One 2015; 10:e0124874. [PMID: 25933162 PMCID: PMC4416707 DOI: 10.1371/journal.pone.0124874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however universal signal transduction pathways and photocycle mechanisms remain elusive. In particular, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only the photoresponsive LOV element without any obvious signal transduction domains. These sLOV proteins may be ideal models for LOV domain function due to their ease of study as full-length proteins. Unfortunately, characterization of such proteins remains limited to select systems. Herein, we identify a family of bacterial sLOV proteins present in Methylocystis. Sequence analysis of Methylocystis LOV proteins (McLOV) demonstrates conservation with sLOV proteins from fungal systems that employ competitive dimerization as a signaling mechanism. Cloning and characterization of McLOV proteins confirms functional dimer formation and reveal unexpected photocycle mechanisms. Specifically, some McLOV photocycles are insensitive to external bases such as imidazole, in contrast to previously characterized LOV proteins. Mutational analysis identifies a key residue that imparts insensitivity to imidazole in two McLOV homologs and affects adduct decay by two orders of magnitude. The resultant data identifies a new family of LOV proteins that indicate a universal photocycle mechanism may not be present in LOV proteins.
Collapse
Affiliation(s)
- Kaley K. El-Arab
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - Ashutosh Pudasaini
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| | - Brian D. Zoltowski
- Department of Chemistry, Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas, United States of America
| |
Collapse
|
16
|
Herman E, Kottke T. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain. Biochemistry 2015; 54:1484-92. [PMID: 25621532 DOI: 10.1021/bi501509z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aureochromes have been shown to act as blue-light-regulated transcription factors in algae in the absence of phototropins. Aureochromes comprise a light-, oxygen-, or voltage-sensitive (LOV) domain as a sensory module binding the flavin chromophore and a basic region leucine zipper (bZIP) domain as an effector. The domain arrangement in aureochromes with an N-terminal effector is inversed to other LOV proteins. To clarify the role of the linking A'α helix in signaling, we have investigated the LOV domain of aureochrome1a from the diatom alga Phaeodactylum tricornutum without the N-terminal A'α helix but with the C-terminal Jα helix. Results were analyzed in comparison to those previously obtained on the LOV domain with both flanking helices and on the LOV domain with the A'α helix but without the Jα helix. Fourier transform infrared difference spectroscopy provides evidence by a band at 1656 cm(-1) that the A'α helix unfolds in response to light. This unfolding takes place only in the presence and as a consequence of the unfolding of the Jα helix, which points to an allosteric regulation. Size exclusion chromatography shows the LOV domain to be dimeric in the absence and monomeric in the presence of the A'α helix, implying that the folded helix covers the dimerization site. Therefore, the A'α helix directly modulates the oligomerization state of the LOV domain, whereas the Jα helix acts as an allosteric regulator. Both the allosteric control and the light-induced dimerization have not been observed in phototropin-LOV2 and point to a different signaling mechanism within the full-length proteins.
Collapse
Affiliation(s)
- Elena Herman
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
17
|
Kerruth S, Ataka K, Frey D, Schlichting I, Heberle J. Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy. PLoS One 2014; 9:e103307. [PMID: 25058114 PMCID: PMC4110000 DOI: 10.1371/journal.pone.0103307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
Aureochrome 1 from Vaucheria frigida is a recently identified blue-light receptor that acts as a transcription factor. The protein comprises a photosensitive light-, oxygen- and voltage-sensitive (LOV) domain and a basic zipper (bZIP) domain that binds DNA rendering aureochrome 1 a prospective optogenetic tool. Here, we studied the photoreaction of full-length aureochrome 1 by molecular spectroscopy. The kinetics of the decay of the red-shifted triplet state and the blue-shifted signaling state were determined by time-resolved UV/Vis spectroscopy. It is shown that the presence of the bZIP domain further prolongs the lifetime of the LOV390 signaling state in comparison to the isolated LOV domain whereas bound DNA does not influence the photocycle kinetics. The light-dark Fourier transform infrared (FTIR) difference spectrum shows the characteristic features of the flavin mononucleotide chromophore except that the S-H stretching vibration of cysteine 254, which is involved in the formation of the thio-adduct state, is significantly shifted to lower frequencies compared to other LOV domains. The presence of the target DNA influences the light-induced FTIR difference spectrum of aureochrome 1. Vibrational bands that can be assigned to arginine and lysine side chains as well to the phosphate backbone, indicate crucial changes in interactions between transcription factor and DNA.
Collapse
Affiliation(s)
- Silke Kerruth
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Kenichi Ataka
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Daniel Frey
- Biomolecular Mechanisms, Max Planck Institut for Medical Research, Heidelberg, Germany
| | - Ilme Schlichting
- Biomolecular Mechanisms, Max Planck Institut for Medical Research, Heidelberg, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
18
|
Engelhard C, Raffelberg S, Tang Y, Diensthuber RP, Möglich A, Losi A, Gärtner W, Bittl R. A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy. Photochem Photobiol Sci 2014; 12:1855-63. [PMID: 23900620 DOI: 10.1039/c3pp50128k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model. We show that our data are in agreement with the crystal structure of an engineered LOV-domain protein, YF1, that shows the N-terminus of the protein to be helical and to fold back in between the β-sheets of the two LOV domains, and argue for an identical arrangement in YtvA. While we could not detect any structural changes upon blue-light activation of the protein, this structural model now forms an ideal basis for identifying residues as targets for further spin labelling studies to detect potential conformational changes upon irradiation of the protein.
Collapse
|
19
|
Moon J, Gam J, Lee SG, Suh YG, Lee J. Light-regulated tetracycline binding to the Tet repressor. Chemistry 2014; 20:2508-14. [PMID: 24478132 DOI: 10.1002/chem.201304027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 01/21/2023]
Abstract
Elucidation of the signal-transmission pathways between distant sites within proteins is of great importance in medical and bioengineering sciences. The use of optical methods to redesign protein functions is emerging as a general approach for the control of biological systems with high spatiotemporal precision. Here we report the detailed thermodynamic and kinetic characterization of novel chimeric light-regulated Tet repressor (TetR) switches in which light modulates the TetR function. Light absorbed by flavin mononucleotide (FMN) generates a signal that is transmitted to As-LOV and YtvA-LOV fused TetR proteins (LOV=light-oxygen-voltage), in which it alters the binding to tetracycline, the TetR ligand. The engineering of light-sensing protein modules with TetR is a valuable tool that deepens our understanding of the mechanism of signal transmission within proteins. In addition, the light-regulated changes of drug binding that we describe here suggest that engineered light-sensitive proteins may be used for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Jayoung Moon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea), Fax: (+82) 2-884-8334
| | | | | | | | | |
Collapse
|
20
|
Drepper T, Gensch T, Pohl M. Advanced in vivo applications of blue light photoreceptors as alternative fluorescent proteins. Photochem Photobiol Sci 2014; 12:1125-34. [PMID: 23660639 DOI: 10.1039/c3pp50040c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultimate ambition in cell biology, microbiology and biomedicine is to unravel complex physiological and pathophysiological processes within living organisms. To conquer this challenge, fluorescent proteins (FPs) are used as versatile in vivo reporters and biosensors to study gene regulation as well as the synthesis, localization and function of proteins in living cells. The most widely used FPs are the green fluorescent protein (GFP) and its derivatives and relatives. Their use as in vivo reporter proteins, however, is sometimes restricted by different environmental and cellular factors. Consequently, a whole range of alternative, cofactor-dependent reporter proteins have been developed recently. In this perspective, we summarize the advantages and limitations of the novel class of cyan-green fluorescent flavoproteins in comparison to members of the GFP family and discuss some correlated consequences for the use of FPs as in vivo reporters.
Collapse
Affiliation(s)
- Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Jülich, 52425 Juelich, Germany.
| | | | | |
Collapse
|
21
|
Song SH, Madsen D, van der Steen JB, Pullman R, Freer LH, Hellingwerf KJ, Larsen DS. Primary Photochemistry of the Dark- and Light-Adapted States of the YtvA Protein from Bacillus subtilis. Biochemistry 2013; 52:7951-63. [DOI: 10.1021/bi4012258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sang-Hun Song
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dorte Madsen
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jeroen B. van der Steen
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences
(SILS), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Robert Pullman
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Lucy H. Freer
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Klaas J. Hellingwerf
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences
(SILS), University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Delmar S. Larsen
- Department
of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Takeda K, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem B 2013; 117:15606-13. [PMID: 23931584 DOI: 10.1021/jp406109j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, conformational changes of the amino-terminal helix (A'α helix), in addition to the reported conformational changes of the carboxyl-terminal helix (Jα helix), have been proposed to be important for the regulatory function of the light-oxygen-voltage 2 domain (LOV2) of phototropin 1 from Arabidopsis. However, the reaction dynamics of the A'α helix have not been examined. Here, the unfolding reactions of the A'α and Jα helices of the LOV2 domain of phototropin 1 from Arabidopsis thaliana were investigated by the time-resolved transient grating (TG) method. A mutant (T469I mutant) that renders the A'α helix unfolded in the dark state showed unfolding of the Jα helix with a time constant of 1 ms, which is very similar to the time constant reported for the wild-type LOV2-linker sample. Furthermore, a mutant (I608E mutant) that renders the Jα helix unfolded in the dark state exhibited an unfolding process of the A'α helix with a time constant of 12 ms. On the basis of these experimental results, it is suggested that the unfolding reactions of these helices occurs independently.
Collapse
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
23
|
Rani R, Jentzsch K, Lecher J, Hartmann R, Willbold D, Jaeger KE, Krauss U. Conservation of dark recovery kinetic parameters and structural features in the pseudomonadaceae "short" light, oxygen, voltage (LOV) protein family: implications for the design of LOV-based optogenetic tools. Biochemistry 2013; 52:4460-73. [PMID: 23746326 DOI: 10.1021/bi400311r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria and fungi, various light, oxygen, voltage (LOV) sensory systems that lack a fused effector domain but instead contain only short N- and C-terminal extensions flanking the LOV core exist. In the prokaryotic kingdom, this so-called "short" LOV protein family represents the third largest LOV photoreceptor family. This observation prompted us to study their distribution and phylogeny as well as their photochemical and structural properties in more detail. We recently described the slow and fast reverting "short" LOV proteins PpSB1-LOV and PpSB2-LOV from Pseudomonas putida KT2440 whose adduct state lifetimes varied by 3 orders of magnitude [Jentzsch, K., Wirtz, A., Circolone, F., Drepper, T., Losi, A., Gärtner, W., Jaeger, K. E., and Krauss, U. (2009) Biochemistry 48, 10321-10333]. We now present evidence of the conservation of similar fast and slow-reverting "short" LOV proteins in different Pseudomonas species. Truncation studies conducted with PpSB1-LOV and PpSB2-LOV suggested that the short N- and C-terminal extensions outside of the LOV core domain are essential for the structural integrity and folding of the two proteins. While circular dichroism and solution nuclear magnetic resonance experiments verify that the two short C-terminal extensions of PpSB1-LOV and PpSB2-LOV form independently folding helical structures in solution, bioinformatic analyses imply the formation of coiled coils of the respective structural elements in the context of the dimeric full-length proteins. Given their prototypic architecture, conserved in most more complex LOV photoreceptor systems, "short" LOV proteins could represent ideally suited building blocks for the design of genetically encoded photoswitches (i.e., LOV-based optogenetic tools).
Collapse
Affiliation(s)
- Raj Rani
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, D-52426 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Conrad KS, Bilwes AM, Crane BR. Light-induced subunit dissociation by a light-oxygen-voltage domain photoreceptor from Rhodobacter sphaeroides. Biochemistry 2013; 52:378-91. [PMID: 23252338 DOI: 10.1021/bi3015373] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light-oxygen-voltage (LOV) domains bind a flavin chromophore to serve as blue light sensors in a wide range of eukaryotic and prokaryotic proteins. LOV domains are associated with a variable effector domain or a separate protein signaling partner to execute a wide variety of functions that include regulation of kinases, generation of anti-sigma factor antagonists, and regulation of circadian clocks. Here we present the crystal structure, photocycle kinetics, association properties, and spectroscopic features of a full-length LOV domain protein from Rhodobacter sphaeroides (RsLOV). RsLOV exhibits N- and C-terminal helical extensions that form an unusual helical bundle at its dimer interface with some resemblance to the helical transducer of sensory rhodopsin II. The blue light-induced conformational changes of RsLOV revealed from a comparison of light- and dark-state crystal structures support a shared signaling mechanism of LOV domain proteins that originates with the light-induced formation of a flavin-cysteinyl photoadduct. Adduct formation disrupts hydrogen bonding in the active site and propagates structural changes through the LOV domain core to the N- and C-terminal extensions. Single-residue variants in the active site and dimer interface of RsLOV alter photoadduct lifetimes and induce structural changes that perturb the oligomeric state. Size exclusion chromatography, multiangle light scattering, small-angle X-ray scattering, and cross-linking studies indicate that RsLOV dimerizes in the dark but, upon light excitation, dissociates into monomers. This light-induced switch in oligomeric state may prove to be useful for engineering molecular associations in controlled cellular settings.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
25
|
Circolone F, Granzin J, Jentzsch K, Drepper T, Jaeger KE, Willbold D, Krauss U, Batra-Safferling R. Structural basis for the slow dark recovery of a full-length LOV protein from Pseudomonas putida. J Mol Biol 2012; 417:362-74. [PMID: 22326872 DOI: 10.1016/j.jmb.2012.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
Abstract
Blue-light photoreceptors containing light–oxygen–voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.
Collapse
Affiliation(s)
- Franco Circolone
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, D-52426 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jurk M, Dorn M, Schmieder P. Blue Flickers of Hope: Secondary Structure, Dynamics, and Putative Dimerization Interface of the Blue-Light Receptor YtvA from Bacillus subtilis. Biochemistry 2011; 50:8163-71. [DOI: 10.1021/bi200782j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcel Jurk
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str.
10, 13125 Berlin, Germany
- Institute of Chemistry and
Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Dorn
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str.
10, 13125 Berlin, Germany
- Institute of Chemistry and
Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str.
10, 13125 Berlin, Germany
| |
Collapse
|
27
|
Abstract
LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.
Collapse
|
28
|
Elías-Arnanz M, Padmanabhan S, Murillo FJ. Light-dependent gene regulation in nonphototrophic bacteria. Curr Opin Microbiol 2011; 14:128-35. [DOI: 10.1016/j.mib.2010.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/24/2022]
|
29
|
Nakasone Y, Hellingwerf KJ. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis. Photochem Photobiol 2011; 87:542-7. [PMID: 21388385 DOI: 10.1111/j.1751-1097.2011.00919.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The YtvA protein, which is one of the proteins that comprises the network carrying out the signal transfer inducing the general stress response in Bacillus subtilis, is composed of an N-terminal LOV domain (that binds a flavin [FMN]) and a C-terminal STAS domain. This latter domain shows sequence features typical for a nucleotide (NTP) binding protein. It has been proposed (FEBS Lett., 580 [2006], 3818) that BODIPY-GTP can be used as a reporter for nucleotide binding to this site and that activation of the LOV domain by blue light is reflected in an alteration of the BODIPY-GTP fluorescence. Here we confirm that BODIPY-GTP indeed binds to YtvA, but rather nonspecifically, and not limited to the STAS domain. Blue-light modulation of fluorescence emission of YtvA-bound BODIPY-GTP is observed both in the full-length YtvA protein and in a truncated protein composed of the LOV-domain plus the LOV-STAS linker region (YtvA(1-147)) as a light-induced decrease in fluorescence emission. The isolated LOV domain (i.e. without the linker region) does not show such BODIPY-GTP fluorescence changes. Dialysis experiments have confirmed the blue-light-induced release of BODIPY-GTP from YtvA.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
30
|
Light input and processing in the circadian clock ofNeurospora. FEBS Lett 2011; 585:1467-73. [DOI: 10.1016/j.febslet.2011.03.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 11/24/2022]
|
31
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Raffelberg S, Mansurova M, Gärtner W, Losi A. Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. J Am Chem Soc 2011; 133:5346-56. [PMID: 21410163 DOI: 10.1021/ja1097379] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extended hydrogen-bonding (HB) network stabilizes the isoalloxazine ring of the flavin mononucleotide (FMN) chromophore within the photosensing LOV domain of blue-light protein receptors, via interactions between the C(2)═O, N(3)H, C(4)═O, and N(5) groups and conserved glutamine and asparagine residues. In this work we studied the influence of the HB network on the efficiency, kinetics, and energetics of a LOV protein photocycle, involving the reversible formation of a FMN-cysteine covalent adduct. The following results were found for mutations of the conserved amino acids N94, N104, and Q123 in the Bacillus subtilis LOV protein YtvA: (i) Increased (N104D, N94D) or strongly reduced (N94A) rate of adduct formation; this latter mutation extends the lifetime of the flavin triplet state, i.e., adduct formation, more than 60-fold, from 2 μs for the wild-type (WT) protein to 129 μs. (ii) Acceleration of the overall photocycle for N94S, N94A, and Q123N, with recovery lifetimes 20, 45, and 85 times faster than for YtvA-WT, respectively. (iii) Slight modifications of FMN spectral features, correlated with the polarization of low-energy transitions. (iv) Strongly reduced (N94S) or suppressed (Q123N) structural volume changes accompanying adduct formation, as determined by optoacoustic spectroscopy. (v) Minor effects on the quantum yield, with the exception of a considerable reduction for Q123N, i.e., 0.22 vs 0.49 for YtvA-WT. The data stress the importance of the HB network in modulating the photocycle of LOV domains, while at the same time establishing a link with functional responses.
Collapse
Affiliation(s)
- Sarah Raffelberg
- Max-Planck-Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim, Germany
| | | | | | | |
Collapse
|
33
|
Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Kinetics of conformational changes of the FKF1-LOV domain upon photoexcitation. Biophys J 2011; 99:3831-9. [PMID: 21112308 DOI: 10.1016/j.bpj.2010.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 01/16/2023] Open
Abstract
The photochemical reaction dynamics of a light-oxygen-voltage (LOV) domain from the blue light sensor protein, FKF1 (flavin-binding Kelch repeat F-box) was studied by means of the pulsed laser-induced transient grating method. The observed absorption spectral changes upon photoexcitation were similar to the spectral changes observed for typical LOV domain proteins (e.g., phototropins). The adduct formation took place with a time constant of 6 μs. After this reaction, a significant conformational change with a time constant of 6 ms was observed as a change in the diffusion coefficient. An FKF1-LOV mutant without the conserved loop connecting helices E and F, which is present only in the FKF1/LOV Kelch protein 2/ZEITLUPE family, did not show these slow phase dynamics. This result indicates that the conformational change in the loop region represents a major change in the FKF1-LOV photoreaction.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
34
|
Krauss U, Drepper T, Jaeger KE. Enlightened Enzymes: Strategies to Create Novel Photoresponsive Proteins. Chemistry 2011; 17:2552-60. [DOI: 10.1002/chem.201002716] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Hao N, Whitelaw ML, Shearwin KE, Dodd IB, Chapman-Smith A. Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Res 2011; 39:3695-709. [PMID: 21245039 PMCID: PMC3089468 DOI: 10.1093/nar/gkq1336] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The basic helix–loop–helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using a new bacterial two-hybrid system that selects for loss of protein interactions, we have identified 22 amino acids in the N-terminal PAS domain of Arnt that are involved in heterodimerization with aryl hydrocarbon receptor (AhR). Of these, Arnt E163 and Arnt S190 were selective for the AhR/Arnt interaction, since mutations at these positions had little effect on Arnt dimerization with other bHLH.PAS partners, while substitution of Arnt D217 affected the interaction with both AhR and hypoxia inducible factor-1α but not with single minded 1 and 2 or neuronal PAS4. Arnt uses the same face of the N-terminal PAS domain for homo- and heterodimerization and mutational analysis of AhR demonstrated that the equivalent region is used by AhR when dimerizing with Arnt. These interfaces differ from the PAS β-scaffold surfaces used for dimerization between the C-terminal PAS domains of hypoxia inducible factor-2α and Arnt, commonly used for PAS domain interactions.
Collapse
Affiliation(s)
- Nan Hao
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
36
|
Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 2011; 6:e16151. [PMID: 21264304 PMCID: PMC3019169 DOI: 10.1371/journal.pone.0016151] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/14/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. METHODOLOGY/PRINCIPAL FINDINGS By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. CONCLUSIONS/SIGNIFICANCE Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.
Collapse
|
37
|
Purcell EB, McDonald CA, Palfey BA, Crosson S. An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry 2010; 49:6761-70. [PMID: 20593779 DOI: 10.1021/bi1006404] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flavin-binding LOV domains are broadly conserved in plants, fungi, archaea, and bacteria. These approximately 100-residue photosensory modules are generally encoded within larger, multidomain proteins that control a range of blue light-dependent physiologies. The bacterium Caulobacter crescentus encodes a soluble LOV-histidine kinase, LovK, that regulates the adhesive properties of the cell. Full-length LovK is dimeric as are a series of systematically truncated LovK constructs containing only the N-terminal LOV sensory domain. Nonconserved sequence flanking the LOV domain functions to tune the signaling lifetime of the protein. Size exclusion chromatography and small-angle X-ray scattering (SAXS) demonstrate that the LOV sensor domain does not undergo a large conformational change in response to photon absorption. However, limited proteolysis identifies a sequence flanking the C-terminus of the LOV domain as a site of light-induced change in protein conformation and dynamics. On the basis of SAXS envelope reconstruction and bioinformatic prediction, we propose this dynamic region of structure is an extended C-terminal coiled coil that links the LOV domain to the histidine kinase domain. To test the hypothesis that LOV domain signaling is affected by cellular redox state in addition to light, we measured the reduction potential of the LovK FMN cofactor. The measured potential of -258 mV is congruent with the redox potential of Gram-negative cytoplasm during logarithmic growth (-260 to -280 mV). Thus, a fraction of LovK in the cytosol may be in the reduced state under typical growth conditions. Chemical reduction of the FMN cofactor of LovK attenuates the light-dependent ATPase activity of the protein in vitro, demonstrating that LovK can function as a conditional photosensor that is regulated by the oxidative state of the cellular environment.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
38
|
Jurk M, Dorn M, Kikhney A, Svergun D, Gärtner W, Schmieder P. The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J Mol Biol 2010; 403:78-87. [PMID: 20800068 DOI: 10.1016/j.jmb.2010.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
Photoreceptors play an important role in plants and bacteria by converting extracellular stimuli into intracellular signals. One distinct class are the blue-light-sensitive phototropins harboring a light-oxygen-voltage (LOV) domain coupled to various effector domains. Photon absorption by the chromophore within the LOV domain results in an activation of the output domain via mechanisms that are hitherto not well understood. The photoreceptor YtvA from Bacillus subtilis is a bacterial analog of phototropins, consists of an LOV and a sulfate transporter/anti-sigma factor antagonist domain, and is involved in the response of the bacterium to environmental stress. We present here analytical ultracentrifugation studies and small-angle X-ray scattering experiments, showing that YtvA is a dimer. On the basis of these results, we present a low-resolution model of the dimer in the dark and the lit state of the protein. In addition, we show that YtvA does not change its oligomerization state or its overall shape upon light activation.
Collapse
Affiliation(s)
- Marcel Jurk
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Dorn
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alexey Kikhney
- European Molecular Biology Laboratory, Notkestraße 85, Geb. 25A, 22603 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Notkestraße 85, Geb. 25A, 22603 Hamburg, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
39
|
Nakasone Y, Ono TA, Ishii A, Masuda S, Terazima M. Temperature-sensitive reaction of a photosensor protein YcgF: possibility of a role of temperature sensor. Biochemistry 2010; 49:2288-96. [PMID: 20141167 DOI: 10.1021/bi902121z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spectrally silent photoreaction of a blue light sensor protein YcgF, composed of the N-terminal BLUF domain and the C-terminal EAL domain, was investigated by the time-resolved transient grating method. Comparing photoinduced reactions of full-length YcgF with that of the BLUF-linker construct, it was found that a major conformation change after photoinduced dimerization is predominantly localized on the EAL domain. Furthermore, the photoinduced conformational change displayed significant temperature dependence. This result is explained by an equilibrium of reactive and nonreactive YcgF species, with the population of photoreactive species decreasing as the temperature is lowered in the dark state. We consider that the dimer form is the nonreactive species and it is the dominant species at lower temperatures. The temperature sensitivity of the photoreaction of YcgF suggests that this protein could have a biological function as a temperature sensor as well as behaving as a light sensor.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
40
|
Möglich A, Moffat K. Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 2010; 9:1286-300. [DOI: 10.1039/c0pp00167h] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Tang Y, Cao Z, Livoti E, Krauss U, Jaeger KE, Gärtner W, Losi A. Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: a mutagenesis study uncovering the importance of specific protein sites. Photochem Photobiol Sci 2009; 9:47-56. [PMID: 20062844 DOI: 10.1039/b9pp00075e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
YtvA from Bacillus subtilis is a blue-light responsive, flavin-binding photoreceptor, built of a light-sensing LOV domain (aa 25-126) and an NTP (nucleoside triphosphate)-binding STAS domain (aa 147-261). The STAS domain is supposed to be the effector part of the protein or a secondary switch. Both domains are connected by a linker polypeptide. The active form of YtvA is generated upon light excitation, causing the formation of a covalent bond between a cysteine residue (Cys62) in the LOV domain and the position 4a of the flavin chromophore. This photoadduct formation within the LOV domain results in a conformational change of the NTP-binding cavity, evidencing intra-protein signal transmission. We have previously shown that Glu105, localized on the beta-scaffold of the LOV-core, is involved in this process. Here, we extend this work by the identification of further residues that upon mutation supress or strongly impair signal transmission by interfering with the communication between the two domains. These comprise L106 and D109 on the LOV domain; K130 and K134 on the linker region; D193, L194 and G196 within the DLSG GTP-binding motif (switch region) and N201 on the STAS domain. Furthermore in the mutated S195A and D193A proteins, GTP affinity is diminished. Other mutations investigated have little or no effect on signal transmission and GTP-binding affinity: R63K that was found to accelerate the thermal recovery of the parent state ca. ten-fold; K128A, Q129A and Y132A within the linker region, and S183A and S212A on the STAS domain. The results show a key role of the LOV domain beta-scaffold and of positively charged residues within the linker for intra-protein signal transmission. Furthermore they evidence the conformational switch function of a structurally conserved strand-loop-helix region (bearing the DLSG GTP-binding motif and N201) within the STAS domain that constitutes a novel GTP-binding fold.
Collapse
Affiliation(s)
- Yifen Tang
- Max-Planck-Institute for Bioinorganic Chemistry, Stifstrasse 34-36 45470, Mülheim, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Jentzsch K, Wirtz A, Circolone F, Drepper T, Losi A, Gärtner W, Jaeger KE, Krauss U. Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida. Biochemistry 2009; 48:10321-33. [PMID: 19772355 DOI: 10.1021/bi901115z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously characterized a LOV protein PpSB2-LOV, present in the common soil bacterium Pseudomonas putida, that exhibits a plant phototropin LOV-like photochemistry [Krauss, U., Losi, A., Gartner, W., Jaeger, K. E., and Eggert, T. (2005) Phys. Chem. Chem. Phys. 7, 2804-2811]. Now, we have identified a second LOV homologue, PpSB1-LOV, found in the same organism with approximately 66% identical amino acids. Both proteins consist of a conserved LOV core flanked by short N- and C-terminal extensions but lack a fused effector domain. Although both proteins are highly similar in sequence, they display drastically different dark recovery kinetics. At 20 degrees C, PpSB2-LOV reverts with an average time constant of 137 s from the photoequilibrium to the dark state, whereas PpSB1-LOV exhibits an average dark recovery time constant of 1.48 x 10(5) s. Irrespective of the significant differences in their dark recovery behavior, both proteins showed nearly identical kinetics for the photochemically induced adduct formation. In order to elucidate the structural and mechanistic basis of these extremely different dark recovery time constants, we performed a mutational analysis. Six amino acids in a distance of up to 6 A from the flavin chromophore, which differ between the two proteins, were identified and interchanged by site-directed mutagenesis. The amino acid substitution R66I located near the FMN phosphate in LOV domains was identified in PpSB1-LOV to accelerate the dark recovery by 2 orders of magnitude. Vice versa, the corresponding substitution I66R slowed down the dark recovery in PpSB2-LOV by a factor of 10. Interestingly, the interchange of the C-terminal extensions between the two proteins also had a pronounced effect on the dark recovery time constants, thus highlighting a coupling of these protein regions to the chromophore binding pocket.
Collapse
Affiliation(s)
- Katrin Jentzsch
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, FZ-Julich, Stetternicher Forst D-52426 Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Krauss U, Lee J, Benkovic SJ, Jaeger KE. LOVely enzymes - towards engineering light-controllable biocatalysts. Microb Biotechnol 2009; 3:15-23. [PMID: 21255302 PMCID: PMC3815943 DOI: 10.1111/j.1751-7915.2009.00140.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue‐light photoreceptors of the Light, Oxygen, Voltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to the respective effector domain. Furthermore, we describe the construction of LOV fusions to different effector domains, namely a dihydrofolate reductase from Escherichia coli and a lipase from Bacillus subtilis. Both fusion partners retained functionality, and alteration of enzyme activity by light was also demonstrated. Hence, it appears that fusion of LOV photoreceptors to functional enzyme target sites via appropriate linker structures may represent a straightforward strategy to design light controllable biocatalysts.
Collapse
Affiliation(s)
- Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Research Centre Juelich, D-52426-Juelich, Germany
| | | | | | | |
Collapse
|
44
|
Ogata H, Cao Z, Losi A, Gärtner W. Crystallization and preliminary X-ray analysis of the LOV domain of the blue-light receptor YtvA from Bacillus amyloliquefaciens FZB42. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:853-5. [PMID: 19652358 PMCID: PMC2720352 DOI: 10.1107/s1744309109026670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 07/08/2009] [Indexed: 11/10/2022]
Abstract
Light-oxygen-voltage (LOV) proteins play an important role in blue-light-dependent physiological processes in many organisms. The LOV domain of the blue-light receptor YtvA from Bacillus amyloliquefaciens FZB42 has been purified and crystallized at 277 K using the sitting-drop vapour-diffusion method with 2-ethoxyethanol as a precipitant. A data set was collected to 1.60 A resolution from a single crystal at 100 K using synchrotron radiation. The LOV domain of YtvA crystallized in space group C222(1), with unit-cell parameters a = 64.95, b = 83.76, c = 55.81 A. The crystal structure of the LOV domain of YtvA was determined by the molecular-replacement method. The crystal contained one molecule per asymmetric unit, with a Matthews coefficient (V(M)) of 3.04 A(3) Da(-1); the solvent content was estimated to be 59.5%.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Zhen Cao
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Aba Losi
- Department of Physics, University of Parma and Istituto Nazionale per la Fisica della Materia, Parco Area delle Scienze 7/A, 43100 Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Hendrischk AK, Moldt J, Frühwirth SW, Klug G. Characterization of an unusual LOV domain protein in the alpha-proteobacterium Rhodobacter sphaeroides. Photochem Photobiol 2009; 85:1254-9. [PMID: 19508644 DOI: 10.1111/j.1751-1097.2009.00554.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The facultatively phototrophic purple bacterium Rhodobacter sphaeroides 2.4.1 harbors a LOV (light, oxygen and voltage) domain protein, which shows a particular structure. LOV domains perceive blue light by a noncovalently bound flavin and transmit the signal to various coupled output domains. Proteins, that harbor a LOV core, function e.g. as phototropins or circadian clock regulators. Jalpha helices, which act as linker between the LOV core and the output domain, were shown to be involved in the light-dependent activation of the output domain. Like PpSB2 from Pseudomonas putida, the LOV domain protein of R. sphaeroides is not coupled to an effector domain and harbors an extended C-terminal alpha helix. We expressed the R. sphaeroides LOV domain recombinantly in Escherichia coli. The protein binds an FMN as a cofactor and shows a photocycle typical for LOV domain containing proteins. In R. sphaeroides, we detected the protein as well in the cytoplasm as in the membrane fraction, which was not reported for other bacterial LOV domain proteins.
Collapse
Affiliation(s)
- Anne-Kathrin Hendrischk
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | | | | | | |
Collapse
|
46
|
Nakasone Y, Eitoku T, Zikihara K, Matsuoka D, Tokutomi S, Terazima M. Stability of Dimer and Domain–Domain Interaction of Arabidopsis Phototropin 1 LOV2. J Mol Biol 2008; 383:904-13. [DOI: 10.1016/j.jmb.2008.08.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/25/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
|
47
|
Mansurova M, Koay MS, Gärtner W. Synthesis and Electrochemical Properties of Structurally Modified Flavin Compounds. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Kutta RJ, Hofinger ESA, Preuss H, Bernhardt G, Dick B. Blue-Light Induced Interaction of LOV Domains fromChlamydomonas reinhardtii. Chembiochem 2008; 9:1931-8. [DOI: 10.1002/cbic.200800158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Zoltowski BD, Crane BR. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 2008; 47:7012-9. [PMID: 18553928 PMCID: PMC2743001 DOI: 10.1021/bi8007017] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The fungal photoreceptor Vivid (VVD) plays an important role in the adaptation of blue-light responses in Neurospora crassa. VVD, an FAD-binding LOV (light, oxygen, voltage) protein, couples light-induced cysteinyl adduct formation at the flavin ring to conformational changes in the N-terminal cap (Ncap) of the VVD PAS domain. Size-exclusion chromatography (SEC), equilibrium ultracentrifugation, and static and dynamic light scattering show that these conformational changes generate a rapidly exchanging VVD dimer, with an expanded hydrodynamic radius. A three-residue N-terminal beta-turn that assumes two different conformations in a crystal structure of a VVD C71V variant is essential for light-state dimerization. Residue substitutions at a critical hinge between the Ncap and PAS core can inhibit or enhance dimerization, whereas a Tyr to Trp substitution at the Ncap-PAS interface stabilizes the light-state dimer. Cross-linking through engineered disulfides indicates that the light-state dimer differs considerably from the dark-state dimer found in VVD crystal structures. These results verify the role of Ncap conformational changes in gating the photic response of N. crassa and indicate that LOV-LOV homo- or heterodimerization may be a mechanism for regulating light-activated gene expression.
Collapse
Affiliation(s)
- Brian D. Zoltowski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Cao Z, Buttani V, Losi A, Gärtner W. A blue light inducible two-component signal transduction system in the plant pathogen Pseudomonas syringae pv. tomato. Biophys J 2008; 94:897-905. [PMID: 17905842 PMCID: PMC2186247 DOI: 10.1529/biophysj.107.108977] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/23/2007] [Indexed: 11/18/2022] Open
Abstract
The open reading frame PSPTO2896 from the plant pathogen Pseudomonas syringae pv. tomato encodes a protein of 534 amino acids showing all salient features of a blue light-driven two-component system. The N-terminal LOV (light, oxygen, voltage) domain, potentially binding a flavin chromophore, is followed by a histidine kinase (HK) motif and a response regulator (RR). The full-length protein (PST-LOV) and, separately, the RR and the LOV+HK part (PST-LOV(DeltaRR)) were heterologously expressed and functionally characterized. The two LOV proteins showed typical LOV-like spectra and photochemical reactions, with the blue light-driven, reversible formation of a covalent flavin-cysteine bond. The fluorescence changes in the lit state of full-length PST-LOV, but not in PST-LOV(DeltaRR), indicating a direct interaction between the LOV core and the RR module. Experiments performed with radioactive ATP uncover the light-driven kinase activity. For both PST-LOV and PST-LOV(DeltaRR), much more radioactivity is incorporated when the protein is in the lit state. Furthermore, addition of the RR domain to the fully phosphorylated PST-LOV(DeltaRR) leads to a very fast transfer of radioactivity, indicating a highly efficient HK activity and a tight interaction between PST-LOV(DeltaRR) and RR, possibly facilitated by the LOV core itself.
Collapse
Affiliation(s)
- Z. Cao
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim, Germany
| | - V. Buttani
- Department of Physics, University of Parma, Italy
| | - A. Losi
- Department of Physics, University of Parma, Italy
| | - W. Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim, Germany
| |
Collapse
|