1
|
Łazicka M, Palińska-Saadi A, Piotrowska P, Paterczyk B, Mazur R, Maj-Żurawska M, Garstka M. The coupled photocycle of phenyl-p-benzoquinone and Light-Harvesting Complex II (LHCII) within the biohybrid system. Sci Rep 2022; 12:12771. [PMID: 35896789 PMCID: PMC9329374 DOI: 10.1038/s41598-022-16892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The combination of trimeric form of the light-harvesting complex II (LHCII3), a porous graphite electrode (GE), and the application of phenyl-p-benzoquinone (PPBQ), the quinone derivative, allow the construction of a new type of biohybrid photoactive system. The Chl fluorescence decay and voltammetric analyzes revealed that PPBQ impacts LHCII3 proportionally to accessible quenching sites and that PPBQ forms redox complexes with Chl in both ground and excited states. As a result, photocurrent generation is directly dependent on PPBQ-induced quenching of Chl fluorescence. Since PPBQ also undergoes photoactivation, the action of GE-LHCII3-PPBQ depends on the mutual coupling of LHCII3 and PPBQ photocycles. The GE-LHCII3-PPBQ generates a photocurrent of up to 4.5 µA and exhibits considerable stability during operation. The three-dimensional arrangement of graphite scraps in GE builds an active electrode surface and stabilizes LHCII3 in its native form in low-density multilayers. The results indicate the future usability of such designed photoactive device.
Collapse
Affiliation(s)
- Magdalena Łazicka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Adriana Palińska-Saadi
- Laboratory of Basics of Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.,Bioanalytical Laboratory, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Paulina Piotrowska
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bohdan Paterczyk
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Magdalena Maj-Żurawska
- Laboratory of Basics of Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Zheng B, Zhong D, Xie T, Zhou J, Li W, Ilyas A, Lu Y, Zhou M, Deng R. Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Piotrowska P, Łazicka M, Palińska-Saadi A, Paterczyk B, Kowalewska Ł, Grzyb J, Maj-Żurawska M, Garstka M. Electrochemical characterization of LHCII on graphite electrodes - Potential-dependent photoactivation and arrangement of complexes. Bioelectrochemistry 2019; 127:37-48. [PMID: 30690422 DOI: 10.1016/j.bioelechem.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 01/25/2023]
Abstract
Light-dependent electrochemical properties of the light harvesting complexes of Photosystem II (LHCII) and the corresponding interactions with screen-printed graphite electrodes (GEs) are determined. No exogenous soluble redox mediators are used. LHCII isolated from spinach leaves are immobilized on GE by physical adsorption and through interactions with glutaraldehyde. Importantly, the insertion of LHCII into the pores of a GE is achieved by subjecting the electrode to specific potentials. Both trimeric and aggregated forms of LHCII located within the graphite layer retain their native structures. Voltammetric current peaks centred at ca. -230 and + 50 mV vs. Ag/AgCl (+94 and + 374 mV vs. NHE) limit the investigation of the reduction and oxidation processes of immobilized LHCII. An anodic photocurrent is generated in the LHCII-GE proportional to light intensity and can reach a value of 150 nA/cm2. Light-dependent charge separation in LHCII followed by electron transfer to the GE occurs only at potentials of above -200 mV vs. Ag/AgCl (+124 mV vs. NHE). Our results illustrate the importance of the structural proximity of LHCII and GE for photocurrent generation.
Collapse
Affiliation(s)
- Paulina Piotrowska
- Faculty of Biology, Department of Metabolic Regulation, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Łazicka
- Faculty of Biology, Department of Metabolic Regulation, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adriana Palińska-Saadi
- Bioanalytical Laboratory, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bohdan Paterczyk
- Faculty of Biology, Laboratory of Electron and Confocal Microscopy, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Łucja Kowalewska
- Faculty of Biology, Department of Plant Anatomy and Cytology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Grzyb
- Faculty of Biotechnology, Department of Biophysics, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland; Institute of Physics of the Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Magdalena Maj-Żurawska
- Bioanalytical Laboratory, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland; Faculty of Chemistry, Laboratory of Basics of Analytical Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Maciej Garstka
- Faculty of Biology, Department of Metabolic Regulation, Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
4
|
Hingorani K, Pace R, Whitney S, Murray JW, Smith P, Cheah MH, Wydrzynski T, Hillier W. Photo-oxidation of tyrosine in a bio-engineered bacterioferritin 'reaction centre'-a protein model for artificial photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1821-34. [PMID: 25107631 DOI: 10.1016/j.bbabio.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/11/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
The photosynthetic reaction centre (RC) is central to the conversion of solar energy into chemical energy and is a model for bio-mimetic engineering approaches to this end. We describe bio-engineering of a Photosystem II (PSII) RC inspired peptide model, building on our earlier studies. A non-photosynthetic haem containing bacterioferritin (BFR) from Escherichia coli that expresses as a homodimer was used as a protein scaffold, incorporating redox-active cofactors mimicking those of PSII. Desirable properties include: a di-nuclear metal binding site which provides ligands for bivalent metals, a hydrophobic pocket at the dimer interface which can bind a photosensitive porphyrin and presence of tyrosine residues proximal to the bound cofactors, which can be utilised as efficient electron-tunnelling intermediates. Light-induced electron transfer from proximal tyrosine residues to the photo-oxidised ZnCe6(•+), in the modified BFR reconstituted with both ZnCe6 and Mn(II), is presented. Three site-specific tyrosine variants (Y25F, Y58F and Y45F) were made to localise the redox-active tyrosine in the engineered system. The results indicate that: presence of bound Mn(II) is necessary to observe tyrosine oxidation in all BFR variants; Y45 the most important tyrosine as an immediate electron donor to the oxidised ZnCe6(•+) and that Y25 and Y58 are both redox-active in this system, but appear to function interchangebaly. High-resolution (2.1Å) crystal structures of the tyrosine variants show that there are no mutation-induced effects on the overall 3-D structure of the protein. Small effects are observed in the Y45F variant. Here, the BFR-RC represents a protein model for artificial photosynthesis.
Collapse
Affiliation(s)
- Kastoori Hingorani
- Building 134, Linnaeus Way, Research School of Biology, The Australian National University, ACT 0200, Australia.
| | - Ron Pace
- Building 137, Sullivans Creek Road, Research School of Chemistry, The Australian National University, ACT 0200, Australia.
| | - Spencer Whitney
- Building 134, Linnaeus Way, Research School of Biology, The Australian National University, ACT 0200, Australia
| | - James W Murray
- 724 Sir Ernst Chain Building, South Kensington Campus, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul Smith
- Building 137, Sullivans Creek Road, Research School of Chemistry, The Australian National University, ACT 0200, Australia
| | - Mun Hon Cheah
- Building 134, Linnaeus Way, Research School of Biology, The Australian National University, ACT 0200, Australia
| | - Tom Wydrzynski
- Building 134, Linnaeus Way, Research School of Biology, The Australian National University, ACT 0200, Australia
| | - Warwick Hillier
- Building 134, Linnaeus Way, Research School of Biology, The Australian National University, ACT 0200, Australia
| |
Collapse
|
5
|
Bauer D, Montforts FP, Losi A, Görner H. Photoprocesses of chlorin e6 glucose derivatives. Photochem Photobiol Sci 2012; 11:925-30. [DOI: 10.1039/c1pp05303e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Abstract
This paper presents an overview of the prospects for bio-solar energy conversion. The Global Artificial Photosynthesis meeting at Lord Howe Island (14–18 August 2011) underscored the dependence that the world has placed on non-renewable energy supplies, particularly for transport fuels, and highlighted the potential of solar energy. Biology has used solar energy for free energy gain to drive chemical reactions for billions of years. The principal conduits for energy conversion on earth are photosynthetic reaction centres – but can they be harnessed, copied and emulated? In this communication, we initially discuss algal-based biofuels before investigating bio-inspired solar energy conversion in artificial and engineered systems. We show that the basic design and engineering principles for assembling photocatalytic proteins can be used to assemble nanocatalysts for solar fuel production.
Collapse
|
7
|
Cohen-Ofri I, van Gastel M, Grzyb J, Brandis A, Pinkas I, Lubitz W, Noy D. Zinc-Bacteriochlorophyllide Dimers in de Novo Designed Four-Helix Bundle Proteins. A Model System for Natural Light Energy Harvesting and Dissipation. J Am Chem Soc 2011; 133:9526-35. [DOI: 10.1021/ja202054m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilit Cohen-Ofri
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maurice van Gastel
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Joanna Grzyb
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Brandis
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Iddo Pinkas
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wolfgang Lubitz
- Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dror Noy
- Plant Sciences Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Williamson A, Conlan B, Hillier W, Wydrzynski T. The evolution of Photosystem II: insights into the past and future. PHOTOSYNTHESIS RESEARCH 2011; 107:71-86. [PMID: 20512415 DOI: 10.1007/s11120-010-9559-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.
Collapse
Affiliation(s)
- Adele Williamson
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
9
|
|
10
|
Conlan B. Designing photosystem II: molecular engineering of photo-catalytic proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:687-700. [PMID: 18777102 DOI: 10.1007/s11120-008-9355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
11
|
Wydrzynski T, Hillier W, Conlan B. Engineering model proteins for Photosystem II function. PHOTOSYNTHESIS RESEARCH 2007; 94:225-233. [PMID: 17955341 DOI: 10.1007/s11120-007-9271-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/04/2007] [Indexed: 05/25/2023]
Abstract
Our knowledge of Photosystem II and the molecular mechanism of oxygen production are rapidly advancing. The time is now ripe to exploit this knowledge and use it as a blueprint for the development of light-driven catalysts, ultimately for the splitting of water into O2 and H2. In this article, we outline the background and our approach to this technological application through the reverse engineering of Photosystem II into model proteins.
Collapse
Affiliation(s)
- Tom Wydrzynski
- Research School of Biological Sciences, Australian National University, Canberra, ACT, 0200, Australia.
| | | | | |
Collapse
|