1
|
Ben Moussa F, Kutner W, Beduk T, Sena-Torralba A, Mostafavi E. Electrochemical bio- and chemosensors for cancer biomarkers: Natural (with antibodies) versus biomimicking artificial (with aptamers and molecularly imprinted polymers) recognition. Talanta 2024; 267:125259. [PMID: 37806110 DOI: 10.1016/j.talanta.2023.125259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Electrochemical (EC) bio- and chemosensors are highly promising for on-chip and point-of-care testing (POST) devices. They can make a breakthrough in early cancer diagnosis. Most current EC sensors for cancer biomarkers' detection and determination use natural antibodies as recognition units. However, those quickly lose their biorecognition ability upon exposure to harsh environments, comprising extreme pH, humidity, temperature, etc. So-called "plastic antibodies," including aptamers and molecularly imprinted polymers (MIPs), are hypothesized to be a smart alternative to antibodies. They have attracted the interest of the sensor research community, offering a low cost-to-performance ratio with high stability, an essential advantage toward their commercialization. Herein, we critically review recent technological advances in devising and fabricating EC bio- and chemosensors for cancer biomarkers, classifying them according to the type of recognition unit used into three categories, i.e., antibody-, aptamer-, and MIP-based EC sensors for cancer biomarkers. Each sensor fabrication strategy has been discussed, from the devising concept to cancer sensing applications, including using different innovative nanomaterials and signal transduction strategies. Moreover, employing each recognition unit in the EC sensing of cancer biomarkers has been critically compared in detail to enlighten each recognition unit's advantages, effectiveness, and limitations.
Collapse
Affiliation(s)
- Fatah Ben Moussa
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, Ouargla, 30000, Algeria.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wo ycickiego 1/3, 01-815, Warsaw, Poland
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524, Villach, Austria
| | - Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Borrebaeck CAK, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev Mol Diagn 2014; 7:673-86. [PMID: 17892372 DOI: 10.1586/14737159.7.5.673] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antibody-based microarrays are a rapidly emerging technology that has advanced from the first proof-of-concept studies to demanding serum protein profiling applications during recent years, displaying great promise within disease proteomics. Miniaturized micro- and nanoarrays can be fabricated with an almost infinite number of antibodies carrying the desired specificities. While consuming only minute amounts of reagents, multiplexed and ultrasensitive assays can be performed targeting high- as well as low-abundance analytes in complex nonfractionated proteomes. The microarray images generated can then be converted into protein expression profiles or protein atlases, revealing a detailed composition of the sample. The technology will provide unique opportunities for fields such as disease diagnostics, biomarker discovery, patient stratification, predicting disease recurrence and drug target discovery. This review describes an update of high-throughput proteomics, using antibody-based microarrays, focusing on key technological advances and novel applications that have emerged over the last 3 years.
Collapse
Affiliation(s)
- Carl A K Borrebaeck
- Lund University, Department of Immunotechnology & CREATE Health, BMC D13, SE-221 84 Lund, Sweden.
| | | |
Collapse
|
3
|
Masuda T, Sakuma C, Ueno T, Yamada Y, Ohmomo H, Ueda S, Yamagishi T, Yaginuma H. Spatiotemporal patterns of the Huntingtin-interacting protein 1-related gene in the mouse head. Congenit Anom (Kyoto) 2013; 53:141-8. [PMID: 24712472 DOI: 10.1111/cga.12023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/07/2013] [Indexed: 01/23/2023]
Abstract
Huntingtin-interacting protein 1-related (Hip1r) was originally identified due to its homology to Huntingtin-interacting protein 1, which contributes to the development of Huntington's disease (HD). We studied the expression of the mouse Hip1r (mHip1r) gene in the mouse head by in situ hybridization. In early embryogenesis at embryonic day (E) 13, mHip1r expression was especially prominent in the olfactory epithelium, cerebral cortex layer 1, cortical plate, and dentate gyrus. During later development from E15 to E17, strong expression of mHip1r transcripts continued to be observed in the olfactory epithelium, cortical plate, and dentate gyrus. Furthermore, not only the subplate and subventricular zone of the cortex, but also secretory glands, such as the nasal gland and the submandibular gland, were mHip1r-positive. Other positive tissues included the retinal ganglion cells, vomeronasal organ, trigeminal ganglion, and the developing molar tooth. In the adult mouse brain, similar expression patterns were observed in the cerebral cortex layers and other brain regions except the cerebellum. Additionally, by using an antibody against mHip1r, we confirmed these expression patterns at the protein level. Specific expression of mHip1r in the embryonic brain and secretory glands suggests a possible role for Hip1r in normal development and in the pathology of HD.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The present review reports on the lastest developments in multiplex immunoassays. The selected examples are classified through their detection strategy (fluorescence, chemiluminescence, colorimetry or labeless) and their assay format (standard microtiter plate, polymeric membranes and glass slides). Finally, the degree of integration in a complete system, incorporating fluid handling and detection was also taken into account.
Collapse
|
5
|
Chemiluminescent enzyme immunoassays: a review of bioanalytical applications. Bioanalysis 2011; 1:1259-69. [PMID: 21083050 DOI: 10.4155/bio.09.69] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review gives an overview of the most recent and innovative developments in the field of chemiluminescent immunoassays through carefully selected examples. First, assays using microtiter plates for high-throughput or multiplexed assays aiming to achieve more complex assays through the multiplication of parameters per wells will be described. Systems will then be presented that have been recently developed, motivated by integration and miniaturization of existing immunoassays in more complex experimental setups. Finally, enhanced-performance chemiluminescent biochips, based on chemiluminescent reaction intensification, will be introduced.
Collapse
|
6
|
Riehemann K, Schneider S, Luger T, Godin B, Ferrari M, Fuchs H. Nanomedizin - Herausforderung und Perspektiven. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802585] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Yu X, Schneiderhan-Marra N, Hsu HY, Bachmann J, Joos TO. Protein microarrays: effective tools for the study of inflammatory diseases. Methods Mol Biol 2009; 577:199-214. [PMID: 19718518 DOI: 10.1007/978-1-60761-232-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inflammation is a defense reaction of an organism against harmful stimuli such as tissue injury or infectious agents. The relationship between the infecting microorganism and the immune, inflammatory, and coagulation responses of the host is intricately intertwined. Due to its complex nature, the molecular mechanisms of inflammation are not yet understood in detail and additional diagnostic tools are required to clarify further aspects. In recent years, protein microarray-based research has moved from being technology-based to application-oriented. Protein microarrays are perfect tools for studying inflammatory diseases. High-density protein arrays enable new classes of autoantibodies, which cause autoimmune diseases, to be discovered. Protein arrays consisting of miniaturized multiplexed sandwich immunoassays allow the simultaneous expression analysis of dozens of signaling molecules such as the cytokines and chemokines involved in the regulation of the immune system. The data enable statements to be made on the status of the disease and its progression as well as support for the clinicians in choosing patient-specific treatment. This chapter reviews the technology and the applications of protein microarrays in diagnosing and monitoring inflammatory diseases.
Collapse
Affiliation(s)
- Xiaobo Yu
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48:872-97. [PMID: 19142939 PMCID: PMC4175737 DOI: 10.1002/anie.200802585] [Citation(s) in RCA: 836] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology concepts to medicine joins two large cross-disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields. The common basis evolves from the molecular-scale properties relevant to the two fields. Local probes and molecular imaging techniques allow surface and interface properties to be characterized on a nanometer scale at predefined locations, while chemical approaches offer the opportunity to elaborate and address surfaces, for example, for targeted drug delivery, enhanced biocompatibility, and neuroprosthetic purposes. However, concerns arise in this cross-disciplinary area about toxicological aspects and ethical implications. This Review gives an overview of selected recent developments and applications of nanomedicine.
Collapse
Affiliation(s)
- Kristina Riehemann
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| | | | | | | | | | - Harald Fuchs
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| |
Collapse
|
9
|
Loch CM, Ramirez AB, Liu Y, Sather CL, Delrow JJ, Scholler N, Garvik BM, Urban ND, McIntosh MW, Lampe PD. Use of high density antibody arrays to validate and discover cancer serum biomarkers. Mol Oncol 2007; 1:313-20. [PMID: 19383305 DOI: 10.1016/j.molonc.2007.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/16/2022] Open
Abstract
Perhaps the greatest barrier to translation of serum biomarker discoveries is the inability to evaluate putative biomarkers in high throughput validation studies. Here we report on the development, production, and implementation of a high-density antibody microarray used to evaluate large numbers of candidate ovarian cancer serum biomarkers. The platform was shown to be useful for evaluation of individual antibodies for comparative analysis, such as with disease classification, and biomarker validation and discovery. We demonstrate its performance by showing that known tumor markers behave as expected. We also identify several promising biomarkers from a candidate list and generate hypotheses to support new discovery studies.
Collapse
Affiliation(s)
- Christian M Loch
- Molecular Diagnostics Program, Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|