1
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
2
|
Brosi R, Illarionov B, Heidinger L, Kim RR, Fischer M, Weber S, Bacher A, Bittl R, Schleicher E. Coupled Methyl Group Rotation in FMN Radicals Revealed by Selective Deuterium Labeling. J Phys Chem B 2020; 124:1678-1690. [PMID: 32011886 DOI: 10.1021/acs.jpcb.9b11331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavin semiquinones are common intermediate redox states in flavoproteins, and thus, knowledge of their electronic structure is essential for fully understanding their chemistry and chemical versatility. In this contribution, we use a combination of high-field electron nuclear double resonance spectroscopy and selective deuterium labeling of flavin mononucleotide (FMN) with subsequent incorporation as cofactor into a variant Avena sativa LOV domain to extract missing traits of the electronic structure of a protein-bound FMN radical. From these experiments, precise values of small proton hyperfine and deuterium nuclear quadrupole couplings could be extracted. Specifically, isotropic hyperfine couplings of -3.34, -0.11, and +0.91 MHz were obtained for the protons H(6), H(9), and H(7α), respectively. These values are discussed in the light of specific protein-cofactor interactions. Furthermore, the temperature behavior of the H(7α) methyl-group rotation elicited by its energy landscape was analyzed in greater detail. Pronounced interplay between the two methyl groups at C(7) and C(8) of FMN could be revealed. Most strikingly, this rotational behavior could be modulated by selective deuterium editing.
Collapse
Affiliation(s)
- Richard Brosi
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Boris Illarionov
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Ryu-Ryun Kim
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Adelbert Bacher
- Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany.,Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, 80247 Garching, Germany
| | - Robert Bittl
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Beal NJ, Corry TA, O'Malley PJ. A Comparison of Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters for Intermediates Involved in the S 2 to S 3 State Transition of Nature's Oxygen Evolving Complex. J Phys Chem B 2018; 122:1394-1407. [PMID: 29300480 DOI: 10.1021/acs.jpcb.7b10843] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A broken symmetry density functional theory (BS-DFT) magnetic analysis of the S2, S2YZ•, and S3 states of Nature's oxygen evolving complex is performed for both the native Ca and Sr substituted forms. Good agreement with experiment is observed between the tyrosyl calculated g-tensor and 1H hyperfine couplings for the native Ca form. Changes in the hydrogen bonding environment of the tyrosyl radical in S2YZ• caused by Sr substitution lead to notable changes in the calculated g-tensor of the tyrosyl radical. Comparison of calculated and experimental 55Mn hyperfine couplings for the S3 state presently favors an open cubane form of the complex with an additional OH ligand coordinating to MnD. In Ca models, this additional ligation can arise by closed-cubane form deprotonation of the Ca ligand W3 in the S2YZ• state accompanied by spontaneous movement to the vacant Mn coordination site or by addition of an external OH group. For the Sr form, no spontaneous movement of W3 to the vacant Mn coordination site is observed in contrast to the native Ca form, a difference which may lead to the reduced catalytic activity of the Sr substituted form. BS-DFT studies on peroxo models of S3 as indicated by a recent X-ray free electron laser (XFEL) crystallography study give rise to a structural model compatible with experimental data and an S = 3 ground state compatible with EPR studies.
Collapse
Affiliation(s)
- Nathan J Beal
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Thomas A Corry
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| |
Collapse
|
4
|
Möbius K, Lubitz W, Savitsky A. Jim Hyde and the ENDOR Connection: A Personal Account. APPLIED MAGNETIC RESONANCE 2017; 48:1149-1183. [PMID: 29151676 PMCID: PMC5668355 DOI: 10.1007/s00723-017-0959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/07/2023]
Abstract
In this minireview, we report on our year-long EPR work, such as electron-nuclear double resonance (ENDOR), pulse electron double resonance (PELDOR) and ELDOR-detected NMR (EDNMR) at X-band and W-band microwave frequencies and magnetic fields. This report is dedicated to James S. Hyde and honors his pioneering contributions to the measurement of spin interactions in large (bio)molecules. From these interactions, detailed information is revealed on structure and dynamics of macromolecules embedded in liquid-solution or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultra-fast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy and its multi-frequency extensions to new horizons concerning sensitivity of detection, selectivity of molecular interactions and time resolution. Among the most important advances is the upgrading of EPR to high magnetic fields, very much in analogy to what happened in NMR. The ongoing progress in EPR spectroscopy is exemplified by reviewing various multi-frequency electron-nuclear double-resonance experiments on organic radicals, light-generated donor-acceptor radical pairs in photosynthesis, and site-specifically nitroxide spin-labeled bacteriorhodopsin, the light-driven proton pump, as well as EDNMR and ENDOR on nitroxides. Signal and resolution enhancements are particularly spectacular for ENDOR, EDNMR and PELDOR on frozen-solution samples at high Zeeman fields. They provide orientation selection for disordered samples approaching single-crystal resolution at canonical g-tensor orientations-even for molecules with small g-anisotropies. Dramatic improvements of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Thus, unique structural and dynamic information is revealed that can hardly be obtained by other analytical techniques. Micromolar concentrations of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems-offering exciting applications for physicists, chemists, biochemists and molecular biologists.
Collapse
Affiliation(s)
- Klaus Möbius
- Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Anton Savitsky
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Seif Eddine M, Biaso F, Arias‐Cartin R, Pilet E, Rendon J, Lyubenova S, Seduk F, Guigliarelli B, Magalon A, Grimaldi S. Probing the Menasemiquinone Binding Mode to Nitrate Reductase A by Selective2H and15N Labeling, HYSCORE Spectroscopy, and DFT Modeling. Chemphyschem 2017; 18:2704-2714. [DOI: 10.1002/cphc.201700571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Eric Pilet
- Aix Marseille University, CNRS, BIP Marseille France
- Faculté de Biologie, University Pierre et Marie Curie Paris France
| | - Julia Rendon
- Aix Marseille University, CNRS, BIP Marseille France
| | | | - Farida Seduk
- Aix Marseille University, CNRS, LCB Marseille France
| | | | - Axel Magalon
- Aix Marseille University, CNRS, LCB Marseille France
| | | |
Collapse
|
6
|
Corno M, Delle Piane M, Choquet P, Ugliengo P. Models for biomedical interfaces: a computational study of quinone-functionalized amorphous silica surface features. Phys Chem Chem Phys 2017; 19:7793-7806. [DOI: 10.1039/c6cp07909a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural and IR features of amorphous silica surfaces, functionalized by ortho-benzoquinone groups, were computed to obtain a deeper knowledge of multifunctional coatings with antimicrobial properties.
Collapse
Affiliation(s)
- Marta Corno
- Dipartimento di Chimica and NIS – Nanostructured Interfaces and Surfaces – Centre
- Università degli Studi di Torino
- Torino
- Italy
| | - Massimo Delle Piane
- Faculty of Production Engineering and Bremen Center for Computational Materials Science
- University of Bremen
- Bremen
- Germany
| | - Patrick Choquet
- Luxembourg Institute of Science and Technology (LIST)
- Materials Research and Technology Department (MRT)
- L-4362 Esch/Alzette
- Luxembourg
| | - Piero Ugliengo
- Dipartimento di Chimica and NIS – Nanostructured Interfaces and Surfaces – Centre
- Università degli Studi di Torino
- Torino
- Italy
| |
Collapse
|
7
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
8
|
Vermaas JV, Taguchi AT, Dikanov SA, Wraight CA, Tajkhorshid E. Redox potential tuning through differential quinone binding in the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 2015; 54:2104-16. [PMID: 25734689 DOI: 10.1021/acs.biochem.5b00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.
Collapse
Affiliation(s)
- Josh V Vermaas
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Colin A Wraight
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- †Center for Biophysics and Computational Biology, ‡Department of Biochemistry, §Beckman Institute, and ∥Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
10
|
Zhao N, Lamichhane HP, Hastings G. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site. FRONTIERS IN PLANT SCIENCE 2013; 4:328. [PMID: 24009618 PMCID: PMC3757576 DOI: 10.3389/fpls.2013.00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Previously we have shown that ONIOM type (QM/MM) calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and (18)O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0), 2,3,5,6-tetramethyl-1, 4-benzoquinone (duroquinone, DQ), and 2,3-dimethyl-l,4-naphthoquinone (DMNQ) incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites. The normal modes that contribute to the bands in the calculated spectra, their composition, frequency, and intensity, and how these quantities are modified upon (18)O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm(-1) separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry in H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are "tail-less." Spectra were also calculated for reaction centers with corresponding "tail" containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated spectra.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | | | | |
Collapse
|
11
|
Zhao N, Hastings G. On the Nature of the Hydrogen Bonds to Neutral Ubiquinone in the QA Binding Site in Purple Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2013; 117:8705-13. [DOI: 10.1021/jp403833y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Coates CS, Ziegler J, Manz K, Good J, Kang B, Milikisiyants S, Chatterjee R, Hao S, Golbeck JH, Lakshmi KV. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. J Phys Chem B 2013; 117:7210-20. [PMID: 23676117 DOI: 10.1021/jp401024p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quinones function as electron transport cofactors in photosynthesis and cellular respiration. The versatility and functional diversity of quinones is primarily due to the diverse midpoint potentials that are tuned by the substituent effects and interactions with surrounding amino acid residues in the binding site in the protein. In the present study, a library of substituted 1,4-naphthoquinones are analyzed by cyclic voltammetry in both protic and aprotic solvents to determine effects of substituent groups and hydrogen bonds on the midpoint potential. We use continuous-wave electron paramagnetic resonance (EPR) spectroscopy to determine the influence of substituent groups on the electronic properties of the 1,4-naphthoquinone models in an aprotic solvent. The results establish a correlation between the presence of substituent group(s) and the modification of electronic properties and a corresponding shift in the midpoint potential of the naphthoquinone models. Further, we use pulsed EPR spectroscopy to determine the effect of substituent groups on the strength and planarity of the hydrogen bonds of naphthoquinone models in a protic solvent. This study provides support for the tuning of the electronic properties of quinone cofactors by the influence of substituent groups and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Christopher S Coates
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bernini C, Andruniów T, Olivucci M, Pogni R, Basosi R, Sinicropi A. Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas aeruginosa Azurin. J Am Chem Soc 2013; 135:4822-33. [DOI: 10.1021/ja400464n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caterina Bernini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Tadeusz Andruniów
- Quantum Chemistry and Molecular
Modelling Lab, Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Massimo Olivucci
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio
43403, United States
| | - Rebecca Pogni
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Basosi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
14
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
15
|
Argirević T, Riplinger C, Stubbe J, Neese F, Bennati M. ENDOR spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase. J Am Chem Soc 2012; 134:17661-70. [PMID: 23072506 PMCID: PMC4516058 DOI: 10.1021/ja3071682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y(122)(•)) cofactor required to generate a thiyl radical (C(439)(•)) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y(122) ⇆ W(48)[?] ⇆ Y(356) in β2, across the subunit interface to Y(731) ⇆ Y(730) ⇆ C(439) in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH(2)Y) replaced Y(730) in α2, and this mutant was incubated with β2, cytidine 5'-diphosphate, and adenosine 5'-triphosphate to generate a NH(2)Y(730)(•) in D(2)O. [(2)H]-Electron-nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C(439) and Y(731). A third proton was assigned to a water molecule in close proximity (2.2 Å O-H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH(2)Y(730)(•) are consistent with the combined effect of the hydrogen bonds to Cys(439) and Tyr(731), both nearly perpendicular to the ring plane of NH(2)Y(730.) The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.
Collapse
Affiliation(s)
- Tomislav Argirević
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christoph Riplinger
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - JoAnne Stubbe
- Dept. of Chemistry and Biology, MIT, Cambridge, MA 02139, USA
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Dept. of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Flores M, Okamura MY, Niklas J, Pandelia ME, Lubitz W. Pulse Q-band EPR and ENDOR spectroscopies of the photochemically generated monoprotonated benzosemiquinone radical in frozen alcoholic solution. J Phys Chem B 2012; 116:8890-900. [PMID: 22731760 DOI: 10.1021/jp304555u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinones are essential cofactors in many physiological processes, among them proton-coupled electron transfer (PCET) in photosynthesis and respiration. A key intermediate in PCET is the monoprotonated semiquinone radical. In this work we produced the monoprotonated benzosemiquinone (BQH(•)) by UV illumination of BQ dissolved in 2-propanol at cryogenic temperatures and investigated the electronic and geometric structures of BQH(•) in the solid state (80 K) using EPR and ENDOR techniques at 34 GHz. The g-tensor of BQH(•) was found to be similar to that of the anionic semiquinone species (BQ(•-)) in frozen solution. The peaks present in the ENDOR spectrum of BQH(•) were identified and assigned by (1)H/(2)H substitutions. The experiments reconfirmed that the hydroxyl proton (O-H) on BQH(•), which is abstracted from a solvent molecule, mainly originates from the central CH group of 2-propanol. They also showed that the protonation has a strong impact on the electron spin distribution over the quinone. This is reflected in the hyperfine couplings (hfc's) of the ring protons, which dramatically changed with respect to those typically observed for BQ(•-). The hfc tensor of the O-H proton was determined by a detailed orientation-selection ENDOR study and found to be rhombic, resembling those of protons covalently bound to carbon atoms in a π-system (i.e., α-protons). It was found that the O-H bond lies in the quinone plane and is oriented along the direction of the quinone oxygen lone pair orbital. DFT calculations were performed on different structures of BQH(•) coordinated by four, three, or zero 2-propanol molecules. The O-H bond length was found to be around 1.0 Å, typical for a single covalent O-H bond. Good agreement between experimental and DFT results were found. This study provides a detailed picture of the electronic and geometric structures of BQH(•) and should be applicable to other naturally occurring quinones.
Collapse
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, D-45470, Germany.
| | | | | | | | | |
Collapse
|
17
|
Bernini C, Pogni R, Basosi R, Sinicropi A. The nature of tryptophan radicals involved in the long-range electron transfer of lignin peroxidase and lignin peroxidase-like systems: Insights from quantum mechanical/molecular mechanics simulations. Proteins 2012; 80:1476-83. [DOI: 10.1002/prot.24046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/21/2023]
|
18
|
Reijerse E, Lendzian F, Isaacson R, Lubitz W. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:237-43. [PMID: 22196894 DOI: 10.1016/j.jmr.2011.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 05/22/2023]
Abstract
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.
Collapse
Affiliation(s)
- Edward Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Stiftstr. 34-36, Germany.
| | | | | | | |
Collapse
|
19
|
Grimaldi S, Arias-Cartin R, Lanciano P, Lyubenova S, Szenes R, Endeward B, Prisner TF, Guigliarelli B, Magalon A. Determination of the proton environment of high stability Menasemiquinone intermediate in Escherichia coli nitrate reductase A by pulsed EPR. J Biol Chem 2011; 287:4662-70. [PMID: 22190684 DOI: 10.1074/jbc.m111.325100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (Q(D)) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the Q(D) site (MSQ(D)) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with (1)H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQ(D) binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme b(D). Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the Q(D) site are discussed, in light of the unusually high thermodynamic stability of MSQ(D).
Collapse
Affiliation(s)
- Stéphane Grimaldi
- Unité de Bioénergétique et Ingénierie des Protéines (UPR9036), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chatterjee R, Coates CS, Milikisiyants S, Poluektov OG, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A High-Frequency D-Band EPR Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2011; 116:676-82. [DOI: 10.1021/jp210156a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Christopher S. Coates
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
21
|
Bernini C, Pogni R, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Sinicropi A. EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 2011; 13:5078-98. [DOI: 10.1039/c0cp02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Martin E, Samoilova RI, Narasimhulu KV, Wraight CA, Dikanov SA. Hydrogen bonds between nitrogen donors and the semiquinone in the Q(B) site of bacterial reaction centers. J Am Chem Soc 2010; 132:11671-7. [PMID: 20672818 DOI: 10.1021/ja104134e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosynthetic reaction centers from Rhodobacter sphaeroides have identical ubiquinone-10 molecules functioning as primary (Q(A)) and secondary (Q(B)) electron acceptors. X-band 2D pulsed EPR spectroscopy, called HYSCORE, was applied to study the interaction of the Q(B) site semiquinone with nitrogens from the local protein environment in natural and (15)N uniformly labeled reactions centers. (14)N and (15)N HYSCORE spectra of the Q(B) semiquinone show the interaction with two nitrogens carrying transferred unpaired spin density. Quadrupole coupling constants estimated from (14)N HYSCORE spectra indicate them to be a protonated nitrogen of an imidazole residue and amide nitrogen of a peptide group. (15)N HYSCORE spectra allowed estimation of the isotropic and anisotropic couplings with these nitrogens. From these data, we calculated the unpaired spin density transferred onto 2s and 2p orbitals of nitrogen and analyzed the contribution of different factors to the anisotropic hyperfine tensors. The hyperfine coupling of other protein nitrogens with the semiquinone is weak (<0.1 MHz). These results clearly indicate that the Q(B) semiquinone forms hydrogen bonds with two nitrogens and provide quantitative characteristics of the hyperfine couplings with these nitrogens, which can be used in theoretical modeling of the Q(B) site. On the basis of the quadrupole coupling constant, one nitrogen can only be assigned to N(delta) of His-L190, consistent with all existing structures. However, we cannot specify between two candidates the residue corresponding to the second nitrogen. Further work employing multifrequency spectroscopic approaches or selective isotope labeling would be desirable for unambiguous assignment of this nitrogen.
Collapse
Affiliation(s)
- Erik Martin
- Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
23
|
Flores M, Savitsky A, Paddock ML, Abresch EC, Dubinskii AA, Okamura MY, Lubitz W, Möbius K. Electron−Nuclear and Electron−Electron Double Resonance Spectroscopies Show that the Primary Quinone Acceptor QA in Reaction Centers from Photosynthetic Bacteria Rhodobacter sphaeroides Remains in the Same Orientation Upon Light-Induced Reduction. J Phys Chem B 2010; 114:16894-901. [DOI: 10.1021/jp107051r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Mark L. Paddock
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Edward C. Abresch
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Alexander A. Dubinskii
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Melvin Y. Okamura
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
24
|
Stoll S, Ozarowski A, Britt RD, Angerhofer A. Atomic hydrogen as high-precision field standard for high-field EPR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 207:158-63. [PMID: 20813570 PMCID: PMC2956851 DOI: 10.1016/j.jmr.2010.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/08/2010] [Accepted: 08/06/2010] [Indexed: 05/05/2023]
Abstract
We introduce atomic hydrogen trapped in an octaisobutylsilsesquioxane nanocage (H@iBuT₈) as a new molecular high-precision magnetic field standard for high-field EPR spectroscopy of organic radicals and other systems with signals around g=2. Its solid-state EPR spectrum consists of two 0.2 mT wide lines separated by about 51 mT and centered at g≈2. The isotropic g factor is 2.00294(3) and essentially temperature independent. The isotropic ¹H hyperfine coupling constant is 1416.8(2) MHz below 70 K and decreases slightly with increasing temperature to 1413.7(1) MHz at room temperature. The spectrum of the standard does not overlap with those of most organic radicals, and it can be easily prepared and is stable at room temperature.
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - R. David Britt
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616, USA
| | | |
Collapse
|
25
|
Kulik L, Lubitz W. Electron-nuclear double resonance. PHOTOSYNTHESIS RESEARCH 2009; 102:391-401. [PMID: 19184518 PMCID: PMC2847154 DOI: 10.1007/s11120-009-9401-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/31/2008] [Indexed: 05/22/2023]
Abstract
The application of electron-nuclear double resonance (ENDOR) spectroscopy for the investigation of photosynthetic systems is reviewed. The basic principles of continuous wave and pulse ENDOR are presented. Selected examples of the application of the ENDOR technique for studying stable and transient paramagnetic species, including cofactor radical ions, radical pairs, triplet states, and the oxygen-evolving complex in plant Photosystem II (PSII) are discussed. Limitations and perspectives of ENDOR spectroscopy are outlined.
Collapse
Affiliation(s)
- Leonid Kulik
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Weyers AM, Chatterjee R, Milikisiyants S, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2009; 113:15409-18. [DOI: 10.1021/jp907379d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda M. Weyers
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
27
|
Antonkine ML, Koay MS, Epel B, Breitenstein C, Gopta O, Gärtner W, Bill E, Lubitz W. Synthesis and characterization of de novo designed peptides modelling the binding sites of [4Fe–4S] clusters in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:995-1008. [DOI: 10.1016/j.bbabio.2009.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/23/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
28
|
Niklas J, Epel B, Antonkine ML, Sinnecker S, Pandelia ME, Lubitz W. Electronic Structure of the Quinone Radical Anion A1•− of Photosystem I Investigated by Advanced Pulse EPR and ENDOR Techniques. J Phys Chem B 2009; 113:10367-79. [DOI: 10.1021/jp901890z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Niklas
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Boris Epel
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Mikhail L. Antonkine
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sebastian Sinnecker
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Maria-Eirini Pandelia
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim/Ruhr, Germany, and Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
29
|
Stoll S, Gunn A, Brynda M, Sughrue W, Kohler AC, Ozarowski A, Fisher AJ, Lagarias JC, Britt RD. Structure of the biliverdin radical intermediate in phycocyanobilin:ferredoxin oxidoreductase identified by high-field EPR and DFT. J Am Chem Soc 2009; 131:1986-95. [PMID: 19159240 DOI: 10.1021/ja808573f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two-step four-electron reduction of biliverdin IXalpha to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrrole rings are protonated. This experimentally confirms the reaction mechanism recently proposed (Tu, et al. Biochemistry 2007, 46, 1484).
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
31
|
|
32
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Lin TJ, O’Malley PJ. An ONIOM study of the QA site semiquinone in the Rhodobacter sphaeroides photosynthetic reaction centre. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.theochem.2008.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Dikanov SA, Holland JT, Endeward B, Kolling DRJ, Samoilova RI, Prisner TF, Antony R. C. Hydrogen bonds between nitrogen donors and the semiquinone in the Qi-site of the bc1 complex. J Biol Chem 2007; 282:25831-41. [PMID: 17616531 PMCID: PMC3060708 DOI: 10.1074/jbc.m702333200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubisemiquinone stabilized at the Qi-site of the bc1 complex of Rhodobacter sphaeroides forms a hydrogen bond with a nitrogen from the local protein environment, tentatively identified as ring N from His-217. The interactions of 14N and 15N have been studied by X-band (approximately 9.7 GHz) and S-band (3.4 GHz) pulsed EPR spectroscopy. The application of S-band spectroscopy has allowed us to determine the complete nuclear quadrupole tensor of the 14N involved in H-bond formation and to assign it unambiguously to the Nepsilon of His-217. This tensor has distinct characteristics in comparison with H-bonds between semiquinones and Ndelta in other quinone-processing sites. The experiments with 15N showed that the Nepsilon of His-217 was the only nitrogen carrying any considerable unpaired spin density in the ubiquinone environment, and allowed calculation of the isotropic and anisotropic couplings with the Nepsilon of His-217. From these data, we could estimate the unpaired spin density transferred onto 2s and 2p orbitals of nitrogen and the distance from the nitrogen to the carbonyl oxygen of 2.38+/-0.13A. The hyperfine coupling of other protein nitrogens with semiquinone is <0.1 MHz. This did not exclude the nitrogen of the Asn-221 as a possible hydrogen bond donor to the methoxy oxygen of the semiquinone. A mechanistic role for this residue is supported by kinetic experiments with mutant strains N221T, N221H, N221I, N221S, N221P, and N221D, all of which showed some inhibition but retained partial turnover.
Collapse
Affiliation(s)
- Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois 61801
| | - J. Todd Holland
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801
| | - Burkhard Endeward
- J. W. Goethe Universitaät, Institut für Physikalische und Theoretische Chemie, Max-von-Laue-Strasse 7, D-60438 Frankfurt, Germany
| | - Derrick R. J. Kolling
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801
| | - Rimma I. Samoilova
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Thomas F. Prisner
- J. W. Goethe Universitaät, Institut für Physikalische und Theoretische Chemie, Max-von-Laue-Strasse 7, D-60438 Frankfurt, Germany
| | - Crofts Antony R.
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
35
|
Paddock ML, Flores M, Isaacson R, Chang C, Abresch EC, Okamura MY. ENDOR spectroscopy reveals light induced movement of the H-bond from Ser-L223 upon forming the semiquinone (Q(B)(-)(*)) in reaction centers from Rhodobacter sphaeroides. Biochemistry 2007; 46:8234-43. [PMID: 17590017 PMCID: PMC2597558 DOI: 10.1021/bi7005256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton ENDOR spectroscopy was used to monitor local conformational changes in bacterial reaction centers (RC) associated with the electron-transfer reaction DQB --> D+*QB-* using mutant RCs capable of photoreducing QB at cryogenic temperatures. The charge separated state D+*QB-* was studied in mutant RCs formed by either (i) illuminating at low temperature (77 K) a sample frozen in the dark (ground state protein conformation) or (ii) illuminating at room temperature prior to and during freezing (charge separated state protein conformation). The charge recombination rates from the two states differed greatly (>10(6) fold) as shown previously, indicating a structural change (Paddock et al. (2006) Biochemistry 45, 14032-14042). ENDOR spectra of QB-* from both samples (35 GHz, 77 K) showed several H-bond hyperfine couplings that were similar to those for QB-* in native RCs indicating that in all RCs, QB-* was located at the proximal position near the metal site. In contrast, one set of hyperfine couplings were not observed in the dark frozen samples but were observed only in samples frozen under illumination in which the protein can relax prior to freezing. This flexible H-bond was assigned to an interaction between the Ser-L223 hydroxyl and QB-* on the basis of its absence in Ser L223 --> Ala mutant RCs. Thus, part of the protein relaxation, in response to light induced charge separation, involves the formation of an H-bond between the OH group of Ser-L223 and the anionic semiquinone QB-*. These results show the flexibility of the Ser-L223 H-bond, which is essential for its function in proton transfer to reduced QB.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W, Feher G. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone formula by 1H and 2H ENDOR spectroscopy. Biophys J 2006; 92:671-82. [PMID: 17071655 PMCID: PMC1751397 DOI: 10.1529/biophysj.106.092460] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The geometry of the hydrogen bonds to the two carbonyl oxygens of the semiquinone Q(A)(. -) in the reaction center (RC) from the photosynthetic purple bacterium Rhodobacter sphaeroides R-26 were determined by fitting a spin Hamiltonian to the data derived from (1)H and (2)H ENDOR spectroscopies at 35 GHz and 80 K. The experiments were performed on RCs in which the native Fe(2+) (high spin) was replaced by diamagnetic Zn(2+) to prevent spectral line broadening of the Q(A)(. -) due to magnetic coupling with the iron. The principal components of the hyperfine coupling and nuclear quadrupolar coupling tensors of the hydrogen-bonded protons (deuterons) and their principal directions with respect to the quinone axes were obtained by spectral simulations of ENDOR spectra at different magnetic fields on frozen solutions of deuterated Q(A)(. -) in H(2)O buffer and protonated Q(A)(. -) in D(2)O buffer. Hydrogen-bond lengths were obtained from the nuclear quadrupolar couplings. The two hydrogen bonds were found to be nonequivalent, having different directions and different bond lengths. The H-bond lengths r(OH) are 1.73 +/- 0.03 Angstrom and 1.60 +/- 0.04 Angstrom, from the carbonyl oxygens O(1) and O(4) to the NH group of Ala M260 and the imidazole nitrogen N(delta) of His M219, respectively. The asymmetric hydrogen bonds of Q(A)(. -) affect the spin density distribution in the quinone radical and its electronic structure. It is proposed that the H-bonds play an important role in defining the physical properties of the primary quinone, which affect the electron transfer processes in the RC.
Collapse
Affiliation(s)
- M Flores
- Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|