1
|
Henderson RDE, Mei N, Xu Y, Gaikwad R, Wettig S, Leonenko Z. Nanoscale Structure of Lipid-Gemini Surfactant Mixed Monolayers Resolved with AFM and KPFM Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:572. [PMID: 38607107 PMCID: PMC11013119 DOI: 10.3390/nano14070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Drug delivery vehicles composed of lipids and gemini surfactants (GS) are promising in gene therapy. Tuning the composition and properties of the delivery vehicle is important for the efficient load and delivery of DNA fragments (genes). In this paper, we studied novel gene delivery systems composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-3-phosphocholine (DPPC), and GS of the type N,N-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide at different ratios. The nanoscale properties of the mixed DOPC-DPPC-GS monolayers on the surface of the gene delivery system were studied using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We demonstrate that lipid-GS mixed monolayers result in the formation of nanoscale domains that vary in size, height, and electrical surface potential. We show that the presence of GS can impart significant changes to the domain topography and electrical surface potential compared to monolayers composed of lipids alone.
Collapse
Affiliation(s)
- Robert D. E. Henderson
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Nanqin Mei
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yue Xu
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
| | - Ravi Gaikwad
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
| | - Shawn Wettig
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zoya Leonenko
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (R.D.E.H.); (N.M.); (Y.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Andretto V, Repellin M, Pujol M, Almouazen E, Sidi-Boumedine J, Granjon T, Zhang H, Remaut K, Jordheim LP, Briançon S, Keil IS, Vascotto F, Walzer KC, Sahin U, Haas H, Kryza D, Lollo G. Hybrid core-shell particles for mRNA systemic delivery. J Control Release 2023; 353:1037-1049. [PMID: 36442614 DOI: 10.1016/j.jconrel.2022.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Mathieu Repellin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Marine Pujol
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Eyad Almouazen
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Jacqueline Sidi-Boumedine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Thierry Granjon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Université de Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | - Heyang Zhang
- Ghent Research Group on Nanomedicine, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicine, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Lars Petter Jordheim
- Univ. Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Stéphanie Briançon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Isabell Sofia Keil
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Fulvia Vascotto
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | | | - Ugur Sahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - Heinrich Haas
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany
| | - David Kryza
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France; Hospices Civils de Lyon, 69437 Lyon, France
| | - Giovanna Lollo
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
| |
Collapse
|
3
|
Alarcón LP, Andrada HE, Olivera ME, Fernando Silva O, Dario Falcone R. Carrier in carrier: Catanionic vesicles based on amphiphilic cyclodextrins complexed with DNA as nanocarriers of doxorubicin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Gene-Delivery Ability of New Hydrogenated and Partially Fluorinated Gemini bispyridinium Surfactants with Six Methylene Spacers. Int J Mol Sci 2022; 23:ijms23063062. [PMID: 35328483 PMCID: PMC8949414 DOI: 10.3390/ijms23063062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.
Collapse
|
5
|
Mukherjee D, Hasan MN, Ghosh R, Ghosh G, Bera A, Prasad SE, Hiwale A, Vemula PK, Das R, Pal SK. Decoding the Kinetic Pathways toward a Lipid/DNA Complex of Alkyl Alcohol Cationic Lipids Formed in a Microfluidic Channel. J Phys Chem B 2022; 126:588-600. [PMID: 35041417 DOI: 10.1021/acs.jpcb.1c07263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complexes of cationic liposomes with DNA have emerged as promising nonviral vectors for delivering genetic information into cells for gene therapy. Kinetics of the liposome/DNA complex (lipoplex) formation on a millisecond time scale are studied by monitoring time evolution of fluorescence of 8-anilino-1-naphthalene sulfonic acid (ANS) and ethidium bromide (EtBr) in a continuous flow microfluidic channel coupled to a fluorescence microscope. The formation of lipoplexes between calf thymus DNA and liposomes based on two novel cationic lipids (Lip1810 and Lip1814) are found to follow a two-step process with kinetic constants for the Lip1814/DNA complex (k1 = 1120-1383 s-1, k2 = 0.227-1.45 s-1) being significantly different from those (k1 = 68.53-98.5 s-1, k2 = 32.3-60.19 s-1) corresponding to formation of the Lip1810/DNA complex. The kinetic pathway leading to the formation of Lip1814/DNA complex is diffusion-controlled whereas the formation of Lip1810/DNA complex occurs by a conformational rearrangement-controlled pathway. The observed difference in the kinetics of lipoplex formation likely originates from different structures of the lipid/DNA complexes.
Collapse
Affiliation(s)
- Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Md Nur Hasan
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Ria Ghosh
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.,Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Ballygunge, Kolkata 700019, India
| | - Gourab Ghosh
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Arpan Bera
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Sujanthi Easwara Prasad
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, TN, India
| | - Ankita Hiwale
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (instem), GKVK Campus, Bellary Road, Bangalore, 560065 KA, India
| | - Ranjan Das
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
6
|
Prasad Tajpuriya G, Shah P, Shahi N, Bhattarai A. UV-Vis studies of methyl red in the presence of sodium dioctylsulfosuccinate/acetone and sodium dioctylsulfosuccinate/acetone/water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119646. [PMID: 33751959 DOI: 10.1016/j.saa.2021.119646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
This paper reports the spectra of methyl red (MR) in the presence of sodium dioctylsulfosuccinate (AOT) by UV-Vis spectrophotometer at 298.15 ± 0.1 K. The experiment shows the effect of acetone, AOT and water concentration on methyl red. The spectral study was based on R parameter, which is defined as [H2O]/[AOT]. The spectral study was possible in the range of R = 0-20 only because the solution appeared to be cloudy above this amount of water. When the concentration of AOT increased, the absorption of MR decreased, indicating a hypochromic shift, which is due to the interaction between AOT and MR. The absorbance increases with the increasing value of R, which indicates that the H2O molecule hinders the interactional forces between AOT and MR. The distribution constant was calculated by using nonlinear regression analysis and its variation with different R values indicate the effect of water content in the distribution behavior of MR in between the solvent and micellar region whereas the variation of the binding constant with different R values indicates the affinity of micelles to bind MR molecule. The study of this binding affinity will be very helpful in textile dyeing, decolorization of industrial effluents and development of azo-based molecules in novel photonic and optoelectronic devices.
Collapse
Affiliation(s)
| | - Pawan Shah
- Department of Chemistry, M.M.A.M.C, Tribhuvan University, Biratnagar, Nepal
| | - Neelam Shahi
- Department of Chemistry, M.M.A.M.C, Tribhuvan University, Biratnagar, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C, Tribhuvan University, Biratnagar, Nepal.
| |
Collapse
|
7
|
Henderson RDE, Filice CT, Wettig S, Leonenko Z. Kelvin probe force microscopy to study electrostatic interactions of DNA with lipid-gemini surfactant monolayers for gene delivery. SOFT MATTER 2021; 17:826-833. [PMID: 33346309 DOI: 10.1039/d0sm01926g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In novel gene therapy mechanisms utilising gemini surfactants, electrostatic interactions of the surfactant molecules with the DNA strands is a primary mechanism by which the two components of the delivery vehicle bind. In this work, we show for the first time direct evidence of electrostatic interactions of these compounds visualised with Kelvin probe force microscopy (KPFM) and correlated to their topography from atomic force microscopy (AFM). We construct monolayers of lipids and gemini surfactant to simulate interactions on a cellular level, using lipids commonly found in cell membranes, and allow DNA to bind to the monolayer as it is formed on a Langmuir-Blodgett trough. The difference in topography and electrical surface potential between monolayers with and without DNA is striking. In fact, KPFM reveals a strongly positive relative electrical surface potential in between where we identify a background lipid and the DNA strands, evidenced by the height profiles of the domains. Such identification is not possible without KPFM. We conclude that it is likely we are seeing cationic surfactant molecules surrounding DNA strands within a sea of background lipid.
Collapse
Affiliation(s)
- Robert D E Henderson
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | |
Collapse
|
8
|
Narsineni L, Foldvari M. Dicationic Amino Substituted Gemini Surfactants and their Nanoplexes: Improved Synthesis and Characterization of Transfection Efficiency and Corneal Penetration In Vitro. Pharm Res 2020; 37:144. [PMID: 32666411 DOI: 10.1007/s11095-020-02836-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To formulate and characterize nanoparticles from m-7NH-m gemini surfactants, synthesized by a new improved method, for non-invasive gene delivery including optimization of composition for transfection efficiency and corneal penetration. METHODS A one-pot, solvent-free, DMAP-free method was developed for the synthesis of m-7NH-m (m = 12-18) gemini surfactant series. Lipoplexes (LPXs) and nanoplexes (NPXs) of gemini surfactant-plasmid DNA were formulated with and without DOPE helper lipid, respectively, at various charge ratios and characterized by dynamic light scattering and zeta potential measurements. Transfection efficiency, cellular toxicity, effect of DOPE and gene expression kinetic studies were carried out in A7 astrocytes by flow cytometry and confocal microscopy. Corneal penetration studies of 18-7NH-18 NPXs were carried out using 3D EpiCorneal® tissue model. RESULTS The new synthesis method provides a two-fold improved yield and the production of a pure species of m-7NH-m without DMAP and trimeric m-7N(m)-m surfactants as impurities. Structure and purity was confirmed by ESI-MS, 1H NMR spectroscopy and surface tension measurements. Particle size of 199.80 ± 1.83 nm ± S.D. and a zeta potential value of +30.18 ± 1.17 mV ± S.D. was obtained for 18-7NH-18 5:1 ratio NPXs showed optimum transfection efficiency (10.97 ± 0.11%) and low toxicity (92.97 ± 0.57% viability) at the 48-h peak expression. Inclusion of DOPE at 1: 0.5 and 1:1 ratios to gemini surfactant reduced transfection efficiency and increased toxicity. Treatment of EpiCorneal® tissue model showed deep penetration of up to 100 μm with 18-7NH-18 NPXs. CONCLUSION Overall, 18-7NH-18 NPXs are potential gene delivery systems for ophthalmic gene delivery and for further in vivo studies.
Collapse
Affiliation(s)
- Lokesh Narsineni
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada. .,School of Pharmacy, Center for Bioengineering and Biotechnology, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
9
|
Abstract
Biosurfactant compounds have been studied in many applications, including biomedical, food, cosmetic, agriculture, and bioremediation areas, mainly due to their low toxicity, high biodegradability, and multifunctionality. Among biosurfactants, the lipoplexes of lipoaminoacids play a key role in medical and pharmaceutical fields. Lipoaminoacids (LAAs) are amino acid-based surfactants that are obtained from the condensation reaction of natural origin amino acids with fatty acids or fatty acid derivatives. LAA can be produced by biocatalysis as an alternative to chemical synthesis and thus become very attractive from both the biomedical and the environmental perspectives. Gemini LAAs, which are made of two hydrophobic chains and two amino acid head groups per molecule and linked by a spacer at the level of the amino acid residues, are promising candidates as both drug and gene delivery and protein disassembly agents. Gemini LAA usually show lower critical micelle concentration, interact more efficiently with proteins, and are better solubilising agents for hydrophobic drugs when compared to their monomeric counterparts due to their dimeric structure. A clinically relevant human gene therapy vector must overcome or avoid detect and silence foreign or misplaced DNA whilst delivering sustained levels of therapeutic gene product. Many non-viral DNA vectors trigger these defence mechanisms, being subsequently destroyed or rendered silent. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for a successful clinical application, and it one of the main strategic tasks of non-viral gene therapy research.
Collapse
|
10
|
Jin W, Al-Dulaymi M, Badea I, Leary SC, Rehman J, El-Aneed A. Cellular Uptake and Distribution of Gemini Surfactant Nanoparticles Used as Gene Delivery Agents. AAPS JOURNAL 2019; 21:98. [PMID: 31388860 DOI: 10.1208/s12248-019-0367-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Gemini surfactants are promising molecules utilized as non-viral gene delivery vectors. However, little is known about their cellular uptake and distribution after they release their therapeutic cargo. Therefore, we quantitatively evaluated the cellular uptake and distribution of three gemini surfactants: unsubstituted (16-3-16), with pyridinium head groups (16(Py)-S-2-S-16(Py)) and substituted with a glycyl-lysine di-peptide (16-7N(GK)-16). We also assessed the relationship between cellular uptake and distribution of each gemini surfactant and its overall efficiency and toxicity. Epidermal keratinocytes PAM 212 were treated with gemini surfactant nanoparticles formulated with plasmid DNA and harvested at various time points to collect the enriched nuclear, mitochondrial, plasma membrane, and cytosolic fractions. Gemini surfactants were then extracted from each subcellular fraction and quantified using a validated flow injection analysis-tandem mass spectrometry (FIA-MS/MS) method. Mass spectrometry is superior to the use of fluorescent tags that alter the physicochemical properties and pharmacokinetics of the nanoparticles and can be cleaved from the gemini surfactant molecules within biological systems. Overall, a significantly higher cellular uptake was observed for 16-7N(GK)-16 (17.0%) compared with 16-3-6 (3.6%) and 16(Py)-S-2-S-16(Py) (1.4%), which explained the relatively higher transfection efficiency of 16-7N(GK)-16. Gemini surfactants 16-3-16 and 16(Py)-S-2-S-16(Py) displayed similar subcellular distribution patterns, with major accumulation in the nucleus, followed by the mitochondrion, cytosol, and plasma membrane. In contrast, 16-7N(GK)-16 was relatively evenly distributed across all four subcellular fractions. However, accumulation within the nucleus after 5 h of treatment was the highest for 16(Py)-S-2-S-16(Py) (50.3%), followed by 16-3-16 (41.8%) and then 16-7N(GK)-16 (33.4%), possibly leading to its relatively higher toxicity. Graphical Abstract.
Collapse
Affiliation(s)
- Wei Jin
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Mays Al-Dulaymi
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Ildiko Badea
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Jeveria Rehman
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | - Anas El-Aneed
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
11
|
Grippo LD, Rudi JM, De Zan MM, Giorello A, Antuña S, Prieto CC, Veaute CMI, Müller DM. Activity-Structure Study on the Peptide Fraction of AG2: a Potent In Vitro Transfection Agent. Appl Biochem Biotechnol 2019; 189:661-679. [PMID: 31093907 DOI: 10.1007/s12010-019-02999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
Gemini-based amphiphiles are candidates for biomedical applications. In fact, most of the gemini compounds described in the literature have been prepared to be used as new synthetic vectors in gene transfection. Our group carried out an activity-structure study starting from the structure of the gemini [AG2-C18/]2, which is an effective in vitro transfection reagent. We synthesized a series of novel amphiphilic amino acid derivatives of low molecular weight, named AGn-Cm (N), in which the same apolar region (m) of oleic or palmitic acid was maintained and the peptide region was modified by amino acid insertions, deletions, and substitutions. We also determined the transfection efficiency, critical micelle concentration, particle size, and ζ-potential for these derivatives. Amphiphiles AG10-C16 and AG10-C18 were more active at a lower N/P ratio than AG2-C18. These amphiphiles showed no activity when lysine was replaced by ornithine, and the activity of all derivatives increased when there were more ornithine residues and a W/O = 1 ratio in the peptide region. It can be said that for AG10-C16, these two structural requirements on the amino acid portion predominated over the type of aliphatic chain used.
Collapse
Affiliation(s)
- Lucia D Grippo
- LAQUIMAP, Departamento Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria C.C.242, (3000), Santa Fe, Argentina
| | - Juan M Rudi
- LAQUIMAP, Departamento Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria C.C.242, (3000), Santa Fe, Argentina
| | - María M De Zan
- Laboratorio de Control de Medicamentos, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Antonella Giorello
- Instituto de Investigaciones en Catálisis y Petroquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sebastián Antuña
- Laboratorio de Cultivos Celulares, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Claudio C Prieto
- Laboratorio de Cultivos Celulares, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carolina M I Veaute
- Laboratorio de Inmunología Básica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diana M Müller
- LAQUIMAP, Departamento Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria C.C.242, (3000), Santa Fe, Argentina.
| |
Collapse
|
12
|
Taheri-Araghi S, Chen DW, Kohandel M, Sivaloganathan S, Foldvari M. Tuning optimum transfection of gemini surfactant-phospholipid-DNA nanoparticles by validated theoretical modeling. NANOSCALE 2019; 11:1037-1046. [PMID: 30569915 DOI: 10.1039/c8nr06442c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gemini nanoparticles (NPs) are a family of non-viral gene delivery systems with potential for applications in non-invasive gene therapy. Translation of these non-viral gene delivery systems requires improvement of transfection efficiency (TE) through fine-tuning of their physicochemical properties such as electric charge and exact ratios of their components. Since high-throughput experimental screening of minute differences in NP compositions is not routinely feasible, we have developed a coarse-grained model to quantitatively study the energetics of the formation of gene delivery complexes with cationic gemini surfactants (G) (m-s-m type) and helper lipids (H) (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and DOPE/1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC)), in order to use it as a tool to predict effective compositions. The model is based on the polymorphic structural conformational flip of NPs and incorporates the electrostatic, entropic and elastic energies, to predict the formation energy and stability of different polymorphic structures as a function of the electric charge of cationic surfactants and concentration of constituent helper lipids. Our results show that these two factors are intertwined in determining the behavior of gene delivery vectors. Specifically, we show that increasing H/G lowers free energy per DNA base pair and increases the stability of the complex. At pH 7, low H/G and charge ratio (ρ±), where the lamellar structure is favored, the formation free energy per DNA base pair is between 0 and -14kBT. At higher values of H/G (2-3) and ρ±, where HII and cubic structures are formed, the formation free energy drops down to values ≈-50kBT, indicating the stable existence of these polymorphic structures in the NPs. At pH 5, the structural transformation of NPs in the endosomes to the lamellar/HII structure with free energy values of about -40kBT is beneficial for endosomal escape, and correlates with increased transfection efficiency. The theoretical model is supported by transfection data in A7 astrocytes with a panel of 16-3-16 gemini NPs, which validates the mathematical model and supports the hypothesis that the NP polymorphic phase transition increases transfection efficiency.
Collapse
Affiliation(s)
- Sattar Taheri-Araghi
- School of Pharmacy, University of Waterloo, 10 Victoria St S., Kitchener, ON N2G 1C5, Canada.
| | | | | | | | | |
Collapse
|
13
|
Obłąk E, Piecuch A, Rewak-Soroczyńska J, Paluch E. Activity of gemini quaternary ammonium salts against microorganisms. Appl Microbiol Biotechnol 2018; 103:625-632. [PMID: 30460534 DOI: 10.1007/s00253-018-9523-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Quaternary ammonium salts (QAS), as the surface active compounds, are widely used in medicine and industry. Their common application is responsible for the development of microbial resistance to QAS. To overcome, this issue novel surfactants, including gemini-type ones, were developed. These unique compounds are built of two hydrophilic and two hydrophobic parts. The double-head double-tail type of structure enhances their physicochemical properties (like surface activity) and biological activity and makes them a potential candidate for new drugs and disinfectants. Antimicrobial activity is mainly attributed to the biocidal action towards bacteria and fungi in their planktonic and biofilm forms, but the mode of action of gemini QAS is not yet fully understood. Moreover, gemini surfactants are of particular interest towards their application as gene carriers. Cationic charge of gemini QAS and their ability to form liposomes facilitate DNA compaction and transfection of the target cells. Multifunctional nature of gemini QAS is the reason of the long-standing research on mainly their structure-activity relationship.
Collapse
Affiliation(s)
- Ewa Obłąk
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Agata Piecuch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Justyna Rewak-Soroczyńska
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Emil Paluch
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
14
|
Shortall SM, Wettig SD. Cationic Gemini Surfactant–Plasmid Deoxyribonucleic Acid Condensates as a Single Amphiphilic Entity. J Phys Chem B 2017; 122:194-199. [DOI: 10.1021/acs.jpcb.7b11954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha M. Shortall
- School
of Pharmacy and ‡Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Shawn D. Wettig
- School
of Pharmacy and ‡Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Peña LC, Argarañá MF, Zan MMD, Giorello A, Antuña S, Prieto CC, Veaute CMI, Müller DM. New Amphiphilic Amino Acid Derivatives for Efficient DNA Transfection <i>in Vitro</i>. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aces.2017.72014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB. Binding energy and biophysical properties of ionic liquid-DNA complex: Understanding the role of hydrophobic interactions. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Junquera E, Aicart E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 2016; 233:161-175. [PMID: 26265376 DOI: 10.1016/j.cis.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
Due to the potential use as transfecting agents of nucleic acids (DNA or RNA), multivalent cationic non-viral vectors have received special attention in the last decade. Much effort has been addressed to synthesize more efficient and biocompatible gene vectors able to transport nucleic acids into the cells without provoking an immune response. Among them, the mostly explored to compact and transfect nucleic acids are: (a) gemini and multivalent cationic lipids, mixed with a helper lipid, by forming lipoplexes; and (b) cationic polymers, polycations, and polyrotaxanes, by forming polyplexes. This review is focused on the progress and recent advances experimented in this area, mainly during the present decade, devoting special attention to the lipoplexes and polyplexes, as follows: (a) to its biophysical characterization (mainly electrostatics, structure, size and morphology) using a wide variety of experimental methods; and (b) to its biological activity (transfection efficacy and cytotoxicity) addressed to confirm the optimum formulations and viability of these complexes as very promising gene vectors of nucleic acids in nanomedicine.
Collapse
Affiliation(s)
- Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Enhancing glioblastoma cell sensitivity to chemotherapeutics: A strategy involving survivin gene silencing mediated by gemini surfactant-based complexes. Eur J Pharm Biopharm 2016; 104:7-18. [DOI: 10.1016/j.ejpb.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/23/2016] [Accepted: 04/18/2016] [Indexed: 11/23/2022]
|
19
|
Al-Dulaymi MA, Chitanda JM, Mohammed-Saeid W, Araghi HY, Verrall RE, Grochulski P, Badea I. Di-Peptide-Modified Gemini Surfactants as Gene Delivery Vectors: Exploring the Role of the Alkyl Tail in Their Physicochemical Behavior and Biological Activity. AAPS JOURNAL 2016; 18:1168-1181. [PMID: 27184577 DOI: 10.1208/s12248-016-9906-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/13/2016] [Indexed: 12/29/2022]
Abstract
The aim of this work was to elucidate the structure-activity relationship of new peptide-modified gemini surfactant-based carriers. Glycyl-lysine modified gemini surfactants that differ in the length and degree of unsaturation of their alkyl tail were used to engineer DNA nano-assemblies. To probe the optimal nitrogen to phosphate (N/P) ratio in the presence of helper lipid, in vitro gene expression and cell toxicity measurements were carried out. Characterization of the nano-assemblies was accomplished by measuring the particle size and surface charge. Morphological characteristics and lipid organization were studied by small angle X-ray scattering technique. Lipid monolayers were studied using a Langmuir-Blodgett trough. The highest activity of glycyl-lysine modified gemini surfactants was observed with the 16-carbon tail compound at 2.5 N/P ratio, showing a 5- to 10-fold increase in the level of reporter protein compared to the 12 and 18:1 carbon tail compounds. This ratio is significantly lower compared to the previously studied gemini surfactants with alkyl or amino- spacers. In addition, the 16-carbon tail compound exhibited the highest cell viability (85%). This high efficiency is attributed to the lowest critical micelle concentration of the 16-tail gemini surfactant and a balanced packing of the nanoparticles by mixing a saturated and unsaturated lipid together. At the optimal N/P ratio, all nanoparticles exhibited an inverted hexagonal lipid assembly. The results show that the length and nature of the tail of the gemini surfactants play an important role in determining the transgene efficiency of the delivery system. We demonstrated here that the interplay between the headgroup and the nature of tail is specific to each series, thus in the process of rational design, the contribution of the latter should be assessed in the appropriate context.
Collapse
Affiliation(s)
- Mays A Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jackson M Chitanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Waleed Mohammed-Saeid
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Ronald E Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pawel Grochulski
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Light Source, Saskatoon, Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
20
|
Ahmed T, Kamel AO, Wettig SD. Interactions between DNA and gemini surfactant: impact on gene therapy: part II. Nanomedicine (Lond) 2016; 11:403-20. [PMID: 26784450 DOI: 10.2217/nnm.15.204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nonviral gene delivery, provides distinct treatment modalities for the inherited and acquired diseases, relies upon the encapsulation of a gene of interest, which is then ideally delivered to the target cells. Variations in the chemical structure of gemini surfactants and subsequent physicochemical characteristics of the gemini-based lipoplexes and their impact on efficient gene transfection were assessed in part I, which was published in first March 2016 issue of Nanomedicine (1103). In order to design an efficient vector using gemini surfactants, the interaction of the surfactant with DNA and other components of the delivery system must be characterized, and more critically, well understood. Such studies will help to understand how nonviral transfection complexes, in general, overcome various cellular barriers. The Langmuir-Blodgett monolayer studies, atomic force microscopy, differential scanning calorimetry, isothermal titration calorimetry, small-angle x-ray scattering, are extensively used to evaluate the interaction behavior of gemini surfactants with DNA and other vector components. Part II of this review focuses on the use of these unique techniques to understand their interaction with DNA.
Collapse
Affiliation(s)
- Taksim Ahmed
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Amany O Kamel
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Khalifa El-Maamon Street, Abbasiya Square, Cairo 11566, Egypt
| | - Shawn D Wettig
- School of Pharmacy, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
21
|
Zakharova LY, Gabdrakhmanov DR, Ibragimova AR, Vasilieva EA, Nizameev IR, Kadirov MK, Ermakova EA, Gogoleva NE, Faizullin DA, Pokrovsky AG, Korobeynikov VA, Cheresiz SV, Zuev YF. Structural, biocomplexation and gene delivery properties of hydroxyethylated gemini surfactants with varied spacer length. Colloids Surf B Biointerfaces 2015; 140:269-277. [PMID: 26764110 DOI: 10.1016/j.colsurfb.2015.12.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/30/2015] [Accepted: 12/23/2015] [Indexed: 01/06/2023]
Abstract
Gemini surfactants with hexadecyl tails and hydroxyethylated head groups bridged with tetramethylene (G4), hexamethylene (G6) and dodecamethylene (G12) spacers were shown to self-assemble at the lower critical micelle concentration compared to their conventional m-s-m analogs. The lipoplex formation and the plasmid DNA transfer into different kinds of host cells were studied. In the case of eukaryotic cells, high transfection efficacy has been demonstrated for DNA-gemini complexes, which increased as follows: G6<G4<G12. Different activity series, i.e., G6>G4>G12 has been obtained in the case of transformation of bacterial cells with plasmid DNA-gemini complexes, mediated by electroporation technique. Solely G6 shows transformation efficacy exceeding the control result (uncomplexed DNA), while the inhibitory effect occurs for G4 and G12. Analysis of physico-chemical features of single surfactants and lipoplexes shows that compaction and condensation effects change as follows: G6<G4 ≤ G12, i.e., agree with the order of transfection efficacy, which is supported by membrane tropic properties of G12. On the other hand, gel retardation assay and docking study testify low electrostatic affinity in G12/DNA pair, thereby indicating that hydrophobic effect probably plays important role in the lipoplex formation. Two factors are assumed to be responsible for the inhibition effect of gemini in the case of transformation of bacterial cells. They are (i) an unfavorable influence of cationic surfactants on the electroporation procedure due to depressing the electrophoretic effect; and (ii) antibacterial activity of cationic surfactants that may cause the disruption of integrity of cell membranes.
Collapse
Affiliation(s)
- Lucia Ya Zakharova
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation.
| | - Dinar R Gabdrakhmanov
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation
| | - Alsu R Ibragimova
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation
| | - Elmira A Vasilieva
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation
| | - Irek R Nizameev
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation
| | - Marsil K Kadirov
- A.E Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 ul. Arbuzov, 420088 Kazan, Russian Federation
| | - Elena A Ermakova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, p.o.b. 30, 420111 Kazan, Russian Federation
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, p.o.b. 30, 420111 Kazan, Russian Federation
| | - Dzhigangir A Faizullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, p.o.b. 30, 420111 Kazan, Russian Federation
| | - Andrey G Pokrovsky
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | | | - Sergey V Cheresiz
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, p.o.b. 30, 420111 Kazan, Russian Federation
| |
Collapse
|
22
|
Pietralik Z, Kołodziejska Ż, Weiss M, Kozak M. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study. PLoS One 2015; 10:e0144373. [PMID: 26641889 PMCID: PMC4671569 DOI: 10.1371/journal.pone.0144373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).
Collapse
Affiliation(s)
- Zuzanna Pietralik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań, Poland
| | - Żaneta Kołodziejska
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań, Poland
| | - Marek Weiss
- Institute of Physics, Poznań University of Technology, Piotrowo 3, 60–965 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań, Poland
- Joint Laboratory for SAXS studies, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614 Poznań, Poland
| |
Collapse
|
23
|
Sum CH, Nafissi N, Slavcev RA, Wettig S. Physical Characterization of Gemini Surfactant-Based Synthetic Vectors for the Delivery of Linear Covalently Closed (LCC) DNA Ministrings. PLoS One 2015; 10:e0142875. [PMID: 26561857 PMCID: PMC4642985 DOI: 10.1371/journal.pone.0142875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Roderick A. Slavcev
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
- * E-mail: (RS); (SW)
| | - Shawn Wettig
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
- * E-mail: (RS); (SW)
| |
Collapse
|
24
|
Gharagozloo M, Rafiee A, Chen DW, Foldvari M. A flow cytometric approach to study the mechanism of gene delivery to cells by gemini-lipid nanoparticles: an implication for cell membrane nanoporation. J Nanobiotechnology 2015; 13:62. [PMID: 26415935 PMCID: PMC4587676 DOI: 10.1186/s12951-015-0125-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gemini-lipid nanoparticles have been received major attention recently as non-viral delivery systems due to their successful non-invasive gene delivery through tough barriers such as eye and skin. The aim of this study was to evaluate non-viral gene delivery by a series of dicationic gemini surfactant-phospholipid nanoparticles (GL-NPs) and to explore their mechanism of interaction with cellular membranes of murine PAM212 epidermal keratinocytes. METHODS NPs containing pCMV-tdTomato plasmid encoding red fluorescent protein (RFP) were prepared using 12 different gemini surfactants (m-s-m, with m = 12, 16 and 18C alkyl tail and s = 3 and 7C polymethylene spacer group and 7C substituted spacers with 7NH and 7NCH3) and dioleoylphosphatidylethanolamine helper lipid. RFP gene expression and cell viability status were evaluated using flow cytometry. MitoTracker Deep Red mitochondrial stain and the cell impermeable Sytox red nuclear stain were used as indicators of cell viability and cell membrane integrity, respectively. RESULTS No significant viability loss was detected in cells transfected with 18-3-18, 18-7-18, 18-7NH-18, and 18-7NCH3-18 NPs, whereas a significant reduction of viability was detected in cells treated with 12-3-12, 12-7-12, 12-7NH-12, 16-7NH-16, or 16-7NCH3-16 GL-NPs. Compared to Lipofectamine Plus, 18-3-18 GL-NPs showed higher transfection efficiency and comparable viability profile by evaluation using MitoTracker Deep Red in PAM212 cells. Flow cytometric analysis of PAM212 cells stained with Sytox red revealed two cell populations with low and high fluorescent intensity, representing cells with partially-porated and highly-porated membranes, respectively. Additional combined staining with MitoTracker and ethidium homodimer showed that that 18-3-18 GL-NPs disturbed cell membrane integrity, while cells were still alive and had mitochondrial activity. CONCLUSION Taken together, this study demonstrated that 18-3-18 GL-NPs have higher transfection efficiency and comparable viability profile to the commercial Lipofectamine Plus, and the interaction of 18-3-18 GL-NPs with PAM212 cell membranes involves a permeability increase, possibly through the formation of nanoscale pores, which could explain efficient gene delivery. This novel nanoconstruct appears to be a promising delivery system for further skin gene therapy studies in vivo.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Amirreza Rafiee
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
25
|
Silva SG, Oliveira IS, do Vale MLC, Marques EF. Serine-based gemini surfactants with different spacer linkages: from self-assembly to DNA compaction. SOFT MATTER 2014; 10:9352-9361. [PMID: 25342304 DOI: 10.1039/c4sm01771d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cationic gemini surfactants have strong potential as compaction agents of nucleic acids for efficient non-viral gene delivery. In this work, we present the aggregation behavior of three novel cationic serine-based gemini surfactants as well as their ability to compact DNA per se and mixed with a helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). All the surfactants have a 12-12-12 configuration, i.e. two main 12-carbon alkyl chains linked to the nitrogen atom of the amino acid residue and a 12 methylene spacer, but they differ in the nature of the spacer linkage: for (12Ser)2N12, an amine bond; for (12Ser)2CON12, an amide bond; and for (12Ser)2COO12, an ester bond. Interestingly, while the amine-based gemini aggregates into micelles, the amide and ester ones spontaneously form vesicles, which denotes a strong influence of the type of linkage on the surfactant packing parameter. The size, ζ-potential and stability of the vesicles have been characterized by light microscopy, cryogenic scanning electron microscopy (cryo-SEM) and dynamic light scattering (DLS). The interaction of the gemini aggregates with DNA at different charge ratios and in the absence and presence of DOPE has been studied by DLS, fluorescence spectroscopy and cryo-SEM. All the compounds are found to efficiently compact DNA (complexation > 90%), but relevant differences are obtained in terms of the size, ζ-potential and stability of the lipoplexes formed. Results are rationalized in terms of headgroup differences and the type of aggregates present prior to DNA condensation.
Collapse
Affiliation(s)
- Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do campo Alegre s/n, P 4169-007 Porto, Portugal.
| | | | | | | |
Collapse
|
26
|
Cardoso AM, Morais CM, Silva SG, Marques EF, de Lima MCP, Jurado MAS. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions. Int J Pharm 2014; 474:57-69. [PMID: 25111434 DOI: 10.1016/j.ijpharm.2014.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023]
Abstract
Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems.
Collapse
Affiliation(s)
- Ana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Catarina M Morais
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra G Silva
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Eduardo F Marques
- Centro de Investigação em Química, Department of Chemistry and Biochemistry, University of Porto, Porto, Portugal
| | - Maria C Pedroso de Lima
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria Amália S Jurado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
27
|
Misra SK, Naz S, Kondaiah P, Bhattacharya S. A cationic cholesterol based nanocarrier for the delivery of p53-EGFP-C3 plasmid to cancer cells. Biomaterials 2014; 35:1334-46. [DOI: 10.1016/j.biomaterials.2013.10.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/20/2013] [Indexed: 01/10/2023]
|
28
|
Siddiqui US, Aslam J, Ansari WH, Kabir-ud-Din. Micellization and aggregation behavior of a series of cationic gemini surfactants (m-s-m type) on their interaction with a biodegradable sugar-based surfactant (octyl-β-D-glucopyranoside). Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Silva SG, Alves C, Cardoso AMS, Jurado AS, Pedroso de Lima MC, Vale MLC, Marques EF. Synthesis of Gemini Surfactants and Evaluation of Their Interfacial and Cytotoxic Properties: Exploring the Multifunctionality of Serine as Headgroup. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201396] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Grueso E, Kuliszewska E, Prado-Gotor R, Perez-Tejeda P, Roldan E. Improving the understanding of DNA–propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Phys Chem Chem Phys 2013; 15:20064-74. [DOI: 10.1039/c3cp53299b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zhou T, Xu G, Ao M, Yang Y, Wang C. DNA compaction to multi-molecular DNA condensation induced by cationic imidazolium gemini surfactants. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
The DNA–DNA spacing in gemini surfactants–DOPE–DNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2725-31. [DOI: 10.1016/j.bbamem.2012.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 12/27/2022]
|
33
|
We still have a long way to go to effectively deliver genes! J Appl Biomater Funct Mater 2012; 10:82-91. [PMID: 23015375 DOI: 10.5301/jabfm.2012.9707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is emerging as a revolutionary alternative to conventional therapeutic approaches. However, its clinical application is still hampered by the lack of safe and effective gene delivery techniques. Among the plethora of diverse approaches used to ferry nucleic acids into target cells, non-viral vectors represent promising and safer alternatives to viruses and physical techniques. Both cationic lipids and polymers spontaneously wrap and shrink the genetic material in complexes named lipoplexes and polyplexes, respectively, thereby protecting it and shielding its negative charges. The development of non-viral vectors commenced more than two decades ago. Since then, some major classes of interesting molecules have been identified and modified to optimize their properties. However, the way towards the final goal of gene delivery, i.e. protein expression or gene silencing, is filled with obstacles and current non-viral carriers still have concerns about their overall efficiency. We strongly believe that the future of non-viral gene delivery relies on the development of multifunctional vectors specifically tailored with diverse functionalities that act more like viruses. Although these vectors are still a long way from clinical practice they are the ideal platform to effectively shuttle the genetic material to target cells in a safe and controlled way. In this review, after briefly introducing the basis of gene delivery and therapeutic applications we discuss the main polymeric and lipidic vectors utilized for gene delivery, focusing on the strategies adopted to overcome the major weaknesses inherent to their still limited activity, on the way towards ideal multifunctional vectors.
Collapse
|
34
|
He Y, Shang Y, Liu Z, Shao S, Liu H, Hu Y. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine. Colloids Surf B Biointerfaces 2012; 101:398-404. [PMID: 23010047 DOI: 10.1016/j.colsurfb.2012.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results.
Collapse
Affiliation(s)
- Yunfei He
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
35
|
Zakharova LY, Konovalov AI. Supramolecular systems based on cationic surfactants and amphiphilic macrocycles. COLLOID JOURNAL 2012. [DOI: 10.1134/s1061933x12020147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Zakharova L, Voronin M, Semenov V, Gabdrakhmanov D, Syakaev V, Gogolev Y, Giniyatullin R, Lukashenko S, Reznik V, Latypov S, Konovalov A, Zuev Y. Supramolecular systems based on novel mono- and dicationic pyrimidinic amphiphiles and oligonucleotides: a self-organization and complexation study. Chemphyschem 2012; 13:788-96. [PMID: 22287323 DOI: 10.1002/cphc.201100888] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Indexed: 11/11/2022]
Abstract
Novel mono- and dicationic pyrimidinic surfactants are synthesized and their aggregation behavior is studied by methods of tensiometry and nuclear magnetic resonance (NMR) self-diffusion. To estimate their potentiality as gene delivery agents, the complexation with oligonucleotides (ONus) is explored by dynamic light scattering (DLS) and zeta-potential titration methods and ethidium bromide exclusion experiments. Bola-type pyrimidinic amphiphile (BPM) demonstrates rather a weak affinity to ONus. Although it induces mixed associations with ONus, only slight charge compensation changes occur at a large excess of bola, with no recharging reached. Similarly, the ethydium bromide exclusion study reveals a slow increase in the binding capacity toward an ONu with an increment in BPM concentration. The monocationic pyrimidinic surfactant (MPM) and its gemini analogue (GPM-1) are ranked as intermediates in both their aggregative activity and complexing properties toward ONus. They both form mixed associates with ONus well below the critical micelle concentrations (cmcs) of 2 and 15 mM respectively. However, GPM-1 has a much lower isoelectric point at the molar ratio surfactant/ONu r~1 compared to r~3 for MPM. This probably indicates a larger electrostatic contribution to the ONu complexation in the case of GPM-1. The most hydrophobic pyrimidinic surfactant (GPM-2), bearing three alkyl tails, demonstrates enhanced aggregative activity and binding capacity toward ONus as compared to former pyrimidinic surfactants. Due to effective aggregative (low cmc of 0.04 mM) plus binding properties (fraction of bound ONu β=0.76 at r=2.5), GPM-2 may be ranked as a promising agent for wider biological applications.
Collapse
Affiliation(s)
- Lucia Zakharova
- A E Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sarker SR, Arai S, Murate M, Takahashi H, Takata M, Kobayashi T, Takeoka S. Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. Int J Pharm 2012; 422:364-73. [DOI: 10.1016/j.ijpharm.2011.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/04/2011] [Accepted: 10/23/2011] [Indexed: 12/28/2022]
|
38
|
Pullmannová P, Bastos M, Bai G, Funari SS, Lacko I, Devínsky F, Teixeira J, Uhríková D. The ionic strength effect on the DNA complexation by DOPC — gemini surfactants liposomes. Biophys Chem 2012; 160:35-45. [DOI: 10.1016/j.bpc.2011.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/25/2022]
|
39
|
Buse J, Badea I, Verrall RE, El-Aneed A. Tandem mass spectrometric analysis of novel diquaternary ammonium gemini surfactants and their bromide adducts in electrospray-positive ion mode ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1060-1070. [PMID: 22012673 DOI: 10.1002/jms.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gemini surfactants are cationic lipids which are utilized for both in vitro and in vivo gene delivery. Structurally, they are comprised of two hydrophobic tail regions with polar head termini that are attached to one another through a spacer region. Structural elucidation and characterization of 29 novel diquaternary ammonium gemini surfactant molecules were achieved using a quadrupole time-of-flight mass spectrometer (QqToF-MS) and a quadrupole-hexapole-quadrupole mass spectrometer (QhQ-MS). The tested compounds were categorized into four distinct structural families based upon the composition of the spacer region. Single stage (MS), tandem stage (MS/MS) and quasimulti-stage (quasi MS(3)) mass spectrometric analysis allowed for confirmation of each gemini surfactant's molecular composition and structure through the identification of common and unique product ions. Identification of similarities in the gemini surfactants' fragmentation behaviour resulted in the production of a universal fragmentation pathway that can assist in the future MS/MS analysis of novel quaternary ammonium gemini surfactants, with unique product ions being indicative of specific structural elements. Furthermore, evidence for the association of agemini surfactant with bromine counter ion was confirmed during MS analysis of tested gemini surfactants regardless of their chemical composition; previously, evidence for bromine and gemini surfactant association was only observed with compounds bearing short alkyl spacer regions. MS/MS analysis of the bromine adducts was also confirmatory to the molecular structure.Understanding the ionization and fragmentation behaviour of gemini surfactants, including bromine adducts, will allow for future qualitative and quantitative identification of these novel drug delivery agents within biological samples.
Collapse
Affiliation(s)
- Joshua Buse
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
40
|
He Y, Shang Y, Shao S, Liu H, Hu Y. Micellization of cationic gemini surfactant and its interaction with DNA in dilute brine. J Colloid Interface Sci 2011; 358:513-20. [DOI: 10.1016/j.jcis.2011.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/05/2011] [Accepted: 03/09/2011] [Indexed: 12/31/2022]
|
41
|
Keyes C, Duhamel J, Wettig S. Characterization of the behavior of a pyrene substituted gemini surfactant in water by fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3361-3371. [PMID: 21341800 DOI: 10.1021/la104820w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Time-resolved fluorescence was applied to characterize the behavior in solution of a gemini surfactant substituted with pyrene (Py-3-12). Upon association in water, excimer formation by Py-3-12 can be probed by acquiring pyrene monomer and excimer fluorescence decays which can be fitted globally according to the model free (MF) analysis to yield quantitative information about the internal dynamics of the Py-3-12 surfactant micelles as well as a complete description of the distribution of the different pyrene species in solution either incorporated inside the micelles or free in solution. A proof of procedure for the MF analysis was established by noting that the concentrations of free surfactant in solution, [Py-3-12](free), was found to equal the critical micelle concentration (CMC) for surfactant concentrations larger than the CMC. (I(E)/I(M))(SPC), the ratio of pyrene monomer to excimer fluorescence intensities, was calculated from parameters retrieved from the MF analysis of the fluorescence decays and was found to be independent of sample geometry. This work demonstrates how time-resolved fluorescence can be used to study the properties of pyrene-labeled macromolecules under conditions where large absorptions and inner filter effects usually distort the steady-state fluorescence signals. It was found that the pyrene excimer is formed mostly by diffusion within the Py-3-12 micelles, which suggests that the pyrene microenvironment is fluid, an important feature for future studies on the interactions of Py-3-12 with DNA.
Collapse
Affiliation(s)
- Christine Keyes
- Institute for Polymer Research, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
42
|
Han Y, Wang Y. Aggregation behavior of gemini surfactants and their interaction with macromolecules in aqueous solution. Phys Chem Chem Phys 2011; 13:1939-56. [PMID: 21225063 DOI: 10.1039/c0cp01196g] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.
Collapse
Affiliation(s)
- Yuchun Han
- Key Laboratory of Colloid and Interface Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | |
Collapse
|
43
|
Wang H, Wang J, Zhang S. Binding Gibbs energy of ionic liquids to calf thymus DNA: a fluorescence spectroscopy study. Phys Chem Chem Phys 2011; 13:3906-10. [DOI: 10.1039/c0cp01815e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Cardoso AM, Faneca H, Almeida JA, Pais AA, Marques EF, de Lima MCP, Jurado AS. Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: A biophysical approach to transfection efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:341-51. [DOI: 10.1016/j.bbamem.2010.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 12/22/2022]
|
45
|
Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond) 2010; 5:1237-60. [DOI: 10.2217/nnm.10.107] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lipid-based drug-delivery systems have evolved from micro- to nano-scale, enhancing the efficacy and therapeutic applications of these delivery systems. Production of lipid-based pharmaceutical nanoparticles is categorized into top-down (fragmentation of particulate material to reduce its average total dimensions) and bottom-up (amalgamation of molecules through chemical interactions creating particles of greater size) production methods. Selection of the appropriate method depends on the physiochemical properties of individual entities within the nanoparticles. The production method also influences the type of nanoparticle formulations being produced. Liposomal formulations and solid-core micelles are the most widely utilized lipid-based nanoparticles, with surface modifications improving their therapeutic outcomes through the production of long-circulating, tissue-targeted and/or pH-sensitive nanoparticles. More recently, solid lipid nanoparticles have been engineered to reduce toxicity toward mammalian cells, while multifunctional lipid-based nanoparticles (i.e., hybrid lipid nanoparticles) have been formulated to simultaneously perform therapeutic and diagnostic functions. This article will discuss novel lipid-based drug-delivery systems, outlining the properties and applications of lipid-based nanoparticles alongside their methods of production. In addition, a comparison between generations of the lipid-based nano-formulations is examined, providing insight into the current directions of lipid-based nanoparticle drug-delivery systems.
Collapse
Affiliation(s)
- Joshua Buse
- Drug Design & Discover Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N5C9, Canada
| | | |
Collapse
|
46
|
Guo X, Li H, Ran X, Gong Z, Guo R. Effect of oligonucleotide conformation on its facilitation efficiency on negatively charged micelle-to-vesicle transition. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.23835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Alatorre-Meda M, González-Pérez A, Rodríguez JR. DNA–METAFECTENE™ PRO complexation: a physical chemistry study. Phys Chem Chem Phys 2010; 12:7464-72. [DOI: 10.1039/b920900j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Wettig SD, Deubry R, Akbar J, Kaur T, Wang H, Sheinin T, Joseph JW, Slavcev RA. Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA. Phys Chem Chem Phys 2010; 12:4821-6. [DOI: 10.1039/b923817d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
50
|
Cao M, Deng M, Wang XL, Wang Y. Decompaction of Cationic Gemini Surfactant-Induced DNA Condensates by β-Cyclodextrin or Anionic Surfactant. J Phys Chem B 2008; 112:13648-54. [DOI: 10.1021/jp803244f] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meiwen Cao
- Key Laboratory of Colloid and Interface Science, Institute of Chemistry, and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, Peopleʼs Republic of China
| | - Manli Deng
- Key Laboratory of Colloid and Interface Science, Institute of Chemistry, and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, Peopleʼs Republic of China
| | - Xiao-Ling Wang
- Key Laboratory of Colloid and Interface Science, Institute of Chemistry, and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, Peopleʼs Republic of China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Institute of Chemistry, and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, Peopleʼs Republic of China
| |
Collapse
|