1
|
Hassan M, Zhao Y, Zughaier SM. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. BIOSENSORS 2024; 14:375. [PMID: 39194603 DOI: 10.3390/bios14080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Rapid identification of microorganisms with a high sensitivity and selectivity is of great interest in many fields, primarily in clinical diagnosis, environmental monitoring, and the food industry. For over the past decades, a surface-enhanced Raman scattering (SERS)-based detection platform has been extensively used for bacterial detection, and the effort has been extended to clinical, environmental, and food samples. In contrast to other approaches, such as enzyme-linked immunosorbent assays and polymerase chain reaction, SERS exhibits outstanding advantages of rapid detection, being culture-free, low cost, high sensitivity, and lack of water interference. This review aims to cover the development of SERS-based methods for bacterial detection with an emphasis on the source of the signal, techniques used to improve the limit of detection and specificity, and the application of SERS in high-throughput settings and complex samples. The challenges and advancements with the implementation of artificial intelligence (AI) are also discussed.
Collapse
Affiliation(s)
- Manal Hassan
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Öney Öİ, Yenilmez HY, Bahar D, Öztürk NF, Altuntaş Bayır Z. Design of N-heterocycle based-phthalonitrile/metal phthalocyanine-silver nanoconjugates for cancer therapies. Dalton Trans 2023; 52:13119-13128. [PMID: 37602369 DOI: 10.1039/d3dt01656k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
This study reports the anticancer properties of carbazole-containing phthalonitrile/phthalocyanine-modified silver nanoparticles for the first time. In this study, a new mono-substituted phthalonitrile namely 3-[9H-carbazole-9-ethoxy]phthalonitrile and its metal phthalocyanines {M = Zn, Co, and Mn(Cl)} were synthesized by template cyclotetramerization of phthalonitrile derivatives. The newly synthesized compounds were characterized using UV-vis, FT-IR, 1H NMR, 13C NMR, and mass spectroscopy. The resultant compounds were successfully linked to the surface of silver nanoparticles. The characterization of the surficial modification was carried out by applying the TEM technique. The cytotoxic activities of the studied nanoconjugates were tested against A549, DLD-1, and Wi38 cell lines by performing a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay with/without irradiation. Although the functionalization of silver nanoparticles increased the solubility of phthalocyanines in aqueous media, the presence of phthalonitrile/phthalocyanine derivatives on the silver nanoparticles' surface improved their biological properties. All the studied biological candidates exhibited antiproliferative activities against the cell lines. The IC50 values calculated were between 6.80 and 97.99 μM against the studied cell lines in the dark. However, the IC50 values determined were between 3.11 and 88.90 μM with irradiation. The highest IC50 values obtained were 3.11 and 3.52 μM against the DLD-1 cell line for nanoconjugates 1-AgNP and 3-AgNP, respectively. The findings indicated that the compounds may be utilized as anticancer agents after further studies.
Collapse
Affiliation(s)
- Özlem İpsiz Öney
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| | - H Yasemin Yenilmez
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| | - Dilek Bahar
- Genome & Stem Cell Center (GENKOK), Erciyes University, TR-38280, Kayseri, Türkiye
| | | | - Zehra Altuntaş Bayır
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| |
Collapse
|
4
|
Lee JH, Chapman DV, Saltzman WM. Nanoparticle Targeting with Antibodies in the Central Nervous System. BME FRONTIERS 2023; 4:0012. [PMID: 37849659 PMCID: PMC10085254 DOI: 10.34133/bmef.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/19/2023] [Indexed: 10/19/2023] Open
Abstract
Treatments for disease in the central nervous system (CNS) are limited because of difficulties in agent penetration through the blood-brain barrier, achieving optimal dosing, and mitigating off-target effects. The prospect of precision medicine in CNS treatment suggests an opportunity for therapeutic nanotechnology, which offers tunability and adaptability to address specific diseases as well as targetability when combined with antibodies (Abs). Here, we review the strategies to attach Abs to nanoparticles (NPs), including conventional approaches of chemisorption and physisorption as well as attempts to combine irreversible Ab immobilization with controlled orientation. We also summarize trends that have been observed through studies of systemically delivered Ab-NP conjugates in animals. Finally, we discuss the future outlook for Ab-NPs to deliver therapeutics into the CNS.
Collapse
Affiliation(s)
| | | | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Ramasami Sundhar Baabu P, Mani GK, Rayappan JBB, Tsuyuki Y, Inazu T, Tsuchiya K. Sensor-on-Microtips: Design and Development of Hydrothermally Grown ZnO on Micropipette Tips as a Modified Working Electrode for Detection of Glucose. MICROMACHINES 2023; 14:498. [PMID: 36984905 PMCID: PMC10053005 DOI: 10.3390/mi14030498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Miniaturization of electrochemical components has become less common in the last decade, with the focus predominantly being the design and development of state-of-the-art microelectrodes for achieving small volume analysis of samples. However, such microelectrodes involve cumbersome processing procedures to convert the base material for the required application. A potential paradigm shift in such miniaturization could be achieved by using cheaper alternatives such as plastics to build electrochemical components, such as micropipette tips made of polypropylene, which are commercially available at ease. Hence, this work presents the design of an electrochemical working electrode based upon a micropipette tip, involving minimal processing procedures. Furthermore, such a working electrode was realized by sputtering silver onto a bare micropipette tip using a radio-frequency sputtering technique, to obtain electrical contacts on the tip, followed by hydrothermal growth of ZnO, which acted as the active electrode material. The ZnO nanostructures grown on the micropipette tip were characterized for their morphology and surface properties using a scanning electron microscope (SEM), laser microscope, Raman spectrometer, and X-ray photoelectron spectrometer (XPS). The developed micropipette tip-based electrode was then used as the working electrode in a three-electrode system, wherein its electrochemical stability and properties were analyzed using cyclic voltammetry (CV). Furthermore, the above system was used to detect glucose concentrations of 10-200 µM, to evaluate its sensing properties using amperometry. The developed working electrode exhibited a sensitivity of 69.02 µA/µM cm-2 and limit of detection of 67.5 µM, indicating the potential for using such modified micropipette tips as low-cost miniaturized sensors to detect various bio-analytes in sample solutions.
Collapse
Affiliation(s)
| | - Ganesh Kumar Mani
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| | | | - Yuichiro Tsuyuki
- Hasegawa Machinery Limited, 307 Matsuoka, Fuji-shi 416-0909, Japan
| | - Toshiyuki Inazu
- Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
| | - Kazuyoshi Tsuchiya
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| |
Collapse
|
6
|
Akram M, Majeed MI, Nawaz H, Rashid N, Javed MR, Ali MZ, Raza A, Shakeel M, Hasan HMU, Ali Z, Ehsan U, Shahid M. Surface-enhanced Raman spectroscopy for characterization of filtrate portions of blood serum samples of typhoid patients. Photodiagnosis Photodyn Ther 2022; 40:103199. [PMID: 36371020 DOI: 10.1016/j.pdpdt.2022.103199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) is explored to design a rapid screening method for the characterization and diagnosis of typhoid fever by employing filtrate fractions of blood serum samples obtained by centrifugal filtration with 50 KDa filters. OBJECTIVES The purpose of this study, to separate the filtrate portions of blood serum samples in this way contain proteins smaller than 50 kDa and removal of bigger size protein which allows to acquire the SERS spectral features of smaller proteins more effectively which are probably associated with typhoid disease. Disease caused by Salmonella typhi diagnose more effectively by using surface-enhanced Raman spectroscopy (SERS) and multivariate data analysis tools. METHODS SERS was used as a diagnostic tool for typhoid fever by comparison between healthy and diseased samples. For this purpose, all the samples were analyzed by comparing their SERS spectral features. Over the spectral range of 400-1800cm-1, multivariate data analysis techniques such as Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) are applied to diagnose and differentiate different filtrate fractions of blood serum samples of patients of typhoid fever and healthy ones. RESULTS By comparing SERS spectra of healthy filtrate with that of filtrate of typhoid sample, the SERS spectral features associated with disease development are identified including PCA is found to be efficient for the qualitative differentiation of all of the samples analyzed. Moreover, PLS-DA successfully identified and classified healthy and typhoid positive blood serum samples with 97 % accuracy, 99 % specificity, 91 % sensitivity and 0.78 area under the receiver operating characteristic (AUROC) curve. CONCLUSIONS Surface enhanced Raman spectroscopy using silver nanoparticles SERS substrate, is found to be useful technique for the quick identification and evaluation of filtrate fractions of the blood serum samples of healthy and typhoid samples for disease diagnosis.
Collapse
Affiliation(s)
- Maria Akram
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Muhammad Zeeshan Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Ali Raza
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Shakeel
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hafiz Mahmood Ul Hasan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Usama Ehsan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
7
|
Li J, Khalenkow D, Volodkin D, Lapanje A, Skirtach AG, Parakhonskiy BV. Surface enhanced Raman scattering (SERS)-active bacterial detection by Layer-by-Layer (LbL) assembly all-nanoparticle microcapsules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Metallic and Metal Oxides Nanoparticles for Sensing Food Pathogens—An Overview of Recent Findings and Future Prospects. MATERIALS 2022; 15:ma15155374. [PMID: 35955309 PMCID: PMC9370041 DOI: 10.3390/ma15155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, special importance is given to quality control and food safety. Food quality currently creates significant problems for the industry and implicitly for consumers and society. The effects materialize in economic losses, alterations of the quality and organoleptic properties of the commercial products, and, last but not least, they constitute risk factors for the consumer’s health. In this context, the development of analytical systems for the rapid determination of the sanitary quality of food products by detecting possible pathogenic microorganisms (such as Escherichia coli or Salmonella due to the important digestive disorders that they can cause in many consumers) is of major importance. Using efficient and environmentally friendly detection systems for identification of various pathogens that modify food matrices and turn them into food waste faster will also improve agri-food quality throughout the food chain. This paper reviews the use of metal nanoparticles used to obtain bio nanosensors for the purpose mentioned above. Metallic nanoparticles (Au, Ag, etc.) and their oxides can be synthesized by several methods, such as chemical, physical, physico-chemical, and biological, each bringing advantages and disadvantages in their use for developing nanosensors. In the “green chemistry” approach, a particular importance is given to the metal nanoparticles obtained by phytosynthesis. This method can lead to the development of good quality nanoparticles, at the same time being able to use secondary metabolites from vegetal wastes, as such providing a circular economy character. Considering these aspects, the use of phytosynthesized nanoparticles in other biosensing applications is also presented as a glimpse of their potential, which should be further explored.
Collapse
|
9
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
10
|
Bashir S, Nawaz H, Irfan Majeed M, Mohsin M, Nawaz A, Rashid N, Batool F, Akbar S, Abubakar M, Ahmad S, Ali S, Kashif M. Surface-enhanced Raman spectroscopy for the identification of tigecycline-resistant E. coli strains. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119831. [PMID: 33957452 DOI: 10.1016/j.saa.2021.119831] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Tigecycline (TGC) is recognised as last resort of drugs against several antibiotic-resistant bacteria. Bacterial resistance to tigecycline due to presence of plasmid-mediated mobile TGC resistance genes (tet X3/X4) has broken another defense line. Therefore, rapid and reproducible detection of tigecycline-resistant E. coli (TREC) is required. The current study is designed for the identification and differentiation of TREC from tigecycline-sensitive E. coli (TSEC) by employing SERS by using Ag NPs as a SERS substrate. The SERS spectral fingerprints of E. coli strains associated directly or indirectly with the development of resistance against tigecycline have been distinguished by comparing SERS spectral data of TSEC strains with each TREC strain. Moreover, the statistical analysis including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed to check the diagnostic potential of SERS for the differentiation among TREC and TSEC strains. The qualitative identification and differentiation between resistant and sensitive strains and among individual strains have been efficiently done by performing both PCA and HCA. The successful discrimination among TREC and TSEC at the strain level is performed by PLS-DA with 98% area under ROC curve, 100% sensitivity, 98.7% specificity and 100% accuracy.
Collapse
Affiliation(s)
- Saba Bashir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Ali Nawaz
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Fatima Batool
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
11
|
Asefy Z, Hoseinnejhad S, Ceferov Z. Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment. Neurol Sci 2021; 42:2653-2660. [PMID: 33846881 DOI: 10.1007/s10072-021-05234-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023]
Abstract
The World Health Organization (WHO) has declared that neurodegenerative diseases will be the biggest health issues of the twenty-first century. Among these, Alzheimer's and Parkinson's diseases can be considered as the most acute incurable neurological diseases. Researchers are studying and developing a new treatment approach that uses nanotechnology to diagnosis and treatment neurodegenerative diseases. This treatment strategy will be used to regress neurodegenerative diseases such as Alzheimer's disease. Alzheimer's disease (AD) is one of the most common forms of reduced brain function, which causes many devastating complications. Current neurodegenerative diseases treatment protocols only help to treat symptoms nevertheless with nanotechnology approaches, can regress nerve cells apoptosis, reduce inflammation, and improve brain drug delivery. In this paper, new nanotechnology methods such as nanobodies, nano-antibodies, and lipid nanoparticles have been investigated. Correspondingly blood-brain barrier drug delivery improvement methods have been suggested.
Collapse
Affiliation(s)
- Zahra Asefy
- School of Nursing and Allied Medical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Sirus Hoseinnejhad
- School of Nursing and Allied Medical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | | |
Collapse
|
12
|
Preliminary Biocompatibility Tests of Poly-ε-Caprolactone/Silver Nanofibers in Wistar Rats. Polymers (Basel) 2021; 13:polym13071135. [PMID: 33918286 PMCID: PMC8038147 DOI: 10.3390/polym13071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Currently, nanotechnology is perceived as a promising science that produces materials with diverse unique properties at a nanometric scale. Biocompatibility tests of poly-ε-caprolactone nanofibers, embedded with silver nanoparticles manufactured by means of the electrospinning technique, were carried out in Wistar rats to be used as oral dressings for the eradication of bacteria. Solutions of 12.5, 25, 50 and 100 mM of silver nitrate were made using N-dimethylformamide (DMF) and tetrahydrofuran (THF) as reducing solvents with 8% of poly-ε-caprolactone (PCL) polymer. The solutions were electrospun, and the nanofibers obtained in the process were characterized by infrared spectroscopy, Raman spectroscopy, dark field optical microscopy, scanning electron microscopy and X-ray scattering spectroscopy. The nanofibers had an average diameter of 400 ± 100 nm. Once the characterization of the material was done, three implants of each concentration of the nanofibers were formed and placed in the subcutaneous tissue of the rats. Three experimental subjects were used, leaving the material in them for a length of two, four and six weeks, respectively. The rats showed good healing, with the lesions completely healed at four weeks after implantation. After that time, biopsies were taken, and histopathological sections were made to evaluate the inflammatory infiltrate. The tissues of the rats presented chronic inflammatory infiltrate composed mainly of lymphocytes and giant multinucleated cells. The material was rejected by the rats when a layer of collagen and fibroblasts was produced, coating the material, a process characteristic of a foreign body reaction.
Collapse
|
13
|
Song F, Shen Y, Wei Y, Yang C, Ge X, Wang A, Li C, Wan Y, Li J. Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics. Biosens Bioelectron 2021; 176:112953. [PMID: 33418182 PMCID: PMC7836976 DOI: 10.1016/j.bios.2020.112953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023]
Abstract
The rapid identification of pathogenic microorganisms plays a crucial role in the timely diagnosis and treatment strategies during a global pandemic, especially in resource-limited area. Herein, we present a sensitive biosensor strategy depended on botulinum neurotoxin type A light chain (BoNT/A LC) activated complex assay (BACA). BoNT/A LC, the surrogate of BoNT/A which embodying the most potent biological poisons, could serve as an ultrasensitive signal reporter with high signal-to-noise ratio to avoid common strong background response, poor stability and low intensity of current biosensor methods. A nanoparticle hybridization system, involving specific binding probes that recognize pathogenic 16S rRNAs or SARS-CoV-2 gene site, was developed to measure double-stranded biotinylated target DNA containing a single-stranded overhang using Fluorescence Resonance Energy Transfer (FRET)-based assay and colorimetric method. The method is validated widely by six different bacteria strains and severe acute respiratory related coronavirus 2 (SARS-CoV-2) nucleic acid, demonstrating a single cell or 1 aM nucleic acid detecting sensitivity. This detection strategy offers a solution for general applications and has a great prospect to be a simple instrument-free colorimetric tool, especially when facing public health emergency.
Collapse
Affiliation(s)
- Fengge Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yuanyuan Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yangdao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chunrong Yang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Ge
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Chaoyang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, 56 Renmin Road, Haikou, 570228, China; Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Saletnik A, Saletnik B, Puchalski C. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules 2021; 26:1537. [PMID: 33799702 PMCID: PMC7999012 DOI: 10.3390/molecules26061537] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.
Collapse
Affiliation(s)
| | - Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland; (A.S.); (C.P.)
| | | |
Collapse
|
15
|
Andrei CC, Moraillon A, Larquet E, Potara M, Astilean S, Jakab E, Bouckaert J, Rosselle L, Skandrani N, Boukherroub R, Ozanam F, Szunerits S, Gouget-Laemmel AC. SERS characterization of aggregated and isolated bacteria deposited on silver-based substrates. Anal Bioanal Chem 2021; 413:1417-1428. [PMID: 33388848 DOI: 10.1007/s00216-020-03106-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Surface-enhanced Raman scattering (SERS), based on the enhancement of the Raman signal of molecules positioned within a few nanometres from a structured metal surface, is ideally suited to provide bacterial-specific molecular fingerprints which can be used for analytical purposes. However, for some complex structures such as bacteria, the generation of reproducible SERS spectra is still a challenging task. Among the various factors influencing the SERS variability (such as the nature of SERS-active substrate, Raman parameters and bacterial specificity), we demonstrate in this study that the environment of Gram-positive and Gram-negative bacteria deposited on ultra-thin silver films also impacts the origin of the SERS spectra. In the case of densely packed bacteria, the obtained SERS signatures were either characteristic of the secretion of adenosine triphosphate for Staphylococcus aureus (S. aureus) or the cell wall and the pili/flagella for Escherichia coli (E. coli), allowing for an easy discrimination between the various strains. In the case of isolated bacteria, SERS mapping together with principal component analysis revealed some variabilities of the spectra as a function of the bacteria environment and the bactericidal effect of the silver. However, the variability does not preclude the SERS signatures of various E. coli strains to be discriminated.
Collapse
Affiliation(s)
- Cristina-Cassiana Andrei
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Anne Moraillon
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271, Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271, Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu Str. 1, 400084, Cluj-Napoca, Romania
| | - Endre Jakab
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babes-Bolyai University, Clinicilor 5-7, 400006, Cluj-Napoca, Romania
- Molecular Biology Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian Str. 42, 400271, Cluj-Napoca, Romania
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 of the CNRS, University of Lille, 50 avenue de Halley, 59658, Villeneuve-d'Ascq, France
| | - Léa Rosselle
- TissueAegis SAS, 14E rue Pierre de Coubertin, 21000, Dijon, France
- University of Lille, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Nadia Skandrani
- TissueAegis SAS, 14E rue Pierre de Coubertin, 21000, Dijon, France
| | - Rabah Boukherroub
- University of Lille, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - François Ozanam
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Sabine Szunerits
- University of Lille, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France.
| | - Anne Chantal Gouget-Laemmel
- Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
16
|
Maruthamuthu MK, Raffiee AH, De Oliveira DM, Ardekani AM, Verma MS. Raman spectra-based deep learning: A tool to identify microbial contamination. Microbiologyopen 2020; 9:e1122. [PMID: 33063423 PMCID: PMC7658449 DOI: 10.1002/mbo3.1122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Deep learning has the potential to enhance the output of in‐line, on‐line, and at‐line instrumentation used for process analytical technology in the pharmaceutical industry. Here, we used Raman spectroscopy‐based deep learning strategies to develop a tool for detecting microbial contamination. We built a Raman dataset for microorganisms that are common contaminants in the pharmaceutical industry for Chinese Hamster Ovary (CHO) cells, which are often used in the production of biologics. Using a convolution neural network (CNN), we classified the different samples comprising individual microbes and microbes mixed with CHO cells with an accuracy of 95%–100%. The set of 12 microbes spans across Gram‐positive and Gram‐negative bacteria as well as fungi. We also created an attention map for different microbes and CHO cells to highlight which segments of the Raman spectra contribute the most to help discriminate between different species. This dataset and algorithm provide a route for implementing Raman spectroscopy for detecting microbial contamination in the pharmaceutical industry.
Collapse
Affiliation(s)
- Murali K Maruthamuthu
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohit S Verma
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Tan P, Li H, Wang J, Gopinath SCB. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol Appl Biochem 2020; 68:1236-1242. [PMID: 33043496 DOI: 10.1002/bab.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Recent developments in nanotechnology promoted the production of nanomaterials with various shapes and sizes by utilizing interdisciplinary researches of biology, chemistry, and material science toward the clinical perspectives. In particular, gold and silver (Ag) are noble metals that exhibit tunable and unique plasmonic properties for the downstream applications. Ag exhibits higher thermal and electrical conductivities, and more efficient in the electron transfer than gold with sharper extinction bands. In addition, modified Ag nanoparticle is more stable in water and air. With all these above features, Ag is an attractive tool in various fields, including diagnosis, drug delivery, environmental, electronics, and as antimicrobial agent. In particular, applications of Ag nanoparticle in the fields of biosensor and imaging are prominent in recent days. Enhancing the specific detection of clinical markers with Ag nanoparticle has been proved by several studies. This review discussed the constructive application of Ag nanoparticle in biosensor and bioimaging for the detection of small molecule to larger whole cell in the perspectives of diagnosing diseases.
Collapse
Affiliation(s)
- Peng Tan
- Ultrasound Diagnosis Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - HeSheng Li
- General Surgery, Leping people's Hospital, Phoenix Avenue, Leping, Jiangxi Province, People's Republic of China
| | - Jian Wang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of traditional Chinese Medicine, Nanchang City, Jiangxi Province, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
18
|
Taneja P, Manjuladevi V, Gupta RK, Kumar S, Gupta KK. Facile ultrathin film of silver nanoparticles for bacteria sensing. Colloids Surf B Biointerfaces 2020; 196:111335. [PMID: 32927339 DOI: 10.1016/j.colsurfb.2020.111335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/29/2022]
Abstract
Silver nanoparticles (AgNPs) exhibit excellent anti-microbial and bactericidal properties. Due to bacterial abhorrence for AgNPs, it is difficult to develop a label-free, sensitive and low-cost bacteria sensor using them. In the present article, we report that an ultrathin and uniform Langmuir-Schaefer (LS) film of AgNPs can be employed for bacteria sensing effectively as compared to that of non-uniform and randomly distributed AgNPs in spin coated film. The uniformly distributed AgNPs in the LS film offer a relatively larger contact surface for bacteria as compared to that of spin coated film. Due to higher contact surface, adsorption of the bacteria on LS film is strongly preferable as compared to that of spin coated film leading to an enhanced sensing performance of the LS film than that of spin coated film. Soil bacteria was grown by the standard protocol and were utilized as model system for bacteria sensing application. The soil bacteria sensing was done by monitoring the piezoresponse and dissipation parameters using a quartz crystal microbalance, simultaneously. Our study indicates that the LS film of AgNPs not only facilitates the adsorption of the soil bacteria but also kills them.
Collapse
Affiliation(s)
- Parul Taneja
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan 333031, India
| | - V Manjuladevi
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan 333031, India
| | - R K Gupta
- Department of Physics, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan 333031, India.
| | - Sandeep Kumar
- Raman Research Institute, Sadashivanagar, Bangalore 560080, India; Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore 560064, India
| | - K K Gupta
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani (BITS Pilani), Rajasthan 333031, India
| |
Collapse
|
19
|
YEĞENOĞLU AKÇINAR H, ASLIM* B, TORUL H, GÜVEN B, ZENGİN A, SULUDERE Z, BOYACI İH, TAMER U. Immunomagnetic separation and Listeriamonocytogenes detection with surface-enhanced Raman scattering. Turk J Med Sci 2020; 50:1157-1167. [PMID: 32283902 PMCID: PMC7379434 DOI: 10.3906/sag-2002-234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/11/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim We aimed to develop a rapid method to enumerate Listeria monocytogenes (L. monocytogenes) utilizing magnetic nanoparticle based preconcentration and surface-enhanced Raman spectroscopy measurements. Materials and methods Biological activities of magnetic Au-nanoparticles have been observed to have the high biocompatibility, and a sample immunosensor model has been designed to use avidin attached Au-nanoparticles for L. monocytogenes detection. Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhimurium) bacteria cultures were chosen for control studies. Antimicrobial activity studies have been done to identify bio-compatibility and bio-characterization of the Au-nanoparticles in our previous study and capturing efficiencies to bacterial surfaces have been also investigated. Results We constructed the calibration graphs in various population density of L. monocytogenes as 2.2 × 101 to 2.2 × 106 cfu/mL and the capture efficiency was found to be 75%. After the optimization procedures, population density of L. monocytogenes and Raman signal intensity showed a good linear correlation (R2 = 0.991) between 102 to 106 cfu/mL L. monocytogenes. The presented sandwich assay provides low detection limits and limit of quantification as 12 cfu/mL and 37 cfu/mL, respectively. We also compared the experimental results with reference plate-counting methods and the practical utility of the proposed assay is demonstrated using milk samples. Conclusion It is focused on the enumeration of L. monocytogenes in milk samples and the comparision of results of milk analysis obtained by the proposed SERS method and by plate counting method stay in food agreement. In the present study, all parameters were optimized to select SERS-based immunoassay method for L. monocytogenes bacteria to ensure LOD, selectivity, precision and repeatablity.
Collapse
Affiliation(s)
| | - Belma ASLIM*
- Department of Biology, Faculty of Science, Gazi University, AnkaraTurkey
| | - Hilal TORUL
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, AnkaraTurkey
| | - Burcu GÜVEN
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, AnkaraTurkey
| | - Adem ZENGİN
- Department of Chemical Engineering, Faculty of Engineering, Yüzüncü Yıl University, VanTurkey
| | - Zekiye SULUDERE
- Department of Biology, Faculty of Science, Gazi University, AnkaraTurkey
| | - İsmail Hakkı BOYACI
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, AnkaraTurkey
| | - Uğur TAMER
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, AnkaraTurkey
| |
Collapse
|
20
|
An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Syst Appl Microbiol 2020; 43:126086. [PMID: 32414515 DOI: 10.1016/j.syapm.2020.126086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
The vast majority of environmental bacteria remain uncultured, despite two centuries of effort in cultivating microorganisms. Our knowledge of their physiology and metabolic activity depends to a large extent on methods capable of analyzing single cells. Bacterial identification is a key step required by all currently used single-cell imaging techniques and is typically performed by means of fluorescent labeling. However, fluorescent cells cannot be visualized by ion- and electron microscopy and thus only correlative, indirect, cell identification is possible. Here we present a new method of bacterial identification by in situ hybridization coupled to the deposition of elemental silver nanoparticles (silver-DISH). We show that hybridized cells containing silver can be directly visualized by light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry (nanoSIMS), and confocal Raman micro-spectroscopy. Silver-DISH did not alter the isotopic (13C) and elemental composition of stable-isotope probed cells more than other available hybridization methods, making silver-DISH suitable for broad applications in stable-isotope labeling studies. Additionally, we demonstrate that silver-DISH can induce a surface-enhanced Raman scattering (SERS) effect, amplifying the Raman signal of biomolecules inside bacterial cells. This makes silver-DISH the only currently available method that is capable of delivering a SERS-active substrate inside specifically targeted microbial cells.
Collapse
|
21
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Naqvi T, Sree Satya Bharati M, Srivastava AK, Kulkarni MM, Siddiqui AM, Rao SV, Dwivedi PK. Hierarchical Laser-Patterned Silver/Graphene Oxide Hybrid SERS Sensor for Explosive Detection. ACS OMEGA 2019; 4:17691-17701. [PMID: 31681875 PMCID: PMC6822111 DOI: 10.1021/acsomega.9b01975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 05/22/2023]
Abstract
We demonstrate an ultrafast laser-ablated hierarchically patterned silver nanoparticle/graphene oxide (AgNP/GO) hybrid surface-enhanced Raman scattering (SERS) substrate for highly sensitive and reproducible detection of an explosive marker 2,4-dinitrotoluene (2,4-DNT). A hierarchical laser-patterned silver sheet (Ag-S) is achieved by ultrafast laser ablation in air with pulse energies of 25, 50, and 100 μJ. Multiple laser pulses at a wavelength of 800 nm and a pulse repetition rate of 50 fs at 1 kHz are directly focused on Ag-S to produce and deposit AgNPs onto Ag-S. The surface morphology of ablated Ag-S was evaluated using atomic force microscopy, optical profilometry, and field emission scanning electron microscopy (FESEM). A rapid increase in the ablation rate with increasing laser energy was observed. Selected area Raman mapping is performed to understand the intensity and size distribution of AgNPs on Ag-S. Further, GO was spin-coated onto the AgNPs produced by ultrafast ablation on Ag-S. The hierarchical laser-patterned AgNP/GO hybrid structure was characterized using FESEM, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further, hierarchical laser-patterned AgNP/GO hybrid structures have been utilized as SERS-active substrates for the selective detection of 2,4-DNT, an explosive marker. The developed SERS-active sensor shows good stability and high sensitivity up to picomolar (pM) concentration range with a Raman intensity enhancement of ∼1010 for 2,4-DNT. The realized enhancement of SERS intensity is due to the cumulative effect of GO coated on Ag-S as a proactive layer and AgNPs produced by ultrafast ablation.
Collapse
Affiliation(s)
- Tania
K. Naqvi
- Center
for Nanosciences, Indian Institute of Technology
Kanpur, Kanpur 208016, India
- Department
of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Moram Sree Satya Bharati
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
| | - Alok K. Srivastava
- Defence
Material and Stores Research and Development Establishment, Kanpur 208013, India
| | - Manish M. Kulkarni
- Center
for Nanosciences, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Azher M. Siddiqui
- Department
of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - S. Venugopal Rao
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India
- E-mail: (S.V.R.)
| | - Prabhat K. Dwivedi
- Center
for Nanosciences, Indian Institute of Technology
Kanpur, Kanpur 208016, India
- E-mail: (P.K.D.)
| |
Collapse
|
23
|
Kim SS, Lee JA, Yeo MK. Reduction in Toxicity of Nano-Ag-Polyvinyl-pyrrolidone Using Hydra Proteins and Peptides during Zebrafish Embryogenesis. NANOMATERIALS 2019; 9:nano9091210. [PMID: 31462001 PMCID: PMC6780337 DOI: 10.3390/nano9091210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
Hydra magnipapillata cells reduce the toxicity of silver nanomaterials to zebrafish (Danio rerio) embryos. In this study, we investigated whether Hydra protein (HP) and Hydra basal disc peptide (Hym176) materials reduce nano-Ag-polyvinylpyrrolidone (N-Ag-PVP) toxicity during embryogenesis of the nanosensitive organism zebrafish. Protein (HP) was extracted from Hydra, and peptide (Hym176) was extracted from the hydra basal disc, which is attractive to nanomaterials and related to the immune system. The experimental conditions were exposure to N-Ag-PVP, HP, N-Ag-PVP+HP, Hym176, or N-Ag-PVP+Hym176 during embryo development. N-Ag-PVP+HP group showed lower toxicity than N-Ag-PVP group. In addition, in the N-Ag-PVP+HP group formed aggregated nanomaterials (≥200 nm size) through electrostatic bonding. In the gene expression profile, HP group differed in gene expression profile compared the other experimental groups and it was no genetic toxicity. HP showed a tendency to reduce side effects and abnormal gene expression produced by N-Ag-PVP with no evidence of inherent toxicity. Considering the potential nanotoxicity effects of released nanomaterials on the ecosystem, the reduction of nanotoxicity observed with HP natural materials should be regarded with great interest in terms of the overall health of the ecosystem.
Collapse
Affiliation(s)
- Soon Seok Kim
- Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do Seoul 17104, Korea
| | - Jin Ah Lee
- Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do Seoul 17104, Korea
| | - Min-Kyeong Yeo
- Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do Seoul 17104, Korea.
| |
Collapse
|
24
|
Lemma T, Wang J, Arstila K, Hytönen VP, Toppari JJ. Identifying yeasts using surface enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:299-307. [PMID: 31005737 DOI: 10.1016/j.saa.2019.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
The molecular fingerprints of yeasts Saccharomyces cerevisiae, Dekkera bruxellensis, and Wickerhamomyces anomalus (former name Pichia anomala) have been examined using surface-enhanced Raman spectroscopy (SERS) and helium ion microscopy (HIM). The SERS spectra obtained from cell cultures (lysate and non-treated cells) distinguish between these very closely related fungal species. Highly SERS active silver nano-particles suitable for detecting complex biomolecules were fabricated using a simple synthesis route. The yeast samples mixed with aggregated Ag nanoparticles yielded highly enhanced and reproducible Raman signal owing to the high density of the hot spots at the junctions of two or more Ag nanoparticles and enabled to differentiate the three species based on their unique features (spectral fingerprint). We also collected SERS spectra of the three yeast species in beer medium to demonstrate the potential of the method for industrial application. These findings demonstrate the great potential of SERS for detection and identification of fungi species based on the biochemical compositions, even in a chemically complex sample.
Collapse
Affiliation(s)
- Tibebe Lemma
- Faculdade de Clências e Tecnologia (FCT)-Universidade Estadual Paulista (UNESP)-Presidente Prudente, SP 19060-900, Brazil.
| | - Jin Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Kai Arstila
- NanoScience Center, Department of Physics, P.O. Box 35 (YN), FI-40014, University of Jyväskylä, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - J Jussi Toppari
- NanoScience Center, Department of Physics, P.O. Box 35 (YN), FI-40014, University of Jyväskylä, Finland
| |
Collapse
|
25
|
López-Cázares MI, Pérez-Rodríguez F, Rangel-Méndez JR, Centeno-Sánchez M, Cházaro-Ruiz LF. Improved conductivity and anti(bio)fouling of cation exchange membranes by AgNPs-GO nanocomposites. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Wang K, Li S, Petersen M, Wang S, Lu X. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E762. [PMID: 30261660 PMCID: PMC6215266 DOI: 10.3390/nano8100762] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
This mini-review summarizes the most recent progress concerning the use of surface-enhanced Raman spectroscopy (SERS) for the detection and characterization of antibiotic-resistant bacteria. We first discussed the design and synthesis of various types of nanomaterials that can be used as the SERS-active substrates for biosensing trace levels of antibiotic-resistant bacteria. We then reviewed the tandem-SERS strategy of integrating a separation element/platform with SERS sensing to achieve the detection of antibiotic-resistant bacteria in the environmental, agri-food, and clinical samples. Finally, we demonstrated the application of using SERS to investigate bacterial antibiotic resistance and susceptibility as well as the working mechanism of antibiotics based on spectral fingerprinting of the whole cells.
Collapse
Affiliation(s)
- Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shenmiao Li
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Marlen Petersen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300371, China.
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
27
|
Galvan DD, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv Healthc Mater 2018; 7:e1701335. [PMID: 29504273 DOI: 10.1002/adhm.201701335] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/30/2017] [Indexed: 12/19/2022]
Abstract
As the prevalence of antibiotic-resistant bacteria continues to rise, biosensing technologies are needed to enable rapid diagnosis of bacterial infections. Furthermore, understanding the unique biochemistry of resistance mechanisms can facilitate the development of next generation therapeutics. Surface-enhanced Raman scattering (SERS) offers a potential solution to real-time diagnostic technologies, as well as a route to fundamental, mechanistic studies. In the current review, SERS-based approaches to the detection and characterization of antibiotic-resistant bacteria are covered. The commonly used nanomaterials (nanoparticles and nanostructured surfaces) and surface modifications (antibodies, aptamers, reporters, etc.) for SERS bacterial detection and differentiation are discussed first, and followed by a review of SERS-based detection of antibiotic-resistant bacteria from environmental/food processing and clinical sources. Antibiotic susceptibility testing and minimum inhibitory concentration testing with SERS are then summarized. Finally, recent developments of SERS-based chemical imaging/mapping of bacteria are reviewed.
Collapse
Affiliation(s)
- Daniel D. Galvan
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Qiuming Yu
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
28
|
Fabrication of highly stable silver nanoparticles with shape-dependent electrochemical efficacy. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Romero MR, Gonzalez-Rodriguez J, Rodríguez-Amaro R, Mellado JR. Evolution of Pt and Ag nanoparticles composites with polyphenazines onto ITO electrodes during the oxidation of H2O2 with ascorbic acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Moghtader F, Tomak A, Zareie HM, Piskin E. Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:122-130. [DOI: 10.1080/21691401.2018.1452251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Farzaneh Moghtader
- Division of Nanotechnology and Nanomedicine, The Institute for Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- NanoBMT: Cyberpark-Bilkent/KOSGEB-Başkent University-Tekmer, Ankara, Turkey
| | - Aysel Tomak
- Department of Material Science and Engineering Department, İzmir Institute of Technology, İzmir, Turkey
| | - Hadi M. Zareie
- School of Mathematical and Physical Science (Physics), University of Technology Sydney, Sydney, Australia
| | - Erhan Piskin
- NanoBMT: Cyberpark-Bilkent/KOSGEB-Başkent University-Tekmer, Ankara, Turkey
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Raman imaging of cellular uptake and studies of silver nanoparticles effect in BJ human fibroblasts cell lines. Int J Pharm 2017; 528:280-286. [DOI: 10.1016/j.ijpharm.2017.05.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 11/21/2022]
|
32
|
Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnology 2017; 15:25. [PMID: 28359284 PMCID: PMC5374694 DOI: 10.1186/s12951-017-0260-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
Background Pathogenic bacteria contribute to various globally important diseases, killing millions of people each year. Various fields of medicine currently benefit from or may potentially benefit from the use of nanotechnology applications, in which there is growing interest. Disease-related biomarkers can be rapidly and directly detected by nanostructures, such as nanowires, nanotubes, nanoparticles, cantilevers, microarrays, and nanoarrays, as part of an accurate process characterized by lower sample consumption and considerably higher sensitivity. There is a need for accurate techniques for pathogenic bacteria identification and detection to allow the prevention and management of pathogenic diseases and to assure food safety. Conclusion The focus of this review is on the current nanoparticle-based techniques for pathogenic bacterial identification and detection using these applications.
Collapse
Affiliation(s)
- Teodora Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cristian T Matea
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Teodora Pop
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- 3rd Gastroenterology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 3-5 Clinicilor Street, Cluj-Napoca, Romania
| | - Cosmin Puia
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania.,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania
| | - Cornel Iancu
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| | - Lucian Mocan
- Department of Nanomedicine, "Octavian Fodor" Gastroenterology Institute, 19-21 Croitorilor Street, Cluj-Napoca, Romania. .,3rd Surgery Clinic, "Iuliu Hatieganu" University of Medicine and Pharmacy, 19-21 Croitorilor Street, Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Yee MSL, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO. Green synthesis of graphene-silver nanocomposites and its application as a potent marine antifouling agent. Colloids Surf B Biointerfaces 2016; 148:392-401. [DOI: 10.1016/j.colsurfb.2016.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
|
34
|
Witkowska E, Szymborski T, Kamińska A, Waluk J. Polymer mat prepared via Forcespinning™ as a SERS platform for immobilization and detection of bacteria from blood plasma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:345-350. [PMID: 27987716 DOI: 10.1016/j.msec.2016.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 01/21/2023]
Abstract
One of potential applications of nano- and microscale polymer fibers is SERS-active platforms for the detection of biological compounds and microorganisms. This paper demonstrates the polymer mat obtained with Forcespinning™ technique used to detect the bacteria from blood plasma. Forcespinning™ is a new method of manufacturing of polymer fibers which can be applied to variety of polymer materials, e.g. polyethylene, nylon, PA6 and others. The method is based on the centrifugal force to draw fiber from molten polymer, which allows tuning the diameter of the fiber from tens of nanometers up to micrometers. Wide range of diameters makes the forcespun polymer mat an excellent material to filter bacteria from fluids (e.g. blood plasma, water). Covering the mat with Au:Ag alloy turns it into a SERS platform able to immobilize, detect, and identify bacteria. We provide proof-of-concept, showing detection of S. aureus, P. aeruginosa, and S. Typhimurium from blood plasma.
Collapse
Affiliation(s)
- Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
35
|
Kukkar M, Sharma A, Kumar P, Kim KH, Deep A. Application of MoS 2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. Anal Chim Acta 2016; 939:101-107. [DOI: 10.1016/j.aca.2016.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
|
36
|
Kellici S, Acord J, Vaughn A, Power NP, Morgan DJ, Heil T, Facq SP, Lampronti GI. Calixarene Assisted Rapid Synthesis of Silver-Graphene Nanocomposites with Enhanced Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19038-46. [PMID: 27378104 DOI: 10.1021/acsami.6b06052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Demonstrated herein is a single rapid approach employed for synthesis of Ag-graphene nanocomposites, with excellent antibacterial properties and low cytotoxicity, by utilizing a continuous hydrothermal flow synthesis (CHFS) process in combination with p-hexasulfonic acid calix[6]arene (SCX6) as an effective particle stabilizer. The nanocomposites showed high activity against E. coli (Gram-negative) and S. aureus (Gram-positive) bacteria. The materials were characterized using a range of techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis spectrophotometry, FT-IR, and X-ray powder diffraction (XRD). This rapid, single step synthetic approach not only provides a facile means of enabling and controlling graphene reduction (under alkaline conditions) but also offers an optimal route for homogeneously producing and depositing highly crystalline Ag nanostructures into reduced graphene oxide substrate.
Collapse
Affiliation(s)
- Suela Kellici
- School of Engineering, London South Bank University , 103 Borough Road, London SE1 0AA, United Kingdom
| | - John Acord
- School of Applied Sciences, London South Bank University , 103 Borough Road, London SE1 0AA, United Kingdom
| | - Arni Vaughn
- School of Engineering, London South Bank University , 103 Borough Road, London SE1 0AA, United Kingdom
| | - Nicholas P Power
- School of Applied Sciences, London South Bank University , 103 Borough Road, London SE1 0AA, United Kingdom
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tobias Heil
- Nanoinvestigation Centre at Liverpool, Liverpool University , 1-3 Brownlow Street, Liverpool L69 3GL, United Kingdom
| | - Sébastien P Facq
- Department of Earth Sciences, University of Cambridge , Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Giulio I Lampronti
- Department of Earth Sciences, University of Cambridge , Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
37
|
Wang P, Pang S, Chen J, McLandsborough L, Nugen SR, Fan M, He L. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst 2016; 141:1356-62. [DOI: 10.1039/c5an02175h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination ofSalmonella entericaandEscherichia coli onsilver dendrites.
Collapse
Affiliation(s)
- Panxue Wang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
- College of Food Science and Engineering
| | - Shintaro Pang
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Juhong Chen
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | | | - Sam R. Nugen
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Mingtao Fan
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Lili He
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
38
|
Liao DS, Raveendran J, Golchi S, Docoslis A. Fast and sensitive detection of bacteria from a water droplet by means of electric field effects and micro-Raman spectroscopy. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Chen L, Mungroo N, Daikuara L, Neethirajan S. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnology 2015; 13:45. [PMID: 26108554 PMCID: PMC4479109 DOI: 10.1186/s12951-015-0106-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/17/2015] [Indexed: 12/02/2022] Open
Abstract
Background Rapid detection and discrimination of bacteria for biomedical and food safety applications remain a considerable challenge. We report a label-free near infrared surface-enhanced Raman scattering (NIR-SERS) method for the discrimination of pathogenic bacteria from drinking water. The approach relies on the in situ synthesis of silver nanoparticles (Ag NPs) within the bacterial cell suspensions. Results Pre-treatment of cells with Triton X-100 significantly improved the sensitivity of the assay. Using this method, we were able to discriminate several common pathogenic bacteria such as Escherichia coli, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA) and Listeria spp. A comparison of the SERS spectra allowed for the discrimination of two Listeria species, namely L. monocytogenes and L. innocua. We further report the application of the method to discriminate two MRSA strains from clinical isolates. The complete assay was completed in a span of 5 min. Conclusions The proposed analytical method proves to be a rapid tool for selective and label-free identification of pathogenic bacterium. Pre-treatment of bacterial cells with Triton X-100 resulted in new features on the SERS spectra, allowing for a successful discrimination of common disease related bacteria including E. coli, P. aeruginosa, Listeria and MRSA. We also demonstrate that the spectral features obtained using in situ synthesis of nanoparticles could be could be used to differentiate two species of listeria. By using L.innocua as a model sample, we found the limit of detection of our assay to be 103 CFU/mL. The method can selectively discriminate different bacterial species, and has a potential to be used in the development of point-of-care diagnostics with biomedical and food safety applications. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0106-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Longyan Chen
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, N1G 2W1 12, Canada.
| | - Nawfal Mungroo
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, N1G 2W1 12, Canada.
| | - Luciana Daikuara
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, N1G 2W1 12, Canada.
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, ON, N1G 2W1 12, Canada.
| |
Collapse
|
40
|
Ghosh K, Iqubal MA, Molla RA, Mishra A, Kamaluddin K, Islam SM. Direct oxidative esterification of alcohols and hydration of nitriles catalyzed by a reusable silver nanoparticle grafted onto mesoporous polymelamine formaldehyde (AgNPs@mPMF). Catal Sci Technol 2015. [DOI: 10.1039/c4cy01278j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative esterification and hydration of nitriles are catalyzed by a newly synthesized AgNPs@mPMF. The catalyst is well characterized and reusable.
Collapse
Affiliation(s)
- Kajari Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia
- India
| | | | | | | | | | | |
Collapse
|
41
|
Kaviya S, Prasad E. Biogenic synthesis of ZnO–Ag nano custard apples for efficient photocatalytic degradation of methylene blue by sunlight irradiation. RSC Adv 2015. [DOI: 10.1039/c4ra15293j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biosynthesized ZnO–Ag nano custard apple shows a better photocatalytic activity towards the degradation of methylene blue than commercial ZnO nanoparticles and TiO2 (P25).
Collapse
Affiliation(s)
- S. Kaviya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Edamana Prasad
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| |
Collapse
|
42
|
Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering. Int J Food Microbiol 2014; 189:89-97. [DOI: 10.1016/j.ijfoodmicro.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
|
43
|
Cheng IF, Chen TY, Lu RJ, Wu HW. Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy. NANOSCALE RESEARCH LETTERS 2014; 9:324. [PMID: 25024685 PMCID: PMC4085094 DOI: 10.1186/1556-276x-9-324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/19/2014] [Indexed: 05/24/2023]
Abstract
Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50- to 100-nm particles, the electrical field strength must be higher than 3 × 10(6) V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs to be reduced to submicrons. Our research consists of a novel and simple approach, using a several tens micrometers scale electrode (low cost and easy to fabricate) to generate a dielectrophoretic microparticle assembly to form nanogaps with a locally amplified alternating current (AC) electric field gradient, which is used to rapidly trap nanocolloids. The results show that the amplified DEP force could effectively trap 20-nm colloids in the nanogaps between the 5-μm particle aggregates. The concentration factor at the local detection region was shown to be approximately 5 orders of magnitude higher than the bulk solution. This approach was also successfully used in bead-based surface-enhanced Raman spectroscopy (SERS) for the rapid identification of bacteria from diluted blood.
Collapse
Affiliation(s)
- I-Fang Cheng
- National Nano Device Laboratories, National Applied Research Laboratories, Tainan 74147, Taiwan
| | - Tzu-Ying Chen
- National Nano Device Laboratories, National Applied Research Laboratories, Tainan 74147, Taiwan
| | - Rong-Ji Lu
- Department of Computer and Communication, Kun Shan University, Tainan 71003, Taiwan
| | - Hung-Wei Wu
- Department of Computer and Communication, Kun Shan University, Tainan 71003, Taiwan
| |
Collapse
|
44
|
Mircescu NE, Zhou H, Leopold N, Chiş V, Ivleva NP, Niessner R, Wieser A, Haisch C. Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens. Anal Bioanal Chem 2014; 406:3051-8. [DOI: 10.1007/s00216-014-7761-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
45
|
A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosens Bioelectron 2014; 53:519-27. [DOI: 10.1016/j.bios.2013.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
|
46
|
Nima ZA, Biswas A, Bayer IS, Hardcastle FD, Perry D, Ghosh A, Dervishi E, Biris AS. Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metab Rev 2014; 46:155-75. [PMID: 24467460 DOI: 10.3109/03602532.2013.873451] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review of the literature on surface-enhanced Raman scattering (SERS), we describe recent developments of this technique in the medical field. SERS has developed rapidly in the last few years as a result of the fascinating advancements in instrumentation and the ability to interpret complex Raman data using high-processional, computer-aided programs. This technique, has many advantages over ordinary spectroscopic analytical techniques - such as extremely high sensitivity, molecular selectivity, intense signal and great precision - that can be leveraged to address complex medical diagnostics problems. This review focuses on the SERS-active substrate, as well as major advances in cancer and bacteria detection and imaging. Finally, we present a perspective on anticipated future advancements in SERS techniques to address some of the most critical challenges in the areas of diagnostics, detection, and sensing.
Collapse
Affiliation(s)
- Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock , Little Rock, AR , USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ondera TJ, Hamme AT. Gold Nanopopcorn Attached Single-Walled Carbon Nanotube Hybrid for Rapid Detection and Killing of Bacteria. J Mater Chem B 2014; 2:7534-7543. [PMID: 25414794 DOI: 10.1039/c4tb01195c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report a strategy to fabricate a rapid and stable surface-enhanced Raman scattering (SERS)-based hybrid nanomaterial using gold nanopopcorns attached single-walled carbon nanotubes (AuNP@f3-SWCNTs) for label-free detection and photothermal killing of bacteria. Herein, previously ester-functionalized single-walled carbon nanotubes (f1-SWCNTs) undergo 1,3-dipolar cycloaddition reaction with in-situ generated nitrile imine under Microwave (MW) irradiation to form a doubly ester terminated SWCNTs cycloadduct (f2-SWCNTs). The ester terminals are further modified with 4-aminothiophenol (4-ATP) under MW-irradiation to form thiol-terminated SWCNTs templates (f3-SWCNTs) that allow gold nanopopcorns (AuNPs) to covalently and uniformly attach at a minimum inter-particle distance thus yielding a hybrid nanomaterial (AuNP@f3-SWCNT) with good aqueous stability and abundant 'hotspots'. Consequently, monoclonal E. coli antibody-conjugated bioassays fabricated with our AuNP@f3-SWCNT substrates (mAb-AuNP@f3-SWCNT) rapidly detect E. coli in water with good selectivity and impressive SERS sensitivity. The detection limit of E. coli 49979, selected as a model to establish proof of principle, was found to be 1.0×102 CFU/mL. Furthermore, the AuNP@f3-SWCNT hybrid nanomaterial offers impressive photothermal pathogen killing effects. The synergy-type enhancement effect arising from the inherent noble properties of the respective components of the hybrid nanomaterial indicate that our AuNP@f3-SWCNT has the potential for further application in multiplex detection in samples.
Collapse
Affiliation(s)
- Thomas J Ondera
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA
| | - Ashton T Hamme
- Department of Chemistry and Biochemistry, Jackson State University, 1400 J R Lynch street, Jackson, MS 39217, USA
| |
Collapse
|
48
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 849] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chernousova S, Epple M. Silber als antibakterielles Agens: Ion, Nanopartikel, Metall. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205923] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2012; 52:1636-53. [PMID: 23255416 DOI: 10.1002/anie.201205923] [Citation(s) in RCA: 1324] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/22/2012] [Indexed: 12/12/2022]
Abstract
The antibacterial action of silver is utilized in numerous consumer products and medical devices. Metallic silver, silver salts, and also silver nanoparticles are used for this purpose. The state of research on the effect of silver on bacteria, cells, and higher organisms is summarized. It can be concluded that the therapeutic window for silver is narrower than often assumed. However, the risks for humans and the environment are probably limited.
Collapse
Affiliation(s)
- Svitlana Chernousova
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| | | |
Collapse
|