Martín-Llorente B, Fernández-Torre D, Escribano R. Theoretical study on hydrogen-bond effects in IR spectra of high- and low-temperature phases of nitric acid dihydrate.
Chemphyschem 2009;
10:3229-38. [PMID:
19852014 DOI:
10.1002/cphc.200900446]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The low- and high-temperature phases (alpha and beta, respectively) of solid nitric acid dihydrate (NAD) are studied in depth by DFT methods. Each phase contains two types of complex structures (H(3)O(+)) x (H(2)O), designated A and B, with different hydrogen-bonding (HB) characteristics. The theoretical study reveals that type A complexes are weakly bound and could be described as (H(3)O)(+) and H(2)O aggregates, with decoupled vibrational modes, whereas in type B structures the proton is situated close to the centre of the O...O bond and induces strong vibrational coupling. The proton-transfer mode is predicted at quite different wavenumbers in each complex, which provides an important differentiating spectral feature, together with splitting of some bands in beta-NAD. Theoretical spectra are estimated by using two GGA parameterizations, namely, PBE and BLYP. The potential-energy surface for each type of HB in NAD is also studied, as is the spectral influence of displacement of the shared H atom along the O-O bond. The results are compared to literature infrared spectra recorded by different techniques, namely, transmission and reflection-absorption, with both normal and tilted incident radiation. This work provides a thorough assignment of the observed spectra, and predictions for some spectra not yet available. The usefulness of high-level theoretical calculations as performed herein to discriminate between two phases of a solid crystal is thus evidenced.
Collapse