1
|
Martinez-Fernandez L, Improta R. The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study. Photochem Photobiol 2024; 100:314-322. [PMID: 37409732 DOI: 10.1111/php.13832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+ ), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+ , the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Naples, Italy
| |
Collapse
|
2
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
3
|
Hoehn SJ, Krul SE, Pogharian MM, Mao E, Crespo-Hernández CE. Photochemical Stability of 5-Methylcytidine Relative to Cytidine: Photophysical Insight for mRNA Therapeutic Applications. J Phys Chem Lett 2023; 14:10856-10862. [PMID: 38032072 DOI: 10.1021/acs.jpclett.3c01606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
5-Methylcytidine (5mCyd) has recently been investigated with renewed interest in its utilization in mRNA therapeutics. However, its photostability following exposure to electromagnetic radiation has been overlooked. This Letter compares the photostability and excited-state dynamics of 5mCyd with those of the canonical RNA nucleoside, cytidine (Cyd), using steady-state and femtosecond transient absorption spectroscopy under physiologic conditions. 5mCyd is shown to have a 5-fold higher fluorescence yield and a 5-fold longer 1ππ* excited-state decay lifetime. Importantly, however, the excited-state population in 5mCyd decays primarily by internal conversion, with a photodegradation rate 3 times smaller than that in Cyd. In Cyd, the population of a 1nπ* state with a lifetime of ca. 45 ps is implicated in the formation 6-hydroxycytidine and other photoproducts.
Collapse
Affiliation(s)
- Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sarah E Krul
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael M Pogharian
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Erqian Mao
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
4
|
Zhao L, Geng X, Han G, Guo Y, Liu R, Chen J. Revealing the excited-state dynamics of cytidine and the role of excited-state proton transfer process. Phys Chem Chem Phys 2023; 25:32002-32009. [PMID: 37975722 DOI: 10.1039/d3cp03683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The high photostability of DNAs and RNAs is inextricably related to the photochemical and photophysical properties of their building blocks, nucleobases and nucleosides, which can dissipate the absorbed UV light energy in a harmless manner. The deactivation mechanism of the nucleosides, especially the decay pathways of cytidine (Cyd), has been a matter of intense debate. In the current study, we employ high-level electronic structure calculations combined with excited state non-adiabatic dynamic simulations to provide a clear picture of the excited state deactivation of Cyd in both gas phase and aqueous solution. In both environments, a barrierless decay path driven by the ring-puckering motion and a relaxation channel with a small energy barrier driven by the elongation motion of CO bond are assigned to <200 fs and sub-picosecond decay time component, respectively. The presence of ribose group has a subtle effect on the dynamic behavior of Cyd in gas phase as the ribose-to-base hydrogen/proton transfer process is energetically inaccessible with a sizable energy barrier of about 1.4 eV. However, this energy barrier is significantly reduced in water, especially when an explicit water molecule is present. Therefore, we argue that the long-lived decay channel found in aqueous solution could be assigned to the Cyd-water intermolecular hydrogen/proton transfer process. The present study postulates a novel scenario toward deep understanding the intrinsic photostability of DNAs and RNAs and provides solid evidence to disclose the long history debate of cytidine excited-state decay mechanism, especially for the assignment of experimentally observed time components.
Collapse
Affiliation(s)
- Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Xuehui Geng
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Guoxia Han
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yahui Guo
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266235, P. R. China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 KøbenhavnØ, Denmark.
| |
Collapse
|
5
|
Tichý O, Pederzoli M, Pittner J, Burda JV. Vertical Excitation Energies and Lifetimes of the Two Lowest Singlet Excited States of Cytosine, 5-Aza-cytosine, and the Triazine Family: Quantum Mechanics-Molecular Mechanics Studies. J Chem Theory Comput 2023; 19:1976-1985. [PMID: 36961980 PMCID: PMC10100535 DOI: 10.1021/acs.jctc.2c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
A swarm of semi-classical quantum mechanics/molecular mechanics molecular-dynamics simulations where OM2/MNDO is combined with the Gromacs program for consideration of explicit water is performed, solving the time-dependent Schrödinger equation in each step of the trajectories together with the Tully's fewest switches algorithm. Within this stochastic treatment, time dependent probabilities of the three lowest electronic states are determined. The fact that nucleobases are quickly deactivated is confirmed in the cytosine case where our best lifetime estimation is τ1=0.82 ps for the model with 100 water molecules with the SPCE force field and a time step of 0.1 fs. Lifetimes of the remaining molecules are visibly longer: 5-azacytosine, 2,4-diamino-1,3,5-triazine (DT), and 2,4,6-triamino-1,3,5-triazine (TT) molecules have an S1 → S0 de-excitation time of slightly above 10 ps. The lifetimes of the triazine family increases with the increasing number of exocyclic amino groups, that is, s-triazine < 2-amino-1,3,5-triazine < DT < TT. This can be explained by a higher mobility of the carbon-bonded hydrogen atoms in comparison with heavier amino groups since their movement is slowed down due to a substantially higher mass than hydrogen atoms, which can easier reach the out-of-plane positions required in the conical intersection structures. Moreover, bulkier NH2 ligands suffer due to greater friction caused by the surrounding water environment. These mechanical aspects caused a change in the explored lifetime dependences in comparison with our previous gas-phase study.
Collapse
Affiliation(s)
- Ondřej Tichý
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Jaroslav V Burda
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| |
Collapse
|
6
|
Miura Y, Yamamoto YI, Karashima S, Orimo N, Hara A, Fukuoka K, Ishiyama T, Suzuki T. Formation of Long-Lived Dark States during Electronic Relaxation of Pyrimidine Nucleobases Studied Using Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. J Am Chem Soc 2023; 145:3369-3381. [PMID: 36724068 DOI: 10.1021/jacs.2c09803] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ultrafast electronic relaxation of nucleobases from 1ππ* states to the ground state (S0) is considered essential for the photostability of DNA. However, transient absorption spectroscopy (TAS) has indicated that some nucleobases in aqueous solutions create long-lived 1nπ*/3ππ* dark states from the 1ππ* states with a high quantum yield of 0.4-0.5. We investigated electronic relaxation in pyrimidine nucleobases in both aqueous solutions and the gas phase using extreme ultraviolet (EUV) time-resolved photoelectron spectroscopy. Femtosecond EUV probe pulses cause ionization from all electronic states involved in the relaxation process, providing a clear overview of the electronic dynamics. The 1nπ* quantum yields for aqueous cytidine and uracil (Ura) derivatives were found to be considerably lower (<0.07) than previous estimates reported by TAS. On the other hand, aqueous thymine (Thy) and thymidine exhibited a longer 1ππ* lifetime and a higher quantum yield (0.12-0.22) for the 1nπ* state. A similar trend was found for isolated Thy and Ura in the gas phase: the 1ππ* lifetimes are 39 and 17 fs and the quantum yield for 1nπ* are 1.0 and 0.45 for Thy and Ura, respectively. The result indicates that single methylation to the C5 position hinders the out-of-plane deformation that drives the system to the conical intersection region between 1ππ* and S0, providing a large impact on the photophysics/photochemistry of a pyrimidine nucleobase. The significant reduction of 1nπ* yield in aqueous solution is ascribed to the destabilization of the 1nπ* state induced by hydrogen bonding.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Natsumi Orimo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Ayano Hara
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Kanae Fukuoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama930-8555, Japan
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto606-8502, Japan
| |
Collapse
|
7
|
Kufner CL, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Sequence dependent UV damage of complete pools of oligonucleotides. Sci Rep 2023; 13:2638. [PMID: 36788271 PMCID: PMC9929323 DOI: 10.1038/s41598-023-29833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.
Collapse
Affiliation(s)
- Corinna L. Kufner
- grid.38142.3c000000041936754XHarvard-Smithsonian Center for Astrophysics, Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 USA
| | - Stefan Krebs
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- grid.6936.a0000000123222966Chemistry Department, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- grid.5252.00000 0004 1936 973XBiomolecular Optics and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Oettingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
8
|
Martínez Fernández L, Santoro F, Improta R. Nucleic Acids as a Playground for the Computational Study of the Photophysics and Photochemistry of Multichromophore Assemblies. Acc Chem Res 2022; 55:2077-2087. [PMID: 35833758 DOI: 10.1021/acs.accounts.2c00256] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ConspectusThe interaction between light and multichromophoric assemblies (MCAs) is the primary event of many fundamental processes, from photosynthesis to organic photovoltaics, and it triggers dynamical processes that share remarkable similarities at the molecular scale: light absorption, energy and charge transfer, internal conversions, emission, and so on. Those events often involve many chromophores and different excited electronic states that are coupled on an ultrafast time scale. This Account aims to discuss some of the chemical physical effects ruling these processes, a fundamental step toward their control, based on our experience on nucleic acids.In the last 15 years, we have, indeed, studied the photophysics and photochemistry of DNA and its components. By combining different quantum mechanical methods, we investigated the molecular processes responsible for the damage of the genetic code or, on the contrary, those preventing it by dissipating the excess energy deposited in the system by UV absorption. Independently of its fundamental biological role, DNA, with its fluctuating closely stacked bases stabilized by weak nonbonding interactions, can be considered a prototypical MCA. Therefore, it allows one to tackle within a single system many of the conceptual and methodological challenges involved in the study of photoinduced processes in MCA.In this Account, by using the outcome of our studies on oligonucleotides as a guideline, we thus highlight the most critical modellistic issues to be faced when studying, either experimentally or computationally, the interaction between UV light and DNA and, at the same time, bring out their general relevance for the study of MCAs.We first discuss the rich photoactivated dynamics of nucleobases (the chromophores), highlighting the main effects modulating the interplay between their excited states and how the latter can affect the photoactivated dynamics of the polynucleotides, either providing effective monomer-like nonradiative decay routes or triggering reactive processes (e.g., triplet generation).We then tackle the reaction paths involving multiple bases, showing that in the DNA duplex the most important ones involve two stacked bases, forming a neutral excimer or a charge transfer (CT) state, which exhibit different spectral signatures and photochemical reactivity. In particular, we analyze the factors affecting the dynamic equilibrium between the excimer and CT, such as the fluctuations of the backbone or the rearrangement of the solvent.Next, we highlight the importance of the effects not directly connected to the chromophores, such as the flexibility of the backbone or the solvent effect. The former, affecting the stacking geometry of the bases, can determine the preference between different deactivation paths. The latter is particularly influential for CT states, making very important an accurate treatment of dynamical solvation effects, involving both the solvent bulk and specific solute-solvent interactions.In the last section, we describe the main methodological challenges related to the study of polynucleotide excited states and stress the benefits derived by the integration of complementary approaches, both computational and experimental. Only exploiting different point of views, in our opinion, it is possible to shed light on the complex phenomena triggered by light absorption in DNA, as in every MCA.
Collapse
Affiliation(s)
- Lara Martínez Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
9
|
Ventura E, Andrade do Monte S, T. do Casal M, Pinheiro M, Toldo JM, Barbatti M. Modeling the heating and cooling of a chromophore after photoexcitation. Phys Chem Chem Phys 2022; 24:9403-9410. [PMID: 35385568 PMCID: PMC9020442 DOI: 10.1039/d2cp00686c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heating of a chromophore due to internal conversion and its cooling down due to energy dissipation to the solvent are crucial phenomena to characterize molecular photoprocesses. In this work, we simulated the ab initio nonadiabatic dynamics of cytosine, a prototypical chromophore undergoing ultrafast internal conversion, in three solvents—argon matrix, benzene, and water—spanning an extensive range of interactions. We implemented an analytical energy-transfer model to analyze these data and extract heating and cooling times. The model accounts for nonadiabatic effects, and excited- and ground-state energy transfer, and can analyze data from any dataset containing kinetic energy as a function of time. Cytosine heats up in the subpicosecond scale and cools down within 25, 4, and 1.3 ps in argon, benzene, and water, respectively. The time constants reveal that a significant fraction of the benzene and water heating occurs while cytosine is still electronically excited. An analytical energy-transfer model is implemented to obtain a chromophore's heating and cooling times in a given solvent by using quantities available in nonadiabatic dynamics simulations.![]()
Collapse
Affiliation(s)
- Elizete Ventura
- Universidade Federal da Paraíba, 58059-900, João Pessoa-PB, Brazil
| | | | | | - Max Pinheiro
- Aix Marseille University, CNRS, ICR, Marseille, France
| | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
10
|
Green JA, Yaghoubi Jouybari M, Asha H, Santoro F, Improta R. Fragment Diabatization Linear Vibronic Coupling Model for Quantum Dynamics of Multichromophoric Systems: Population of the Charge-Transfer State in the Photoexcited Guanine-Cytosine Pair. J Chem Theory Comput 2021; 17:4660-4674. [PMID: 34270258 DOI: 10.1021/acs.jctc.1c00416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a linear vibronic coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intrachromophore decays, like those at conical intersections, and interchromophore processes, like exciton localization/delocalization and the involvement of charge-transfer (CT) states. We used FrD-LVC parametrized with time-dependent density functional theory (TD-DFT) calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a guanine-cytosine (GC) hydrogen-bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all of the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G → C CT state, which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ∼50% of that on C decay to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show that it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| | - Martha Yaghoubi Jouybari
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Consiglio Nazionale delle Ricerche, SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Haritha Asha
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Consiglio Nazionale delle Ricerche, SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini (IBB-CNR), Consiglio Nazionale delle Ricerche, via Mezzocannone 16, I-80136 Napoli, Italy
| |
Collapse
|
11
|
Wang X, Martínez-Fernández L, Zhang Y, Zhang K, Improta R, Kohler B, Xu J, Chen J. Solvent-Dependent Stabilization of a Charge Transfer State is the Key to Ultrafast Triplet State Formation in an Epigenetic DNA Nucleoside. Chemistry 2021; 27:10932-10940. [PMID: 33860588 DOI: 10.1002/chem.202100787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/10/2022]
Abstract
2'-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1 nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049, Madrid, Spain
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Kun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
12
|
Yaghoubi Jouybari M, Liu Y, Improta R, Santoro F. Ultrafast Dynamics of the Two Lowest Bright Excited States of Cytosine and 1-Methylcytosine: A Quantum Dynamical Study. J Chem Theory Comput 2020; 16:5792-5808. [PMID: 32687360 DOI: 10.1021/acs.jctc.0c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nonadiabatic quantum dynamics (QD) of cytosine and 1-methylcytosine in the gas phase is simulated for 250 fs after a photoexcitation to one of the first two bright states. The nuclear wavepacket is propagated on the coupled diabatic potential energy surfaces of the lowest seven excited states, including ππ*, nπ*, and Rydberg states along all the vibrational degrees of freedom. We focus in particular on the interplay between the bright and the dark nπ* states, not considering the decay to the ground electronic state. To run these simulations, we implemented an automatic general procedure to parametrize linear vibronic coupling (LVC) models with time-dependent density functional theory (DFT) computations and interfaced it with Gaussian package. The wavepacket was propagated with the multilayer version of the multiconfigurational time dependent Hartree method. Two different density functionals, PBE0 and CAM-B3LYP, which provide a different description of the relative stability of the lowest energy dark states, were used to parametrize the LVC Hamiltonian. Part of the photoexcited population on lowest HOMO-LUMO transition (πHπL*) decays within less than 100 fs to a nπ* state which mainly involves a promotion of an electron from the oxygen lone pair to the LUMO (nOπL*). The population of the second ππ* state decays almost completely, in <100 fs, not only to πHπL* and to nOπL* states but also to another nπL* state involving the nitrogen lone pair. The efficiency of the adopted protocol allowed us to check the accuracy of the predictions by repeating the QD simulations with different LVC Hamiltonians parametrized either at the ground-state minimum or at stationary structures of different relevant excited states.
Collapse
Affiliation(s)
- Martha Yaghoubi Jouybari
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
13
|
Green JA, Improta R. Vibrations of the guanine-cytosine pair in chloroform: an anharmonic computational study. Phys Chem Chem Phys 2020; 22:5509-5522. [PMID: 32104818 DOI: 10.1039/c9cp06373k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We compute at the anharmonic level the vibrational spectra of the Watson-Crick dimer formed by guanosine (G) and cytidine (C) in chloroform, together with those of G, C and the most populated GG dimer. The spectra for deuterated and partially deuterated GC are also computed. We use DFT calculations, with B3LYP and CAM-B3LYP as reference functionals. Solvent effects from chloroform are included via the Polarizable Continuum Model (PCM), and by performing tests on models including up two chloroform molecules. Both B3LYP and CAM-B3LYP calculations reproduce the shape of the experimental spectra well in the fingerprint region (1500-1700 cm-1) and in the N-H stretching region (2800-3600 cm-1), with B3LYP providing better quantitative agreement with experiments. According to our calculations, the N-H amido streching mode of G falls at ∼2900 cm-1, while the N-H amino of G and C falls at ∼3100 cm-1 when hydrogen-bonded, or ∼3500 cm-1 when free. Overtone and combination bands strongly contribute to the absorption band at ∼3300 cm-1. Inclusion of bulk solvent effects significantly increases the accuracy of the computed spectra, while solute-solvent interactions have a smaller, though still noticeable, effect. Some key aspects of the anharmonic treatment of strongly vibrationally coupled supermolecular systems and the related methodological issues are also discussed.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
14
|
Pepino AJ, Segarra-Martí J, Nenov A, Rivalta I, Improta R, Garavelli M. UV-induced long-lived decays in solvated pyrimidine nucleosides resolved at the MS-CASPT2/MM level. Phys Chem Chem Phys 2018; 20:6877-6890. [PMID: 29459916 DOI: 10.1039/c7cp08235e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most relevant 'dark' electronic excited states in DNA/RNA pyrimidine nucleosides are mapped in water employing hybrid MS-CASPT2/MM optimisations with explicit solvation and including the sugar. Conical intersections (CIs) between initially accessed bright 1ππ* and the lowest energy dark 1nπ* excited states, involving the lone pair localised on the oxygen and/or nitrogen atoms are characterised. They are found in the vicinities of the Franck-Condon (FC) region and are shown to facilitate non-adiabatic population transfer. The excited state population of the 1nOπ* state, localised in the carbonyl moiety on all pyrimidine nucleosides, is predicted to rapidly evolve to its minimum, displaying non-negligible potential energy barriers along its non-radiative decay, and accounting for the ps signal registered in pump-probe experiments as well as for an efficient population of the triplet state. Cytidine displays an additional 1nNπ* state localised in the N3 atom and that leads to its excited state minimum displaying large potential energy barriers in the pathway connecting to the CI with the ground state. Sugar-to-base hydrogen/proton transfer processes are assessed in solution for the first time, displaying a sizable barrier along its decay and thus being competitive with other slow decay channels in the ps and ns timescales. A unified deactivation scheme for the long-lived channels of pyrimidine nucleosides is delivered, where the 1nOπ* state is found to mediate the long-lived decay in the singlet manifold and act as the doorway for triplet population and thus accounting for the recorded phosphorescence and, more generally, for the transient/photoelectron spectral signals registered up to the ns timescale.
Collapse
Affiliation(s)
- Ana Julieta Pepino
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Ashwood B, Pollum M, Crespo-Hernández CE. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem Photobiol 2018; 95:33-58. [PMID: 29978490 DOI: 10.1111/php.12975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-substituted nucleobases (a.k.a., thiobases) are among the world's leading prescriptions for chemotherapy and immunosuppression. Long-term treatment with azathioprine, 6-mercaptopurine and 6-thioguanine has been correlated with the photoinduced formation of carcinomas. Establishing an in-depth understanding of the photochemical properties of these prodrugs may provide a route to overcoming these carcinogenic side effects, or, alternatively, a basis for developing effective compounds for targeted phototherapy. In this review, a broad examination is undertaken, surveying the basic photochemical properties and excited-state dynamics of sulfur-substituted analogs of the canonical DNA and RNA nucleobases. A molecular-level understanding of how sulfur substitution so remarkably perturbs the photochemical properties of the nucleobases is presented by combining experimental results with quantum-chemical calculations. Structure-property relationships demonstrate the impact of site-specific sulfur substitution on the photochemical properties, particularly on the population of the reactive triplet state. The value of fundamental photochemical investigations for driving the development of ultraviolet-A chemotherapeutics is showcased. The most promising photodynamic agents identified thus far have been investigated in various carcinoma cell lines and shown to decrease cell proliferation upon exposure to ultraviolet-A radiation. Overarching principles have been elucidated for the impact that sulfur substitution of the carbonyl oxygen has on the photochemical properties of the nucleobases.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
16
|
Röttger K, Marroux HJB, Böhnke H, Morris DTJ, Voice AT, Temps F, Roberts GM, Orr-Ewing AJ. Probing the excited state relaxation dynamics of pyrimidine nucleosides in chloroform solution. Faraday Discuss 2018; 194:683-708. [PMID: 27711889 DOI: 10.1039/c6fd00068a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ultrafast transient electronic and vibrational absorption spectroscopy (TEAS and TVAS) of 2'-deoxy-cytidine (dC) and 2'-deoxy-thymidine (dT) dissolved in chloroform examines their excited-state dynamics and the recovery of ground electronic state molecules following absorption of ultraviolet light. The chloroform serves as a weakly interacting solvent, allowing comparisons to be drawn with prior experimental studies of the photodynamics of these nucleosides in the gas phase and in polar solvents such as water. The pyrimidine base nucleosides have some propensity to dimerize in aprotic solvents, but the monomer photochemistry can be resolved clearly and is the focus of this study. UV absorption at a wavelength of 260 nm excites a 1ππ* ← S0 transition, but prompt crossing of a significant fraction (50% in dC, 17% in dT) of the 1ππ* population into a nearby 1nπ* state is too fast for the experiments to resolve. The remaining flux on the 1ππ* state leaves the vertical Franck-Condon region and encounters a conical intersection with the ground electronic state of ethylenic twist character. In dC, the 1ππ* state decays to the ground state with a time constant of 1.1 ± 0.1 ps. The lifetime of the 1nπ* state is much longer in the canonical forms of both molecules: recovery of the ground state population from these states occurs with time constants of 18.6 ± 1.1 ps in amino-oxo dC and ∼114 ps in dT, indicating potential energy barriers to the 1nπ*/S0 conical intersections. The small fraction of the imino-oxo tautomer of dC present in solution has a longer-lived 1nπ* state with a lifetime for ground state recovery of 193 ± 55 ps. No evidence is found for photo-induced tautomerization of amino-oxo dC to the imino-oxo form, or for population of low lying triplet states of this nucleoside. In contrast, ∼8% of the UV-excited dT molecules access the long-lived T1 (3ππ*) state through the 1nπ* state. The primary influence of the solvent appears to be the degree to which it destabilizes the states of 1nπ* character, with consequences for the lifetimes of these states as well as the triplet state yields.
Collapse
Affiliation(s)
- Katharina Röttger
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK. and Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Hugo J B Marroux
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Hendrik Böhnke
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Angus T Voice
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Friedrich Temps
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Gareth M Roberts
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
17
|
Wang X, Zhou Z, Tang Y, Chen J, Zhong D, Jianhua Xu. Excited State Decay Pathways of 2'-Deoxy-5-methylcytidine and Deoxycytidine Revisited in Solution: A Comprehensive Kinetic Study by Femtosecond Transient Absorption. J Phys Chem B 2018; 122:7027-7037. [PMID: 29939745 DOI: 10.1021/acs.jpcb.8b00927] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylated cytosine is proved to have an important role as an epigenetic signal in gene regulation and is often referred to "the fifth base of DNA". A comprehensive understanding of the electronic excited state relaxation in cytosine and its methylated derivatives is crucial for revealing UV-induced photodamage to the biological genome. Because of the existence of multiple closely lying "bright" and "dark" excited states, the decay pathways in these DNA nucleosides are the most complex and the least understood so far. In this study, femtosecond transient absorption with different excitation wavelengths (240-296 nm) was used to study the relaxation of excited electronic states of 5-methylcytosine (5mC) and 2'-deoxy-5-methylcytidine (5mdCyd) in phosphate buffered aqueous solution and in acetonitrile solution. Two distinct nonradiative decay channels were directly observed. The first one is a several picosecond internal conversion channel that involves two bright ππ* states (ππ*2 and ππ*1) when ππ*2 state is initially populated. The second channel contains the lower energy ππ*1 state and a so far experimental unidentified long-lived state which exhibits a several nanosecond lifetime. The long-lived state can only be accessed by the initially excited ππ*1 state. Inspired by this new discovery in 5mC and 5mdCyd, we revisited the decay of excited state of 2'-deoxycytidine (dCyd), revealing very similar decay pathways. Additionally, a well-known dark nOπ* state (carbonyl lone pair) with ∼30 ps lifetime is present in both decay channels in dCyd. With our detailed experimental results, we successfully reconcile the long history debate of cytosine excited state relaxation mechanism by pointing out that the reason for the complex dynamics under traditional 266 nm excitation is mixed signals from the above-mentioned two distinct decay pathways. Our findings lead to a dramatically different and new picture of electronic energy relaxation in 5mdCyd/dCyd and could help to understand photostability as well as UV-induced photodamage of these nucleotides and related DNAs.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Yuankai Tang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai , 200062 China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
18
|
Keane PM, Kelly JM. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Martínez-Fernández L, Pepino AJ, Segarra-Martí J, Jovaišaitė J, Vaya I, Nenov A, Markovitsi D, Gustavsson T, Banyasz A, Garavelli M, Improta R. Photophysics of Deoxycytidine and 5-Methyldeoxycytidine in Solution: A Comprehensive Picture by Quantum Mechanical Calculations and Femtosecond Fluorescence Spectroscopy. J Am Chem Soc 2017; 139:7780-7791. [DOI: 10.1021/jacs.7b01145] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L. Martínez-Fernández
- Istituto di Biostrutture e Bioimmagini,
CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - A. J. Pepino
- Dipartimento di Chimica Industriale “T. Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - J. Segarra-Martí
- Laboratoire de Chimie UMR 5182, Univ Lyon, ENS de Lyon, CNRS, Université Lyon 1, F-69342 Lyon, France
| | - J. Jovaišaitė
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - I. Vaya
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - A. Nenov
- Dipartimento di Chimica Industriale “T. Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - D. Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - T. Gustavsson
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - A. Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - M. Garavelli
- Dipartimento di Chimica Industriale “T. Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - R. Improta
- Istituto di Biostrutture e Bioimmagini,
CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
- LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Lee J, Challa JR, McCamant DW. Ultraviolet Light Makes dGMP Floppy: Femtosecond Stimulated Raman Spectroscopy of 2'-Deoxyguanosine 5'-Monophosphate. J Phys Chem B 2017; 121:4722-4732. [PMID: 28412810 DOI: 10.1021/acs.jpcb.7b01694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast dynamics of 2'-deoxyguanosine 5'-monophosphate after excitation with ultraviolet light has been studied with femtosecond transient absorption (TA) and femtosecond stimulated Raman spectroscopy (FSRS). TA kinetics and transient anisotropy spectra reveal a rapid relaxation from the Franck-Condon region, producing an extremely red-shifted stimulated emission band at ∼440 nm that is formed after 200 fs and subsequent relaxation for 0.8-1.5 ps, consistent with prior studies. Viscosity dependence shows that the initial relaxation, before 0.5 ps, is the same in water or viscous glycerol/water mixtures, but after 0.5 ps the dynamics significantly slow down in a viscous solution. This indicates that large amplitude structural changes occur after 0.5 ps following photoexcitation. FSRS obtained with both 480 and 600 nm Raman pump pulses observe very broad Raman peaks at 509 and 1530 cm-1, as well as a narrower peak at 1179 cm-1. All of the Raman peaks decay with 0.7-1.3 ps time constants. The 1530 cm-1 peak also shows an increasing inhomogeneous linewidth over the first 0.3 ps. Our TA and FSRS data are consistent with a structurally inhomogeneous population in the S1 (La) state and, in particular, with previous theoretical models in which out-of-plane distortion at C2 and the amine move the molecule toward a conical intersection with the ground state. These FSRS data are the first to directly observe the structural inhomogeneity imparted upon the excited-state population by the broad, flat potential energy surface of the S1 (La) state.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - J Reddy Challa
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - David W McCamant
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| |
Collapse
|
21
|
Szabla R, Kruse H, Šponer J, Góra RW. Water–chromophore electron transfer determines the photochemistry of cytosine and cytidine. Phys Chem Chem Phys 2017; 19:17531-17537. [DOI: 10.1039/c7cp02635h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Irradiation of aqueous cytidine may result in a water–chromophore electron transfer process which explains numerous experimental observations, including photodamage.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Physics
- Polish Academy of Sciences
- PL-02668 Warsaw
- Poland
- Institute of Biophysics
| | - Holger Kruse
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- 61265, Brno
- Czech Republic
| | - Jiří Šponer
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- 61265, Brno
- Czech Republic
| | - Robert W. Góra
- Department of Physical and Quantum Chemistry
- Wroclaw University of Science and Technology
- 50-370 Wrocław
- Poland
| |
Collapse
|
22
|
Segarra-Martí J, Francés-Monerris A, Roca-Sanjuán D, Merchán M. Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules 2016; 21:molecules21121666. [PMID: 27918489 PMCID: PMC6274573 DOI: 10.3390/molecules21121666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022] Open
Abstract
The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess the accuracy of these different computational strategies under study based on a variety of numerical thresholds and optimization methods. Several basis sets and active spaces have also been calibrated to understand to what extent they can influence the resulting geometries and subsequent interpretation of the photochemical decay channels. The study shows small discrepancies between CASSCF and CASPT2 PEHs, displaying a shallow planar or twisted 1(ππ*) minimum, respectively, and thus featuring a qualitatively similar scenario for supporting the ultrafast bi-exponential deactivation registered in thymine upon UV-light exposure. A deeper knowledge of the PEHs at different levels of theory provides useful insight into its correct characterization and subsequent interpretation of the experimental observations. The discrepancies displayed by the different methods studied here are then discussed and framed within their potential consequences in on-the-fly non-adiabatic molecular dynamics simulations, where qualitatively diverse outcomes are expected.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
- Present Address: Laboratoire de Chimie UMR 5182, École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.
| | - Antonio Francés-Monerris
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| | - Manuela Merchán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, ES-46071 Valencia, Spain.
| |
Collapse
|
23
|
Zhang Y, Li XB, Fleming AM, Dood J, Beckstead AA, Orendt AM, Burrows CJ, Kohler B. UV-Induced Proton-Coupled Electron Transfer in Cyclic DNA Miniduplexes. J Am Chem Soc 2016; 138:7395-401. [DOI: 10.1021/jacs.6b03216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuyuan Zhang
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Xi-Bo Li
- Department
of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Aaron M. Fleming
- Department
of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Jordan Dood
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Ashley A. Beckstead
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Anita M. Orendt
- Department
of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
- Center
for High Performance Computing, University of Utah, Salt Lake City, Utah 84112-0190, United States
| | - Cynthia J. Burrows
- Department
of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112, United States
| | - Bern Kohler
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
24
|
Ma C, Cheng CCW, Chan CTL, Chan RCT, Kwok WM. Remarkable effects of solvent and substitution on the photo-dynamics of cytosine: a femtosecond broadband time-resolved fluorescence and transient absorption study. Phys Chem Chem Phys 2016; 17:19045-57. [PMID: 26126728 DOI: 10.1039/c5cp02624e] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytosine (Cyt) among all the nucleic acid bases features the most complex and least understood nonradiative deactivation, a process that is crucially important for its photostability. Herein, the excited state dynamics of Cyt and a series of its N1- and C5-derivatives, including the full set of Cyt nucleosides and nucleotides in DNA and RNA and the nucleosides of 5-methyl cytosine, 5-methylcytidine and 2'-deoxy-5-methylcytidine, have been investigated in water and in methanol employing femtosecond broadband time-resolved fluorescence coupled with fs transient absorption spectroscopy. The results reveal remarkable state-specific effects of the substitution and solvent in tuning distinctively the timescales and pathways of the nonradiative decays. For Cyt and the N1-derivatives, the nonradiative deactivations occur in a common two-state process through three channels, two from the light-absorbing ππ* state with respectively the sub-picosecond (∼0.2 ps) and the picosecond (∼1.5 ps) time constant, and the third is due to an optically dark nπ* state with the lifetime ranging from several to hundreds of picoseconds depending on solvents and substitutions. Compared to Cyt, the presence of the ribose or deoxyribose moiety at the N1 position of N1-derivatives facilitates the formation of the nπ* at the sub-picosecond timescale and at the same time increases its lifetime by ∼4-6 times in both water and methanol. In sharp contrast, the existence of the methyl group at the C5 position of the C5-derivatives eliminates completely the sub-picosecond ππ* channel and the channel due to the nπ*, but on the other hand slows down the decay of the ππ* state which after relaxation exhibits a single time constant of ∼4.1 to ∼7.6 ps depending on solvents. Varying the solvent from water to methanol accelerates only slightly the decay of the ππ* state in all the compounds; while for Cyt and its N1-derivatives, this change of solvent also retards strongly the nπ* channel, prolongs its lifetime from such as ∼7.7 ps in water to ∼52 ps in methanol for Cyt and from ∼30 ps in water to ∼186 ps in methanol for deoxycytidine. The spectral signatures we obtained for the ππ* and the nπ* states allow unambiguous evidence for clarifying uncertainties in the excited states of Cyt and the derivatives. The results provide a unifying experimental characterization at an improved level of detail about the photophysics of Cyt and its analogues under biologically relevant conditions and may help in understanding the photostability as well as photo-damages of the bases and related DNAs.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzheng, Guangdong, P. R. China
| | | | | | | | | |
Collapse
|
25
|
Vayá I, Brazard J, Huix-Rotllant M, Thazhathveetil AK, Lewis FD, Gustavsson T, Burghardt I, Improta R, Markovitsi D. High-Energy Long-Lived Mixed Frenkel-Charge-Transfer Excitons: From Double Stranded (AT)n to Natural DNA. Chemistry 2016; 22:4904-14. [PMID: 26928984 DOI: 10.1002/chem.201504007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/07/2023]
Abstract
The electronic excited states populated upon absorption of UV photons by DNA are extensively studied in relation to the UV-induced damage to the genetic code. Here, we report a new unexpected relaxation pathway in adenine-thymine double-stranded structures (AT)n . Fluorescence measurements on (AT)n hairpins (six and ten base pairs) and duplexes (20 and 2000 base pairs) reveal the existence of an emission band peaking at approximately 320 nm and decaying on the nanosecond time scale. Time-dependent (TD)-DFT calculations, performed for two base pairs and exploring various relaxation pathways, allow the assignment of this emission band to excited states resulting from mixing between Frenkel excitons and adenine-to-thymine charge-transfer states. Emission from such high-energy long-lived mixed (HELM) states is in agreement with their fluorescence anisotropy (0.03), which is lower than that expected for π-π* states (≥0.1). An increase in the size of the system quenches π-π* fluorescence while enhancing HELM fluorescence. The latter process varies linearly with the hypochromism of the absorption spectra, both depending on the coupling between π-π* and charge-transfer states. Subsequently, we identify the common features between the HELM states of (AT)n structures with those reported previously for alternating (GC)n : high emission energy, low fluorescence anisotropy, nanosecond lifetimes, and sensitivity to conformational disorder. These features are also detected for calf thymus DNA in which HELM states could evolve toward reactive π-π* states, giving rise to delayed fluorescence.
Collapse
Affiliation(s)
- Ignacio Vayá
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Johanna Brazard
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Miquel Huix-Rotllant
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.,Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | | | - Frederick D Lewis
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA.
| | - Thomas Gustavsson
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Irene Burghardt
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche, Via mezzocannone 16, 80136, Napoli, Italy.
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Keane PM, Baptista FR, Gurung SP, Devereux SJ, Sazanovich IV, Towrie M, Brazier JA, Cardin CJ, Kelly JM, Quinn SJ. Long-Lived Excited-State Dynamics of i-Motif Structures Probed by Time-Resolved Infrared Spectroscopy. Chemphyschem 2016; 17:1281-7. [PMID: 26879336 DOI: 10.1002/cphc.201501183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 01/22/2023]
Abstract
UV-generated excited states of cytosine (C) nucleobases are precursors to mutagenic photoproduct formation. The i-motif formed from C-rich sequences is known to exhibit high yields of long-lived excited states following UV absorption. Here the excited states of several i-motif structures have been characterized following 267 nm laser excitation using time-resolved infrared spectroscopy (TRIR). All structures possess a long-lived excited state of ∼300 ps and notably in some cases decays greater than 1 ns are observed. These unusually long-lived lifetimes are attributed to the interdigitated DNA structure which prevents direct base stacking overlap.
Collapse
Affiliation(s)
- Páraic M Keane
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | - Sarah P Gurung
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
- Diamond Light Source, Harwell Science and Innovation campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Stephen J Devereux
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - John A Brazier
- Department of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - John M Kelly
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Susan J Quinn
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
27
|
Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1762-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Kowalewski M, Mukamel S. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function. J Chem Phys 2015; 143:044117. [DOI: 10.1063/1.4927475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Markus Kowalewski
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
29
|
Crespo-Hernández CE, Martínez-Fernández L, Rauer C, Reichardt C, Mai S, Pollum M, Marquetand P, González L, Corral I. Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives. J Am Chem Soc 2015; 137:4368-81. [PMID: 25763596 PMCID: PMC4410903 DOI: 10.1021/ja512536c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/20/2022]
Abstract
The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited (1)nπ* state. Following vibrational and conformational relaxation, the (1)nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the (1)nπ* state while simultaneously facilitating access to the (1)ππ*(La)/S0 conical intersection, such that population of the (1)nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position.
Collapse
Affiliation(s)
- Carlos E. Crespo-Hernández
- Department
of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Lara Martínez-Fernández
- Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Módulo 13, Cantoblanco, 28049 Madrid, Spain
| | - Clemens Rauer
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Str. 17, 1090 Vienna, Austria
| | - Christian Reichardt
- Department
of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Str. 17, 1090 Vienna, Austria
| | - Marvin Pollum
- Department
of Chemistry and Center for Chemical Dynamics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United
States
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger
Str. 17, 1090 Vienna, Austria
| | - Inés Corral
- Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Módulo 13, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
30
|
Szabla R, Campos J, Šponer JE, Šponer J, Góra RW, Sutherland JD. Excited-state hydrogen atom abstraction initiates the photochemistry of β-2'-deoxycytidine. Chem Sci 2015; 6:2035-2043. [PMID: 27182431 PMCID: PMC4866440 DOI: 10.1039/c4sc03761h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/07/2015] [Indexed: 11/21/2022] Open
Abstract
Understanding the effects of ultraviolet radiation on nucleotides in solution is an important step towards a comprehensive description of the photochemistry of nucleic acids and their constituents. Apart from having implications for mutagenesis and DNA photoprotection mechanisms, the photochemistry of cytidines is a central element in UV-assisted syntheses of pyrimidine nucleotides under prebiotically plausible conditions. In this contribution, we present UV-irradiation experiments of β-2'-deoxycytidine in aqueous solution involving H-D exchange followed by NMR spectroscopic analysis of the photoproducts. We further elucidate the outcome of these experiments by means of high-level quantum chemical calculations. In particular, we show that prolonged UV-irradiation of cytidine may lead to H-C1' hydrogen atom abstraction by the carbonyl oxygen atom of cytosine. This process may enable photoanomerisation and nucleobase loss, two previously unexplained photoreactions observed in pyrimidine nucleotides.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic.
| | - Jesús Campos
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic. ; CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiřĺ Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic. ; CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| |
Collapse
|
31
|
Bucher DB, Pilles BM, Pfaffeneder T, Carell T, Zinth W. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation. Chemphyschem 2014; 15:420-3. [PMID: 24382745 DOI: 10.1002/cphc.201300954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 11/08/2022]
Abstract
Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.
Collapse
Affiliation(s)
- Dominik B Bucher
- BioMolecular Optics and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München (Germany), Fax: (+49) 89-2180-9202; Center for Integrated Protein Science, Department für Chemie, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377 München (Germany)
| | | | | | | | | |
Collapse
|
32
|
Photochemistry of Nucleic Acid Bases and Their Thio- and Aza-Analogues in Solution. Top Curr Chem (Cham) 2014; 355:245-327. [DOI: 10.1007/128_2014_554] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Keane PM, Wojdyla M, Doorley GW, Kelly JM, Parker AW, Clark IP, Greetham GM, Towrie M, Magno LM, Quinn SJ. Long-lived excited states in i-motif DNA studied by picosecond time-resolved IR spectroscopy. Chem Commun (Camb) 2014; 50:2990-2. [DOI: 10.1039/c3cc46594b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Zhang Y, Dood J, Beckstead A, Chen J, Li XB, Burrows CJ, Lu Z, Matsika S, Kohler B. Ultrafast excited-state dynamics and vibrational cooling of 8-oxo-7,8-dihydro-2'-deoxyguanosine in D2O. J Phys Chem A 2013; 117:12851-7. [PMID: 24215180 DOI: 10.1021/jp4095529] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nguyen and Burrows recently demonstrated that UV-B irradiation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a signature product of oxidatively damaged DNA, can repair cyclobutane pyrimidine dimers in double-stranded DNA (J. Am. Chem. Soc. 2011, 133, 14586 - 14589). In order to test the hypothesis that repair occurs by photoinduced electron transfer, it is critical to determine basic photophysical parameters of 8-oxodG including the excited-state lifetime. Here, femtosecond transient absorption spectroscopy was used to study the ultrafast excited-state dynamics of 8-oxodG with excitation in the UV and probing at visible and mid-IR wavelengths. The excited-state lifetimes of both neutral and basic forms of 8-oxodG in D2O are reported for the first time by monitoring the disappearance of excited-state absorption at 570 nm. The lifetime of the first excited state of the neutral form is 0.9 ± 0.1 ps, or nearly twice as long as that of 2'-deoxyguanosine. The basic form of 8-oxodG exhibits a much longer excited-state lifetime of 43 ± 3 ps. Following ultrafast internal conversion by neutral 8-oxodG, a vibrationally hot ground state is created that dissipates its excess vibrational energy to the solvent on a time scale of 2.4 ± 0.4 ps. Femtosecond time-resolved IR experiments provide additional insights into excited-state dynamics and the vibrational relaxation of several modes in the fingerprint region.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nielsen JB, Thøgersen J, Jensen SK, Keiding SR. Photo protection of RNA building blocks: Adenosine 5′-monophosphate, cytidine 5′-monophosphate and cytosine. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Keane PM, Wojdyla M, Doorley GW, Kelly JM, Clark IP, Parker AW, Greetham GM, Towrie M, Magno LM, Quinn SJ. Ultrafast IR spectroscopy of polymeric cytosine nucleic acids reveal the long-lived species is due to a localised state. Phys Chem Chem Phys 2012; 14:6307-11. [PMID: 22358255 DOI: 10.1039/c2cp23774a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The decay pathways of UV-excited cytosine polymers are investigated using picosecond time-resolved infrared spectroscopy. Similar yields of a non-emissive (1)nπ* state are found in the single-stranded dC(30) polymer as in the dCMP monomer, but with a longer lifetime in the polymer (80 ps vs. 39 ps). A longer lifetime is also found in the d(CpC) dinucleotide. No evidence of excimer states is observed, suggesting that localised (1)nπ* excited states are the most significant intermediates present on the picosecond timescale.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry and Centre for Synthesis and Chemical Biology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Keane PM, Wojdyla M, Doorley GW, Watson GW, Clark IP, Greetham GM, Parker AW, Towrie M, Kelly JM, Quinn SJ. A comparative picosecond transient infrared study of 1-methylcytosine and 5'-dCMP that sheds further light on the excited states of cytosine derivatives. J Am Chem Soc 2011; 133:4212-5. [PMID: 21384855 DOI: 10.1021/ja1106089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of N1-substitution in controlling the deactivation processes in photoexcited cytosine derivatives has been explored using picosecond time-resolved IR spectroscopy. The simplest N1-substituted derivative, 1-methylcytosine, exhibits relaxation dynamics similar to the cytosine nucleobase and distinct from the biologically relevant nucleotide and nucleoside analogues, which have longer-lived excited-state intermediates. It is suggested that this is the case because the sugar group either facilitates access to the long-lived (1)n(O)π* state or retards its crossover to the ground state.
Collapse
Affiliation(s)
- Páraic M Keane
- School of Chemistry and Centre for Synthesis and Chemical Biology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B. DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 2009; 60:217-39. [PMID: 19012538 DOI: 10.1146/annurev.physchem.59.032607.093719] [Citation(s) in RCA: 609] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments. Here we review recent discoveries and controversies concerning the nature and dynamics of excited states in DNA model systems in solution. Nonradiative decay by single, solvated nucleotides occurs primarily on the subpicosecond timescale. Surprisingly, excess electronic energy relaxes one or two orders of magnitude more slowly in DNA oligo- and polynucleotides. Highly efficient nonradiative decay pathways guarantee that most excited states do not lead to deleterious reactions but instead relax back to the electronic ground state. Understanding how the spatial organization of the bases controls the relaxation of excess electronic energy in the double helix and in alternative structures is currently one of the most exciting challenges in the field.
Collapse
Affiliation(s)
- Chris T Middleton
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
39
|
Towrie M, Doorley GW, George MW, Parker AW, Quinn SJ, Kelly JM. ps-TRIR covers all the bases--recent advances in the use of transient IR for the detection of short-lived species in nucleic acids. Analyst 2009; 134:1265-73. [PMID: 19562188 DOI: 10.1039/b902108f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent developments of the picosecond transient absorption infrared technique and its ability to elucidate the nature and kinetic behaviour of transient species formed upon pulsed laser excitation of nucleic acids are described.
Collapse
Affiliation(s)
- Michael Towrie
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK OX11 0QX
| | | | | | | | | | | |
Collapse
|
40
|
McGovern DA, Doorley GW, Whelan AM, Parker AW, Towrie M, Kelly JM, Quinn SJ. A study of the pH dependence of electronically excited guanosine compounds by picosecond time-resolved infrared spectroscopy. Photochem Photobiol Sci 2009; 8:542-8. [PMID: 19337669 DOI: 10.1039/b817756b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of 5'-guanosine monophosphate (5'-GMP) and polyguanylic acid {poly(G)} in D(2)O solutions of varying pH have been studied using picosecond transient infrared absorption spectroscopy. Whereas in neutral or weakly alkaline solution only the vibrationally excited electronic ground state of 5'-GMP is observed, in acidic solution the relatively long-lived (229 +/- 20 ps) electronic excited state of protonated 5'-GMP, which possesses strong absorptions at 1517 and 1634 cm(-1), could be detected. The picosecond transient behaviour of polyguanylic acid in acidic solution is also very different from that of the polynucleotide in neutral solution due not only to the protonation of guanine moieties yielding the protonated excited state but because of the disruption of the guanine stacks which are present in the species in neutral solution.
Collapse
Affiliation(s)
- David A McGovern
- Centre for Chemical Synthesis and Chemical Biology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
41
|
Doorley GW, McGovern DA, George MW, Towrie M, Parker AW, Kelly JM, Quinn SJ. Picosecond transient infrared study of the ultrafast deactivation processes of electronically excited B-DNA and Z-DNA forms of [poly(dG-dC)]2. Angew Chem Int Ed Engl 2009; 48:123-7. [PMID: 19035369 DOI: 10.1002/anie.200803904] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gerard W Doorley
- School of Chemistry, Centre for Synthesis and Chemical Biology, Trinity College Dublin, Dublin 2 (Ireland)
| | | | | | | | | | | | | |
Collapse
|
42
|
Doorley G, McGovern D, George M, Towrie M, Parker A, Kelly J, Quinn S. Picosecond Transient Infrared Study of the Ultrafast Deactivation Processes of Electronically Excited B-DNA and Z-DNA Forms of [poly(dG-dC)]2. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
McGovern DA, Quinn S, Doorley GW, Whelan AM, Ronayne KL, Towrie M, Parker AW, Kelly JM. Picosecond infrared probing of the vibrational spectra of transients formed upon UV excitation of stacked G-tetrad structures. Chem Commun (Camb) 2007:5158-60. [PMID: 18060127 DOI: 10.1039/b711172j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of stacked G-tetrads in diverse systems, including concentrated solutions of 5'-guanosine monophosphate (5'-GMP), polyguanylic acid (poly(G)) and the G-rich oligodeoxynucleotide sequence characteristic of human telomeric DNA, are probed by ps-TRIR and compared to those of the monomeric 5'-GMP.
Collapse
Affiliation(s)
- David A McGovern
- School of Chemistry and Centre for Chemical Synthesis and Chemical Biology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|