1
|
Ponnan S, Rao DN, Naraharisetty SRG. Solvent Polarity Dependent Ultrafast Relaxation Kinetics of ADS800AT Dye. J Fluoresc 2024:10.1007/s10895-024-03932-1. [PMID: 39320629 DOI: 10.1007/s10895-024-03932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
This work investigated the photoexcitation and relaxation kinetics of the ADS800AT dye dissolved in different solvents using transient absorption spectroscopy (TAS) with a white-light continuum probe. The dye was dissolved in various solvents, including dichloromethane (DCM), 1,2-dichlorobenzene (DCB), ethanol, and methanol, to study their impact on the dye's characteristics. The linear absorption peak varied from 835 to 809 nm, depending on the polarity of the solvent, and the pump wavelength for TAS was chosen accordingly. We observed ground-state bleaching and excited-state absorption after exciting the dye with the pump pulse. Global analysis was performed using Glotaran software to fit exponential decay curve models, allowing us to determine the relaxation time of the excited molecule. The relaxation time varied from 198 ps to 508 ps across the different solvents, decreasing as the polarity of the solvent increased. Additionally, we could experimentally correlate the dye molecule's nonlinear properties with the solvent's polarity.
Collapse
Affiliation(s)
- Sajin Ponnan
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | - D Narayana Rao
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
2
|
Bubilaitis V, Abramavicius D. Signatures of exciton-exciton annihilation in 2DES spectra including up to six-wave mixing processes. J Chem Phys 2024; 161:104106. [PMID: 39248235 DOI: 10.1063/5.0223724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful spectroscopic tool that allows us to study the dynamics of excited states. Exciton-exciton annihilation is at least a fifth order process, which corresponds to intrachromophoric internal conversion from the double-excited high-energy chromophoric state into the single-excited state of the same chromophore. At high excitation intensities, this effect becomes apparent in standard 2DES and can be inspected via high order nK1⃗-nK2⃗+K3⃗ nonlinear processes. We calculate 2DES based on K1⃗-K2⃗+K3⃗ and 2K1⃗-2K2⃗+K3⃗ wave mixing processes to reveal exciton-exciton annihilation (EEA) induced exciton symmetry breaking, which occurs at high excitation intensities. We present the general theory that captures all these processes for bosonic and paulionic quasiparticles in a unified way and demonstrate that the NEEs can be easily utilized for highly nonlinear two-dimensional spectra calculations by employing phase cycling for separating various phase matching conditions. The approach predicts various excitonic third- to fifth-order features; however, due to high excitation intensities, contributions of different order processes become comparable and overlap, i.e., the signals no longer can be associated with well-defined order-to-the-field contributions. In addition, EEA leads to breaking of the exciton symmetries, thus enabling population of dark excitons. Such effects are due to the local nature of the EEA process.
Collapse
Affiliation(s)
- Vytautas Bubilaitis
- Institute of Chemical Physics, Physics Faculty, Vilnius University, Sauletekio ave. 9-III, Vilnius, Lithuania
| | - Darius Abramavicius
- Institute of Chemical Physics, Physics Faculty, Vilnius University, Sauletekio ave. 9-III, Vilnius, Lithuania
| |
Collapse
|
3
|
Perez-Castillo R, Freixas VM, Mukamel S, Martinez-Mesa A, Uranga-Piña L, Tretiak S, Gelin MF, Fernandez-Alberti S. Transient-absorption spectroscopy of dendrimers via nonadiabatic excited-state dynamics simulations. Chem Sci 2024; 15:13250-13261. [PMID: 39183915 PMCID: PMC11339953 DOI: 10.1039/d4sc01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink. Here, a model four-branched dendrimer with a pyrene core is theoretically studied using nonadiabatic molecular dynamics simulations. We evaluate excited-state photoinduced dynamics of the dendrimer, and demonstrate on-the-fly simulations of its transient absorption pump-probe (TA-PP) spectra. We show how the evolutions of the simulated TA-PP spectra monitor in real time photoinduced energy relaxation and redistribution, and provide a detailed microscopic picture of the relevant energy-transfer pathways. To the best of our knowledge, this is the first of this kind of on-the-fly atomistic simulation of TA-PP signals reported for a large molecular system.
Collapse
Affiliation(s)
- Royle Perez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Aliezer Martinez-Mesa
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Llinersy Uranga-Piña
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University Hangzhou 310018 China
| | | |
Collapse
|
4
|
Bolzonello L, van Hulst NF, Jakobsson A. Fisher information for smart sampling in time-domain spectroscopy. J Chem Phys 2024; 160:214110. [PMID: 38828816 DOI: 10.1063/5.0206838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Time-domain spectroscopy encompasses a wide range of techniques, such as Fourier-transform infrared, pump-probe, Fourier-transform Raman, and two-dimensional electronic spectroscopies. These methods enable various applications, such as molecule characterization, excited state dynamics studies, or spectral classification. Typically, these techniques rarely use sampling schemes that exploit the prior knowledge scientists typically have before the actual experiment. Indeed, not all sampling coordinates carry the same amount of information, and a careful selection of the sampling points may notably affect the resulting performance. In this work, we rationalize, with examples, the various advantages of using an optimal sampling scheme tailored to the specific experimental characteristics and/or expected results. We show that using a sampling scheme optimizing the Fisher information minimizes the variance of the desired parameters. This can greatly improve, for example, spectral classifications and multidimensional spectroscopy. We demonstrate how smart sampling may reduce the acquisition time of an experiment by one to two orders of magnitude, while still providing a similar level of information.
Collapse
Affiliation(s)
- Luca Bolzonello
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Niek F van Hulst
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Andreas Jakobsson
- Centre for Mathematical Sciences, Lund University, Lund SE-22100, Sweden
| |
Collapse
|
5
|
Fushitani M, Fujise H, Hishikawa A, You D, Saito S, Luo Y, Ueda K, Ibrahim H, Légaré F, Pratt ST, Eng-Johnsson P, Mauritsson J, Olofsson A, Peschel J, Simpson ER, Carpeggiani PA, Ertel D, Maroju PK, Moioli M, Sansone G, Shah R, Csizmadia T, Dumergue M, Nandiga Gopalakrishna H, Kühn S, Callegari C, Danailov M, Demidovich A, Raimondi L, Zangrando M, De Ninno G, Di Fraia M, Giannessi L, Plekan O, Rebernik Ribic P, Prince KC. Wave packet dynamics and control in excited states of molecular nitrogen. J Chem Phys 2024; 160:104203. [PMID: 38469909 DOI: 10.1063/5.0188182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.
Collapse
Affiliation(s)
- Mizuho Fushitani
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hikaru Fujise
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiyoshi Hishikawa
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yu Luo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Heide Ibrahim
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Francois Légaré
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | | - Anna Olofsson
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | | - Dominik Ertel
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Praveen Kumar Maroju
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Matteo Moioli
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Giuseppe Sansone
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Ronak Shah
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Tamás Csizmadia
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | - Mathieu Dumergue
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | - Sergei Kühn
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | | | | | | | - Marco Zangrando
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Giovanni De Ninno
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Luca Giannessi
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Primoz Rebernik Ribic
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Kevin C Prince
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| |
Collapse
|
6
|
Bäuml L, Rott F, Schnappinger T, de Vivie-Riedle R. Following the Nonadiabatic Ultrafast Dynamics of Uracil via Simulated X-ray Absorption Spectra. J Phys Chem A 2023; 127:9787-9796. [PMID: 37955656 DOI: 10.1021/acs.jpca.3c06509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The nucleobase uracil exhibits high photostability due to ultrafast relaxation processes mediated by conical intersections (CoIns), where the interplay between nuclear and electron dynamics becomes crucial. In our previous study, we observed seemingly long-lived traces of electronic coherence for the relaxation process through the S2/S1 CoIn by applying our ansatz for coupled nuclear and electron dynamics in molecules (NEMol). In this work, we theoretically investigate how time-dependent transient X-ray absorption spectroscopy can be used to observe this ultrafast dynamics. Therefore, we calculated X-ray absorption spectra (XAS) for the oxygen K-edge, using a multireference protocol in combination with NEMol dynamics. Thus, we have access to both the transient XAS based on the nuclear wavepacket dynamics and the modulation of the signals caused by the electronic coherence induced by the excitation process and the presence of a CoIn seam. In both cases, we were able to qualitatively predict its influence on the resulting XAS.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | - Florian Rott
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | | | |
Collapse
|
7
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Rai M, Deeg WE, Lu B, Brandmier K, Miller AM, Torchinsky DH. An oscillator-driven, time-resolved optical pump/NIR supercontinuum probe spectrometer. OPTICS LETTERS 2023; 48:570-573. [PMID: 36723533 DOI: 10.1364/ol.479061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
We present a novel, to the best of knowledge, time-resolved, optical pump/NIR supercontinuum probe spectrometer suitable for oscillators. A NIR supercontinuum probe spectrum (850-1250 nm) is generated in a photonic crystal fiber, dispersed across a digital micromirror device (DMD), and then raster scanned into a single element detector at a 5 Hz rate. Dual modulation of pump and probe beams at disparate frequencies permits simultaneous measurement of both the bare reflectance R and its photoinduced change ΔR through lock-in detection, allowing for continuously self-normalized measurement of ΔR/R. Example data are presented on a germanium wafer sample that demonstrate for signals of order ΔR/R ∼ 10-3, a 2.87 nm spectral resolution and ≲400 fs temporal resolution pre-recompression, and comparable sensitivity to standard time-resolved, amplifier-based pump-probe techniques.
Collapse
|
9
|
Singly Resonant Multiphoton Processes Involving Autoionizing States in the Be-like CIII Ion. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this paper, we investigate the applicability of different theories on the intensity-dependent ionization rate for C2+ atomic targets at different laser wavelengths (frequency) and at linear polarization. We use the analytical formulas and draw conclusions, from numerical comparison with the results from ab initio ‘two-state model’ R-matrix Floquet calculation, on their correct predictions of the ionization rate. The single-photon ionization has been studied in the vicinity of the 1s2 (2Po)2pns (1Po), n = 5–12 autoionizing resonances at non-perturbative laser intensity. The results obtained from Perelomov–Popov–Terent’ev and Ammosov–Delone–Krainov models are compared in a region away from resonance where the two-state model description is not as good. To quantify the deviation between theoretical models, we analyze the ratio between different data sets as functions of the Keldysh parameter. We conclude that the results obtained with the model of Perelemov–Popov–Terent’ev are the closest to the ab initio R-matrix Floquet calculation.
Collapse
|
10
|
Mishra D, Reino-González J, Obaid R, LaForge AC, Díaz-Tendero S, Martín F, Berrah N. Ultrafast molecular dynamics in ionized 1- and 2-propanol: from simple fragmentation to complex isomerization and roaming mechanisms. Phys Chem Chem Phys 2021; 24:433-443. [PMID: 34897321 DOI: 10.1039/d1cp04011a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump-probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers. In particular, the fragmentation channel of 2-propanol associated with the loss of CH3 shows possible evidence of methyl roaming. Moreover, the electronic structure of this roaming methyl fragment could be responsible for the enhanced ionization also observed for this channel. Finally, comparison with similar studies done on ethanol and acetonitrile helps establish a correlation between the length of the alkyl chain and the likelihood of hydrogen migration.
Collapse
Affiliation(s)
- Debadarshini Mishra
- Department of Physics, University of Connecticut, Storrs, Connecticut, 06269, USA.
| | - Juan Reino-González
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, EU, Spain
| | - Razib Obaid
- Department of Physics, University of Connecticut, Storrs, Connecticut, 06269, USA.
| | - Aaron C LaForge
- Department of Physics, University of Connecticut, Storrs, Connecticut, 06269, USA.
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, EU, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Institute for Advanced Research in Chemical Sciences(IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain
| | - Fernando Martín
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, EU, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, EU, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, EU, Spain
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut, 06269, USA.
| |
Collapse
|
11
|
Gelin MF, Huang X, Xie W, Chen L, Došlić NA, Domcke W. Ab Initio Surface-Hopping Simulation of Femtosecond Transient-Absorption Pump-Probe Signals of Nonadiabatic Excited-State Dynamics Using the Doorway-Window Representation. J Chem Theory Comput 2021; 17:2394-2408. [PMID: 33755464 DOI: 10.1021/acs.jctc.1c00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ab initio theoretical framework for the simulation of femtosecond time-resolved transient absorption (TA) pump-probe (PP) spectra with quasi-classical trajectories is presented. The simulations are based on the classical approximation to the doorway-window (DW) representation of third-order four-wave-mixing signals. The DW formula accounts for the finite duration and spectral shape of the pump and probe pulses. In the classical DW formalism, classical trajectories are stochastically sampled from a positive definite doorway distribution, and the signals are evaluated by averaging over a positive definite window distribution. Nonadiabatic excited-state dynamics is described by a stochastic surface-hopping algorithm. The method has been implemented for the pyrazine molecule with the second-order algebraic-diagrammatic construction (ADC(2)) ab initio electronic-structure method. The methodology is illustrated by ab initio simulations of the ground-state bleach, stimulated emission, and excited-state absorption contributions to the TA PP spectrum of gas-phase pyrazine.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| | - Nad A Došlić
- Department of Physical Chemistry, Ruder Boscovic Institute, HR-10000 Zagreb, Croatia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
12
|
Jonas A, Dammer K, Stiel H, Kanngiesser B, Sánchez-de-Armas R, Mantouvalou I. Transient Sub-nanosecond Soft X-ray NEXAFS Spectroscopy on Organic Thin Films. Anal Chem 2020; 92:15611-15615. [PMID: 33206514 DOI: 10.1021/acs.analchem.0c03845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate visible pump soft X-ray probe near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements at the carbon K edge on thin molecular films in the laboratory. This opens new opportunities through the use of laboratory equipment for chemical speciation. We investigate the metal-free porphyrin derivative tetra(tert-butyl)porphyrazine as an ideal model system to elucidate electronic properties of tetrapyrroles like chlorophyll or heme. In contrast to measurements in gas or liquid state, the investigation of thin films is of high interest in the field of optoelectronic and photovoltaic devices though challenging due to the low damage thresholds of the samples upon excitation. With a careful pre-characterization using optical techniques, successful measurements were performed using a NEXAFS spectrometer based on a laser-produced plasma source and reflection zone plates with a resolving power of 1000 and a time resolution of 0.5 ns. In combination with density functional theory calculations, first insights into a long-lived excitonic state are gained and discussed.
Collapse
Affiliation(s)
- Adrian Jonas
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Katharina Dammer
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Holger Stiel
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Birgit Kanngiesser
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | | | - Ioanna Mantouvalou
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| |
Collapse
|
13
|
de Wergifosse M, Grimme S. Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra. J Chem Phys 2019; 150:094112. [DOI: 10.1063/1.5080199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
14
|
Arp TB, Gabor NM. Multiple parameter dynamic photoresponse microscopy for data-intensive optoelectronic measurements of van der Waals heterostructures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023702. [PMID: 30831738 DOI: 10.1063/1.5085007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Quantum devices made from van der Waals (vdW) heterostructures of two dimensional (2D) materials may herald a new frontier in designer materials that exhibit novel electronic properties and unusual electronic phases. However, due to the complexity of layered atomic structures and the physics that emerges, experimental realization of devices with tailored physical properties will require comprehensive measurements across a large domain of material and device parameters. Such multi-parameter measurements require new strategies that combine data-intensive techniques-often applied in astronomy and high energy physics-with the experimental tools of solid state physics and materials science. We discuss the challenges of comprehensive experimental science and present a technique, called Multi-Parameter Dynamic Photoresponse Microscopy (MPDPM), which utilizes ultrafast lasers, diffraction limited scanning beam optics, and hardware automation to characterize the photoresponse of 2D heterostructures in a time efficient manner. Using comprehensive methods on vdW heterostructures results in large and complicated data sets; in the case of MPDPM, we measure a large set of images requiring advanced image analysis to extract the underlying physics. We discuss how to approach such data sets in general and in the specific case of a graphene-boron nitride-graphite heterostructure photocell.
Collapse
Affiliation(s)
- Trevor B Arp
- Quantum Materials Optoelectronics Laboratory, Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Nathaniel M Gabor
- Quantum Materials Optoelectronics Laboratory, Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
15
|
Oliveira EF, Shi J, Lavarda FC, Lüer L, Milián-Medina B, Gierschner J. Excited state absorption spectra of dissolved and aggregated distyrylbenzene: A TD-DFT state and vibronic analysis. J Chem Phys 2017; 147:034903. [DOI: 10.1063/1.4993216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eliezer Fernando Oliveira
- UNESP–Universidade Estadual Paulista, POSMAT–Graduate Program in Material Science and Technology, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru, SP, Brazil
| | - Junqing Shi
- Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Francisco Carlos Lavarda
- UNESP–Universidade Estadual Paulista, POSMAT–Graduate Program in Material Science and Technology, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru, SP, Brazil
- DF-FC, UNESP–Universidade Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, 17033-360 Bauru, SP, Brazil
| | - Larry Lüer
- Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Begoña Milián-Medina
- Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Avenida Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Johannes Gierschner
- Institute for Advanced Studies, IMDEA Nanoscience, C/ Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
17
|
Larsson K, Jonsson M, Borggren J, Kristensson E, Ehn A, Aldén M, Bood J. Single-shot photofragment imaging by structured illumination. OPTICS LETTERS 2015; 40:5019-5022. [PMID: 26512508 DOI: 10.1364/ol.40.005019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A laser method to suppress background interferences in pump-probe measurements is presented and demonstrated. The method is based on structured illumination, where the intensity profile of the pump beam is spatially modulated to make its induced photofragment signal distinguishable from that created solely by the probe beam. A spatial lock-in algorithm is then applied on the acquired data, extracting only those image components that are characterized by the encoded structure. The concept is demonstrated for imaging of OH photofragments in a laminar methane/air flame, where the signal from the OH photofragments produced by the pump beam is spatially overlapping with that from the naturally present OH radicals. The purpose was to perform for the first time, to the best of our knowledge, single-shot imaging of HO(2) in a flame. These results show an increase in signal-to-interference ratio of about 20 for single-shot data.
Collapse
|
18
|
Bruder L, Mudrich M, Stienkemeier F. Phase-modulated electronic wave packet interferometry reveals high resolution spectra of free Rb atoms and Rb*He molecules. Phys Chem Chem Phys 2015; 17:23877-85. [PMID: 26309123 DOI: 10.1039/c5cp03868e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase-modulated wave packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited 5Π3/2 and the high-lying electronic states 2(2)Π, 4(2)Δ, 6(2)Σ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.
Collapse
Affiliation(s)
- Lukas Bruder
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
19
|
Gelin MF, Tanimura Y, Domcke W. Simulation of femtosecond “double-slit” experiments for a chromophore in a dissipative environment. J Chem Phys 2013; 139:214302. [DOI: 10.1063/1.4832876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Arasaki Y, Takatsuka K. Pulse-Train Photoelectron Spectroscopy of Electronic and Nuclear Dynamics in Molecules. Chemphyschem 2013; 14:1387-96. [DOI: 10.1002/cphc.201201094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/06/2013] [Indexed: 11/06/2022]
|
21
|
Nuñez V, Upadhyayula S, Millare B, Larsen JM, Hadian A, Shin S, Vandrangi P, Gupta S, Xu H, Lin AP, Georgiev GY, Vullev VI. Microfluidic Space-Domain Time-Resolved Emission Spectroscopy of Terbium(III) and Europium(III) Chelates with Pyridine-2,6-Dicarboxylate. Anal Chem 2013; 85:4567-77. [DOI: 10.1021/ac400200x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vicente Nuñez
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Srigokul Upadhyayula
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
| | - Brent Millare
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Jillian M. Larsen
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Ali Hadian
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sanghoon Shin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Prashanthi Vandrangi
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Sharad Gupta
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Hong Xu
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Adam P. Lin
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Georgi Y. Georgiev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
| | - Valentine I. Vullev
- Department of Bioengineering
and Center for Bioengineering Research, University of California, Riverside, California 92521, United States
- Department of Biochemistry, University of California, Riverside, California 92521,
United States
- Department
of Chemistry, University of California,
Riverside, California 92521,
United States
| |
Collapse
|
22
|
Recent Developments in Experimental Techniques for Measuring Two Pulses Simultaneously. APPLIED SCIENCES-BASEL 2013. [DOI: 10.3390/app3010299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Silien C, Liu N, Hendaoui N, Tofail SAM, Peremans A. A framework for far-field infrared absorption microscopy beyond the diffraction limit. OPTICS EXPRESS 2012; 20:29694-29704. [PMID: 23388797 DOI: 10.1364/oe.20.029694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A framework is proposed for infrared (IR) absorption microscopy in the far-field with a spatial resolution below the diffraction limit. The sub-diffraction resolution is achieved by pumping a transient contrast in the population of a selected vibrational mode with IR pulses that exhibit alternating central minima and maxima, and by probing the corresponding absorbance at the same wavelength with adequately delayed Gaussian pulses. Simulations have been carried out on the basis of empirical parameters emulating patterned thin films of octadecyltrichlorosilane and a resolution of 250 nm was found when probing the CH₂ stretches at 3.5 μm with pump energies less than ten times the vibrational saturation threshold.
Collapse
Affiliation(s)
- Christophe Silien
- Department of Physics and Energy, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Lin CD, Xu J. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction. Phys Chem Chem Phys 2012; 14:13133-45. [DOI: 10.1039/c2cp41606a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Gomes ASP, Visscher L, Bolvin H, Saue T, Knecht S, Fleig T, Eliav E. The electronic structure of the triiodide ion from relativistic correlated calculations: A comparison of different methodologies. J Chem Phys 2010; 133:064305. [DOI: 10.1063/1.3474571] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|