1
|
Bourrez M, Gloaguen F. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bioelectrochemistry 2023; 153:108488. [PMID: 37329847 DOI: 10.1016/j.bioelechem.2023.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
The electrochemical reduction and protonation of [Fe2(adtH)(CO)6] (1, adtH = SCH2N(H)CH2S) and [Fe2(pdt)(CO)6] (2, pdt = SCH2CH2CH2S) in the presence of moderately strong acid in acetonitrile was investigated by cyclic voltammetry (CV), focusing on the catalysis of hydrogen evolution reaction (HER) by a {2e-,2H+} pathway. The turnover frequencies at zero overpotential (TOF0) of the N-protonated product 1(H)+ and 2 for the HER were estimated from simulations of the catalytic CV responses at low acid concentration using a simple ECEC mechanism (two electrochemical and chemical steps). This approach confirmed that 1(H)+ is clearly a better catalyst than 2, pointing to a possible role of the protonable and biologically relevant adtH ligand in the enhancement of the catalytic performances. Density functional theory (DFT) calculations further suggested that, owing to a strong structural rearrangement in the course of the catalytic cycle, the HER catalysis by 1(H)+ only involves the iron center adjacent to the amine group in adtH and not the two iron centers as in 2. Since terminal hydride species (FeFe-H) are known to more easily undergo protonolyse to H2 than their bridging hydride isomers (Fe-H-Fe), this may explain here the enhanced activity of 1(H)+ over 2 for the HER.
Collapse
Affiliation(s)
- Marc Bourrez
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France
| | - Frederic Gloaguen
- CNRS, Univ Brest, CEMCA UMR 6521, 6 av Le Gorgeu, F-29238 Brest, France.
| |
Collapse
|
2
|
Orton GR, Belazregue S, Cockcroft JK, Hartl F, Hogarth G. Biomimics of [FeFe]-hydrogenases with a pendant amine: Diphosphine complexes [Fe2(CO)4{µ-S(CH2)nS}{κ2-(Ph2PCH2)2NR}] (n = 2, 3; R = Me, Bn) towards H2 oxidation catalysts. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Realini F, Elleouet C, Pétillon F, Schollhammer P. Tri‐ and tetra‐substituted derivatives of [Fe2(CO)6(µ‐dithiolate)] as novel dinuclear platforms related to the H‐cluster of [FeFe]H2ases. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Almazahreh LR, Arrigoni F, Abul-Futouh H, El-khateeb M, Görls H, Elleouet C, Schollhammer P, Bertini L, De Gioia L, Rudolph M, Zampella G, Weigand W. Proton Shuttle Mediated by (SCH 2) 2P═O Moiety in [FeFe]-Hydrogenase Mimics: Electrochemical and DFT Studies. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laith R. Almazahreh
- ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH Arnstädter Straße 28, 99096 Erfurt, Germany
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Hassan Abul-Futouh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman 11733 Jordan
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Catherine Elleouet
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Philippe Schollhammer
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 CEDEX 3 Brest, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Manfred Rudolph
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
5
|
Investigations on the synthesis, characterization and electrochemical properties of [2FeNi] cluster complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Li A, Yang J, Lü S, Gui MS, Yan P, Gao F, Du LB, Yang Q, Li YL. Synthesis, characterization and electrochemical properties of diiron azadithiolate complexes Fe2[(μ-SCH2)2NCH2CCH](CO)5L (L = CO or monophosphines). Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hobballah A, Arrigoni F, Elleouet C, Greco C, Laurans M, Pétillon FY, Schollhammer P. Triiron clusters derived from dinuclear complexes related to the active site of [Fe–Fe] hydrogenases: steric effect of the dithiolate bridge on redox properties, a DFT analysis. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00006c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CV and DFT calculations reveal that electrochemical behaviours of triiron clusters [Fe3(CO)5(κ2-dppe)(μ-pdtR2)(μ-pdt)] depend on the nature of the dithiolate bridge.
Collapse
Affiliation(s)
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milan-Bicocca
- 20126 Milan
- Italy
| | | | - Claudio Greco
- Department of Earth and Environmental Sciences University of Milan-Bicocca
- Italy
| | - Maxime Laurans
- UMR CNRS 6521
- Université de Bretagne Occidentale
- Brest
- France
| | | | | |
Collapse
|
8
|
Arrigoni F, Elleouet C, Mele A, Pétillon FY, De Gioia L, Schollhammer P, Zampella G. Insights into the Two‐Electron Reductive Process of [FeFe]H
2
ase Biomimetics: Cyclic Voltammetry and DFT Investigation on Chelate Control of Redox Properties of [Fe
2
(CO)
4
(κ
2
‐Chelate)(μ‐Dithiolate)]. Chemistry 2020; 26:17536-17545. [DOI: 10.1002/chem.202003233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Catherine Elleouet
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Andrea Mele
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - François Y. Pétillon
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Luca De Gioia
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
9
|
Arrigoni F, Rizza F, Vertemara J, Breglia R, Greco C, Bertini L, Zampella G, De Gioia L. Rational Design of Fe 2 (μ-PR 2 ) 2 (L) 6 Coordination Compounds Featuring Tailored Potential Inversion. Chemphyschem 2020; 21:2279-2292. [PMID: 32815583 DOI: 10.1002/cphc.202000623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Indexed: 01/04/2023]
Abstract
It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i. e. with second reduction easier than the first. With the aim of revealing key factors to tailor the span between first and second redox potentials, we performed a systematic density functional study of a 26-molecule set of models with the general formula Fe2 (μ-PR2 )2 (L)6 . It turned out that specific features such as i) a Fe-Fe antibonding character of the LUMO, ii) presence of electron-donor groups and iii) low steric congestion in the Fe's coordination sphere, are key ingredients for PI. In particular, the synergic effects of i)-iii) can lead to a span between first and second redox potentials larger than 700 mV. More generally, the "molecular recipes" herein described are expected to inspire the synthesis of Fe2 P2 systems with tailored PI, of primary relevance to the design of electron-bifurcating molecular devices.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Fabio Rizza
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
10
|
Zhang X, Liu L, Li Y. Synthesis and Benzene Hydroxylation Properties of Amino Substituted [FeFe]-Hydrogenase Model Compounds. Catal Letters 2020. [DOI: 10.1007/s10562-020-03197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Gao S, Liu Y, Shao Y, Jiang D, Duan Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Donovan ES, Plummer HM, Parada AS, Nichol GS, Felton GA. Pnictogen ligand coordination to an iron-sulfur compound. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Bouchard S, Bruschi M, De Gioia L, Le Roy C, Pétillon FY, Schollhammer P, Talarmin J. FeMo Heterobimetallic Dithiolate Complexes: Investigation of Their Electron Transfer Chemistry and Reactivity toward Acids, a Density Functional Theory Rationalization. Inorg Chem 2019; 58:679-694. [PMID: 30561200 DOI: 10.1021/acs.inorgchem.8b02861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrochemical behavior of complexes [FeMo(CO)5(κ2-dppe)(μ-pdt)] (1) and [FeMo(CO)4(MeCN)(κ2-dppe)(μ-pdt)] (2), in the absence and in the presence of acid, has been investigated. The reduction of 1 follows at slow scan rates, in CH2Cl2-[NBu4][PF6] and acid-free media, an ECrevE mechanism that is supported by cyclic voltammetry (CV) experiments and digital CV simulations. In MeCN-[NBu4][PF6], the electrochemical reduction of 1 is the same as in dichloromethane and follows an ECE mechanism at slow scan rates, but with a positive shift of the redox potentials. In contrast, the oxidation of 1 is strongly solvent-dependent. In dichloromethane, the oxidation of 1 is reversible and involves a single electron, while in acetonitrile, it is irreversible at moderate and slow scan rates ( v ≤ ca. 1 V s-1), and some chemical reversibility is apparent at higher scan rates ( v = 10 V s-1). Density functional theory calculations revealed that the chemical step in the ECrevE mechanism corresponds to the dissociation of one PPh2 end of the diphosphine ligand and the transfer of the semibridging CO to the Fe atom, similarly to the mechanism observed in the FeFe analogue complex. However, in the case of 1, the subsequent coordination of the phosphine ligand to the other metal is an unfavorable process.
Collapse
Affiliation(s)
- Solène Bouchard
- UMR CNRS 6521 "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Bretagne Occidentale, UFR Sciences et Techniques , CS 93837, 29238 Brest-Cedex 3 , France
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences , University of Milano-Bicocca , Piazza della Scienza 1 , 20126 Milan , Italy
| | - Luca De Gioia
- Department of Biotechnology and Bioscience , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Christine Le Roy
- UMR CNRS 6521 "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Bretagne Occidentale, UFR Sciences et Techniques , CS 93837, 29238 Brest-Cedex 3 , France
| | - François Y Pétillon
- UMR CNRS 6521 "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Bretagne Occidentale, UFR Sciences et Techniques , CS 93837, 29238 Brest-Cedex 3 , France
| | - Philippe Schollhammer
- UMR CNRS 6521 "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Bretagne Occidentale, UFR Sciences et Techniques , CS 93837, 29238 Brest-Cedex 3 , France
| | - Jean Talarmin
- UMR CNRS 6521 "Chimie, Electrochimie Moléculaires et Chimie Analytique", Université de Bretagne Occidentale, UFR Sciences et Techniques , CS 93837, 29238 Brest-Cedex 3 , France
| |
Collapse
|
14
|
Abul-Futouh H, Skabeev A, Botteri D, Zagranyarski Y, Görls H, Weigand W, Peneva K. Toward a Tunable Synthetic [FeFe]-Hydrogenase H-Cluster Mimic Mediated by Perylene Monoimide Model Complexes: Insight into Molecular Structures and Electrochemical Characteristics. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hassan Abul-Futouh
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Department of Pharmacy, Al-Zytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Davide Botteri
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Yulian Zagranyarski
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Avenue, Sofia 1164, Bulgaria
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldt Str. 8, 07743 Jena, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
- Friedrich Schiller University, CEEC Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
15
|
Carlson MR, Gray DL, Richers CP, Wang W, Zhao PH, Rauchfuss TB, Pelmenschikov V, Pham CC, Gee LB, Wang H, Cramer SP. Sterically Stabilized Terminal Hydride of a Diiron Dithiolate. Inorg Chem 2018; 57:1988-2001. [PMID: 29384371 DOI: 10.1021/acs.inorgchem.7b02903] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The kinetically robust hydride [t-HFe2(Me2pdt)(CO)2(dppv)2]+ ([t-H1]+) (Me2pdt2- = Me2C(CH2S-)2; dppv = cis-1,2-C2H2(PPh2)2) and related derivatives were prepared with 57Fe enrichment for characterization by NMR, FT-IR, and NRVS. The experimental results were rationalized using DFT molecular modeling and spectral simulations. The spectroscopic analysis was aimed at supporting assignments of Fe-H vibrational spectra as they relate to recent measurements on [FeFe]-hydrogenase enzymes. The combination of bulky Me2pdt2- and dppv ligands stabilizes the terminal hydride with respect to its isomerization to the 5-16 kcal/mol more stable bridging hydride ([μ-H1]+) with t1/2(313.3 K) = 19.3 min. In agreement with the nOe experiments, the calculations predict that one methyl group in [t-H1]+ interacts with the hydride with a computed CH···HFe distance of 1.7 Å. Although [t-H571]+ exhibits multiple NRVS features in the 720-800 cm-1 region containing the bending Fe-H modes, the deuterated [t-D571]+ sample exhibits a unique Fe-D/CO band at ∼600 cm-1. In contrast, the NRVS spectra for [μ-H571]+ exhibit weaker bands near 670-700 cm-1 produced by the Fe-H-Fe wagging modes coupled to Me2pdt2- and dppv motions.
Collapse
Affiliation(s)
- Michaela R Carlson
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - Danielle L Gray
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - Casseday P Richers
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - Wenguang Wang
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - Pei-Hua Zhao
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | | | - Cindy C Pham
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Leland B Gee
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Hongxin Wang
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Stephen P Cramer
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
16
|
Wang S, Aster A, Mirmohades M, Lomoth R, Hammarström L. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Inorg Chem 2018; 57:768-776. [PMID: 29297686 DOI: 10.1021/acs.inorgchem.7b02687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron reduction and subsequent protonation of a biomimetic proton-reduction catalyst [FeFe(μ-pdt)(CO)6] (pdt = propanedithiolate), 1, were investigated by UV-vis and IR spectroscopy on a nano- to microsecond time scale. The study aimed to provide further insight into the proton-reduction cycle of this [FeFe]-hydrogenase model complex, which with its prototypical alkyldithiolate-bridged diiron core is widely employed as a molecular, precious metal-free catalyst for sustainable H2 generation. The one-electron-reduced catalyst was obtained transiently by electron transfer from photogenerated [Ru(dmb)3]+ in the absence of proton sources or in the presence of acids (dichloro- or trichloroacetic acid or tosylic acid). The reduced catalyst and its protonation product were observed in real time by UV-vis and IR spectroscopy, leading to their structural characterization and providing kinetic data on the electron and proton transfer reactions. 1 features an intact (μ2,κ2-pdt)(μ-H)Fe2 core in the reduced, 1-, and reduced-protonated states, 1H, in contrast to the Fe-S bond cleavage upon the reduction of [FeFe(bdt)(CO)6], 2, with a benzenedithiolate bridge. The driving-force dependence of the rate constants for the protonation of 1- (kpt = 7.0 × 105, 1.3 × 107, and 7.0 × 107 M-1 s-1 for the three acids used in this study) suggests a reorganization energy >1 eV and indicates that hydride complex 1H is formed by direct protonation of the Fe-Fe bond. The protonation of 1- is sufficiently fast even with the weaker acids, which excludes a rate-limiting role in light-driven H2 formation under typical conditions.
Collapse
Affiliation(s)
- Shihuai Wang
- Department of Chemistry-Ångström Laboratory, Uppsala University , Box 523, SE-751 20 Uppsala, Sweden
| | - Alexander Aster
- Department of Chemistry-Ångström Laboratory, Uppsala University , Box 523, SE-751 20 Uppsala, Sweden
| | - Mohammad Mirmohades
- Department of Chemistry-Ångström Laboratory, Uppsala University , Box 523, SE-751 20 Uppsala, Sweden
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratory, Uppsala University , Box 523, SE-751 20 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratory, Uppsala University , Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
17
|
Li YL, He J, Wei J, Wei J, Mu C, Wu Y, Xie B, Zou LK, Wang Z, Wu ML, Li HM, Gao F, Zhao PH. Synthesis, structure and electrochemical properties of diiron S-(−)-1-Phenylethylazadithiolate complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Influence of the methylene group between azadithiolate nitrogen atom and phenyl moiety on the protophilic properties of [FeFe]-hydrogenase model complexes. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Investigations on the synthesis, structural characterization and electrochemical properties of diiron azadithiolate complexes and phosphine-substituted derivatives. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abul-Futouh H, Almazahreh LR, Harb MK, Görls H, El-Khateeb M, Weigand W. [FeFe]-Hydrogenase H-Cluster Mimics with Various -S(CH 2) nS- Linker Lengths (n = 2-8): A Systematic Study. Inorg Chem 2017; 56:10437-10451. [PMID: 28809489 DOI: 10.1021/acs.inorgchem.7b01398] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of the nature of the dithiolato ligand on the physical and electrochemical properties of synthetic H-cluster mimics of the [FeFe]-hydrogenase is still of significant concern. In this report we describe the cyclization of various alkanedithiols to afford cyclic disulfide, tetrasulfide, and hexasulfide compounds. The latter compounds were used as proligands for the synthesis of a series of [FeFe]-hydrogenase H-cluster mimics having the general formulas [Fe2(CO)6{μ-S(CH2)nS}] (n = 4-8), [Fe2(CO)6{μ-S(CH2)nS}]2 (n = 6-8), and [Fe2(CO)6{(μ-S(CH2)nS)2}] (n = 6-8). The resulting complexes were characterized by 1H and 13C{1H} NMR and IR spectroscopic techniques, mass spectrometry, and elemental analysis as well as X-ray analysis. The purpose of this research was to study the influence of the systematic increase of n from 2 to 7 on the redox potentials of the models and the catalytic ability in the presence of acetic acid (AcOH) by applying cyclic voltammetry.
Collapse
Affiliation(s)
- Hassan Abul-Futouh
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| | - Laith R Almazahreh
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany.,ERCOSPLAN Ingenieurbüro Anlagentechnik GmbH , Arnstädter Straße 28, 99096 Erfurt, Germany
| | - Mohammad Kamal Harb
- Department of Pharmacy, Al-Zytoonah University of Jordan , P.O. Box 130, Amman 11733, Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| | - Mohammad El-Khateeb
- Chemistry Department, Jordan University of Science and Technology , Irbid 22110, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena , Humboldt Str. 8, 07743 Jena, Germany
| |
Collapse
|
21
|
Zhang X, Zhang T, Li B, Zhang G, Hai L, Ma X, Wu W, Jiang S. Effect of the Terminal Ligands of [FeFe]-Hydrogenase Model Complexes on Proton Reduction Properties and Catalytic Hydroxylation of Benzene. ChemistrySelect 2017. [DOI: 10.1002/slct.201700394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xia Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300354 China
- Tianjin Engineering Research Center of Functional Fine Chemicals; Tianjin 300354 China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300354 China
- Tianjin Engineering Research Center of Functional Fine Chemicals; Tianjin 300354 China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300354 China
- Tianjin Engineering Research Center of Functional Fine Chemicals; Tianjin 300354 China
| | - Guanghui Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
| | - Li Hai
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
| | - Xiaoyuan Ma
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
| | - Wubin Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300354 China
- Tianjin Engineering Research Center of Functional Fine Chemicals; Tianjin 300354 China
| |
Collapse
|
22
|
Roy S, Laureanti JA, Groy TL, Jones AK. Synthesis and Electrocatalytic Activity of [FeFe]‐Hydrogenase Model Complexes with Non‐Innocent Chelating Nitrogen‐Donor Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Souvik Roy
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Joseph A. Laureanti
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Thomas L. Groy
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| | - Anne K. Jones
- School of Molecular Sciences Arizona State University 85287 Tempe Arizona USA
| |
Collapse
|
23
|
Zou LK, Deng CL, Li Y, He J, Wei J, Wu Y, Xie B, Zhao PH, Li YL. Investigations on the Synthesis, Structural Characterization, and Crystal Structures of Three Diiron and Tetrairon Azadithiolate Complexes. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li-Ke Zou
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Cheng-Long Deng
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Yao Li
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jiao He
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Jian Wei
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Bin Xie
- Institute of Functional Materials; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering; North University of China; 030051 Taiyuan P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
- Institute of Functional Materials; Sichuan University of Science & Engineering; 643000 Zigong P. R. China
| |
Collapse
|
24
|
He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00040] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jiao He
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Cheng-Long Deng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Yu Wu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Li-Ke Zou
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Chao Mu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Qiang Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Bin Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jian Wei
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Jing-Wen Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| | - Pei-Hua Zhao
- School
of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Wen Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| |
Collapse
|
25
|
Rahaman A, Gimbert-Suriñach C, Ficks A, Ball GE, Bhadbhade M, Haukka M, Higham L, Nordlander E, Colbran SB. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Dalton Trans 2017; 46:3207-3222. [PMID: 28221379 DOI: 10.1039/c6dt01494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the substitution, orientation and structure of the phosphido bridges in [Fe2(CO)6(μ-PR2)2] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe2(CO)6{μ-P(Ar)H}2] (1a(Ar): Ar = Ph, 2'-methoxy-1,1'-binaphthyl (bn')), e,e-[Fe2(CO)6{μ-P(Ar)H}2] (1b(Ar): Ar = Ph, bn') were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe3(CO)9(μ-CO)(μ3-Pbn')] (2) and [Fe3(CO)9(μ3-PAr)2] (3(Ar), Ar = Ph, bn'). A ferrocenyl (Fc)-substituted dimer [Fe2(CO)6{μ:μ'-1,2-(P(CH2Fc)CH2)2C6H4}] (4), in which the two phosphido bridges are linked by an o-xylyl group, was also prepared. The molecular structures of complexes 1a(Ph), 1b(Ph), 1b(bn'), 2 and 4 were established by X-ray crystallography. All complexes have been examined as electrocatalysts for proton reduction using p-toluene sulfonic acid in tetrahydrofuran. Cyclic voltammograms of the dimers with acid exhibit two catalysis waves for proton reduction. The first wave, which appears at the potential of the primary reduction, reaches maximum current (turnover) at moderate acid concentrations and is rapidly overtaken by the second wave, which appears at more negative potential. Both of these reductive waves show an initial first order dependence on acid. The electrochemistry and electrocatalyses of the [Fe2(CO)6(μ-PR2)2] dimers show subtle variations with the nature of the bridging phosphido group(s), including the orientation of bridgehead hydrogen atoms.
Collapse
Affiliation(s)
- Ahibur Rahaman
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | | | - Arne Ficks
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Graham E Ball
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mohan Bhadbhade
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland
| | - Lee Higham
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden.
| | - Stephen B Colbran
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Abul-Futouh H, El-khateeb M, Görls H, Asali KJ, Weigand W. Selenium makes the difference: protonation of [FeFe]-hydrogenase mimics with diselenolato ligands. Dalton Trans 2017; 46:2937-2947. [DOI: 10.1039/c7dt00057j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic models of the active site of an [FeFe]-hydrogenase containing a Sn atom in the bridgehead of the diselenato ligand, namely [Fe2(CO)6{μ-(SeCH2Se)SnMe2}],3and [Fe2(CO)6{μ-(SeCH2)2SnMe2}],4have been synthesized and characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Hassan Abul-Futouh
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Mohammad El-khateeb
- Chemistry Department
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Khalil Jamil Asali
- Chemistry Department
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| |
Collapse
|
27
|
Abul-Futouh H, Zagranyarski Y, Müller C, Schulz M, Kupfer S, Görls H, El-khateeb M, Gräfe S, Dietzek B, Peneva K, Weigand W. [FeFe]-Hydrogenase H-cluster mimics mediated by naphthalene monoimide derivatives of peri-substituted dichalcogenides. Dalton Trans 2017; 46:11180-11191. [DOI: 10.1039/c7dt02079a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synthetic models of the active site of [FeFe]-hydrogenase containing naphthalene monoimide as bridging linker.
Collapse
|
28
|
Wang Y, Yang Y, Zhang T, Zhang X, Jiang S, Zhang G, Li B. A new nitrogen heterocyclic carbene containing diiron complex as bio-inspired catalyst for proton reduction and benzene hydroxylation. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Abul-Futouh H, Almazahreh LR, Sakamoto T, Stessman NYT, Lichtenberger DL, Glass RS, Görls H, El-Khateeb M, Schollhammer P, Mloston G, Weigand W. [FeFe]-Hydrogenase H-Cluster Mimics with Unique Planar μ-(SCH2)2ER2Linkers (E=Ge and Sn). Chemistry 2016; 23:346-359. [DOI: 10.1002/chem.201603843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hassan Abul-Futouh
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Takahiro Sakamoto
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | - Nhu Y. T. Stessman
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | | | - Richard S. Glass
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Mohammad El-Khateeb
- Chemistry Department; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Philippe Schollhammer
- UMR CNRS 6521; Université de Bretagne Occidentale; 6 avenue Le Gorgeu, C.S. 93837 29238 Brest-Cedex France
| | - Grzegorz Mloston
- Section of Heteroorganic Compounds; University of Lodz; Tamka 12 91-403 Łódź Poland
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| |
Collapse
|
30
|
Ghosh S, Rahaman A, Holt KB, Nordlander E, Richmond MG, Kabir SE, Hogarth G. Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by [Fe2(CO)4(κ2-diamine)(μ-edt)] (diamine = 2,2′-bipy, 1,10-phen). Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Li CG, Wang SL, Shang JY. Bis(diphenylphosphino)ferrocene as an intramolecular bridging ligand in N-functionally substituted 1,3-azapropanedithiolate diiron complexes: synthesis and catalysis of proton reduction. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1225296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chang-Gong Li
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Song-Lin Wang
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Jing-Yan Shang
- College of Chemistry & Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, PR China
| |
Collapse
|
32
|
Roy S, Nguyen TAD, Gan L, Jones AK. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Dalton Trans 2016. [PMID: 26223293 DOI: 10.1039/c5dt01796c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two synthetic strategies for incorporating diiron analogues of [FeFe]-hydrogenases into short peptides via phosphine functional groups are described. First, utilizing the amine side chain of lysine as an anchor, phosphine carboxylic acids can be coupled via amide formation to resin-bound peptides. Second, artificial, phosphine-containing amino acids can be directly incorporated into peptides via solution phase peptide synthesis. The second approach is demonstrated using three amino acids each with a different phosphine substituent (diphenyl, diisopropyl, and diethyl phosphine). In total, five distinct monophosphine-substituted, diiron model complexes were prepared by reaction of the phosphine-peptides with diiron hexacarbonyl precursors, either (μ-pdt)Fe2(CO)6 or (μ-bdt)Fe2(CO)6 (pdt = propane-1,3-dithiolate, bdt = benzene-1,2-dithiolate). Formation of the complexes was confirmed by UV/Vis, FTIR and (31)P NMR spectroscopy. Electrocatalysis by these complexes is reported in the presence of acetic acid in mixed aqueous-organic solutions. Addition of water results in enhancement of the catalytic rates.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
33
|
Goy R, Bertini L, Görls H, De Gioia L, Talarmin J, Zampella G, Schollhammer P, Weigand W. Silicon-Heteroaromatic [FeFe] Hydrogenase Model Complexes: Insight into Protonation, Electrochemical Properties, and Molecular Structures. Chemistry 2015; 21:5061-73. [DOI: 10.1002/chem.201406087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 11/10/2022]
|
34
|
Goy R, Bertini L, Elleouet C, Görls H, Zampella G, Talarmin J, De Gioia L, Schollhammer P, Apfel UP, Weigand W. A sterically stabilized FeI–FeI semi-rotated conformation of [FeFe] hydrogenase subsite model. Dalton Trans 2015; 44:1690-9. [DOI: 10.1039/c4dt03223c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semi-rotated state – As the first example so far a [FeIFeI] H2ase model complex with a bulky silicon-containing dithiolate bridge is reported showing a semi-rotated geometry without the need of stabilization via agostic interactions.
Collapse
Affiliation(s)
- Roman Goy
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität
- 07743 Jena
- Germany
| | - Luca Bertini
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- Italy
| | - Catherine Elleouet
- University of Brest
- CNRS
- UMR 6521
- Chimie
- Electrochimie Moléculaires et Chimie Analytique
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität
- 07743 Jena
- Germany
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- Italy
| | - Jean Talarmin
- University of Brest
- CNRS
- UMR 6521
- Chimie
- Electrochimie Moléculaires et Chimie Analytique
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- Italy
| | - Philippe Schollhammer
- University of Brest
- CNRS
- UMR 6521
- Chimie
- Electrochimie Moléculaires et Chimie Analytique
| | - Ulf-Peter Apfel
- Inorganic Chemistry I/Bioinorganic Chemistry
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
35
|
Almazahreh LR, Imhof W, Talarmin J, Schollhammer P, Görls H, El-khateeb M, Weigand W. Ligand effects on the electrochemical behavior of [Fe2(CO)5(L){μ-(SCH2)2(Ph)PO}] (L = PPh3, P(OEt)3) hydrogenase model complexes. Dalton Trans 2015; 44:7177-89. [DOI: 10.1039/c5dt00064e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper we study the influence of substituting one CO ligand in [Fe2(CO)6{μ-(SCH2)2(Ph)PO}] (1) by better σ-donors (PPh3(2) and P(OMe)3(3)) in relation to the electrochemical behavior.
Collapse
Affiliation(s)
- Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Wolfgang Imhof
- Institut für Integrierte Naturwissenschaften
- Universität Koblenz-Landau
- D-56070 Koblenz
- Germany
| | - Jean Talarmin
- UMR CNRS 6521
- Université de Bretagne Occidentale
- 29238 Brest-Cedex
- France
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Mohammad El-khateeb
- Chemistry Department
- Jordan University of Science and Technology
- 22110 Irbid
- Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| |
Collapse
|
36
|
Wang Y, Zhang T, Li B, Jiang S, Sheng L. Synthesis, characterization, electrochemical properties and catalytic reactivity of N-heterocyclic carbene-containing diiron complexes. RSC Adv 2015. [DOI: 10.1039/c4ra15150j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four new [Fe–Fe]–NHC complexes were synthesized and used as highly selective homogeneous catalysts for the direct hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tianyong Zhang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bin Li
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Shuang Jiang
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Liao Sheng
- School of Chemical Engineering and Technology
- Tianjin Key Laboratory of Applied Catalysis Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
37
|
Trautwein R, Almazahreh LR, Görls H, Weigand W. Steric effect of the dithiolato linker on the reduction mechanism of [Fe2(CO)6{μ-(XCH2)2CRR′}] hydrogenase models (X = S, Se). Dalton Trans 2015; 44:18780-94. [DOI: 10.1039/c5dt01387a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the electrochemical properties of [Fe2(CO)6{μ-(XCH2)2CRR′}] (X = S, Se; R or R′ = H or Me) showed that the complex with the bulkiest CMe2moiety undergoes reduction with potential inversion.
Collapse
Affiliation(s)
- Ralf Trautwein
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| |
Collapse
|
38
|
Bis-(diphenylphosphino)methane as Mono- or Bi-dentate Ligand of Benzoate-Functionalized Diiron Propanedithiolate Complexes: Catalysis for the Reduction of Proton. J CLUST SCI 2014. [DOI: 10.1007/s10876-014-0819-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Shi YC, Yang W, Shi Y, Cheng DC. Syntheses, crystal structures, and electrochemical studies of Fe2(CO)6(μ-PPh2)(μ-L) (L = OH, OPPh2, PPh2). J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.940925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yao-Cheng Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Wei Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Ying Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Da-Cong Cheng
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
40
|
In-noi O, Haller KJ, Hall GB, Brezinski WP, Marx JM, Sakamoto T, Evans DH, Glass RS, Lichtenberger DL. Electrochemical, Spectroscopic, and Computational Study of Bis(μ-methylthiolato)diironhexacarbonyl: Homoassociative Stabilization of the Dianion and a Chemically Reversible Reduction/Reoxidation Cycle. Organometallics 2014. [DOI: 10.1021/om5004122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Orrasa In-noi
- School
of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon
Ratchasima 30000 Thailand
| | - Kenneth J. Haller
- School
of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon
Ratchasima 30000 Thailand
| | - Gabriel B. Hall
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - William P. Brezinski
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jacob M. Marx
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Taka Sakamoto
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dennis H. Evans
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Richard S. Glass
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Dennis L. Lichtenberger
- Department
of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
41
|
Nauser T, Steinmann D, Grassi G, Koppenol WH. Why Selenocysteine Replaces Cysteine in Thioredoxin Reductase: A Radical Hypothesis. Biochemistry 2014; 53:5017-22. [DOI: 10.1021/bi5003376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Nauser
- Institute of Inorganic Chemistry and ‡Institute of Physical Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| | - Daniel Steinmann
- Institute of Inorganic Chemistry and ‡Institute of Physical Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| | - Guido Grassi
- Institute of Inorganic Chemistry and ‡Institute of Physical Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| | - Willem H. Koppenol
- Institute of Inorganic Chemistry and ‡Institute of Physical Chemistry,
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg
2, CH-8093 Zürich, Switzerland
| |
Collapse
|
42
|
Crouthers DJ, Denny JA, Bethel RD, Munoz DG, Darensbourg MY. Conformational Mobility and Pendent Base Effects on Electrochemistry of Synthetic Analogues of the [FeFe]-Hydrogenase Active Site. Organometallics 2014. [DOI: 10.1021/om500023j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Danielle J. Crouthers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jason A. Denny
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan D. Bethel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David G. Munoz
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | |
Collapse
|
43
|
Almazahreh LR, Apfel UP, Imhof W, Rudolph M, Görls H, Talarmin J, Schollhammer P, El-khateeb M, Weigand W. A Novel [FeFe] Hydrogenase Model with a (SCH2)2P═O Moiety. Organometallics 2013. [DOI: 10.1021/om4003544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laith R. Almazahreh
- Institut für Anorganische
und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, D-07743 Jena, Germany
| | - Ulf-Peter Apfel
- Ruhr-University Bochum, Universitaetsstrasse 150, D-44780 Bochum, Germany
| | - Wolfgang Imhof
- Institut für Integrierte Naturwissenschaften, Universität Koblenz Landau, Universitätsstrasse
1, D-56070 Koblenz, Germany
| | - Manfred Rudolph
- Institut für Anorganische
und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, D-07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische
und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, D-07743 Jena, Germany
| | - Jean Talarmin
- UMR CNRS 6521, Chimie, Electrochimie
Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques,
Cs 93837, 29238 Brest-Cedex 3, France
| | - Philippe Schollhammer
- UMR CNRS 6521, Chimie, Electrochimie
Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques,
Cs 93837, 29238 Brest-Cedex 3, France
| | - Mohammad El-khateeb
- Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische
und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, D-07743 Jena, Germany
| |
Collapse
|
44
|
Goy R, Apfel UP, Elleouet C, Escudero D, Elstner M, Görls H, Talarmin J, Schollhammer P, González L, Weigand W. A Silicon-Heteroaromatic System as Photosensitizer for Light-Driven Hydrogen Production by Hydrogenase Mimics. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300537] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Trautwein R, Almazahreh LR, Görls H, Weigand W. The Influence of OH Groups in [Fe(CO)3]2[(μ-ECH2)2C(CH2OH)2] (E = S, Se) Complexes toward the Cathodic Process. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Roy S, Groy TL, Jones AK. Biomimetic model for [FeFe]-hydrogenase: asymmetrically disubstituted diiron complex with a redox-active 2,2′-bipyridyl ligand. Dalton Trans 2013; 42:3843-53. [DOI: 10.1039/c2dt32457a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Hirotsu M, Santo K, Hashimoto H, Kinoshita I. Carbon- and Sulfur-Bridged Diiron Carbonyl Complexes Containing N,C,S-Tridentate Ligands Derived from Functionalized Dibenzothiophenes: Mimics of the [FeFe]-Hydrogenase Active Site. Organometallics 2012. [DOI: 10.1021/om300826y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Masakazu Hirotsu
- Graduate
School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kiyokazu Santo
- Graduate
School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hideki Hashimoto
- Graduate
School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama,
332-0012, Japan
- The OCU Advanced Research Institute for Natural
Science and Technology
(OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Isamu Kinoshita
- Graduate
School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama,
332-0012, Japan
- The OCU Advanced Research Institute for Natural
Science and Technology
(OCARINA), Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
48
|
Synthesis and characterisation of hexacarbonyl 2-phenylethene-1,1-dithiolatodiiron. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Lounissi S, Zampella G, Capon JF, De Gioia L, Matoussi F, Mahfoudhi S, Pétillon FY, Schollhammer P, Talarmin J. Electrochemical and Theoretical Investigations of the Role of the Appended Base on the Reduction of Protons by [Fe2(CO)4(κ2-PNPR)(μ-S(CH2)3S] (PNPR={Ph2PCH2}2NR, R=Me, Ph). Chemistry 2012; 18:11123-38. [DOI: 10.1002/chem.201201087] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 11/12/2022]
|
50
|
Gimbert-Suriñach C, Bhadbhade M, Colbran SB. Bridgehead Hydrogen Atoms Are Important: Unusual Electrochemistry and Proton Reduction at Iron Dimers with Ferrocenyl-Substituted Phosphido Bridges. Organometallics 2012. [DOI: 10.1021/om201126w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina Gimbert-Suriñach
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| | - Mohan Bhadbhade
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| | - Stephen B. Colbran
- School of Chemistry and ‡Mark Wainwright Analytical Centre, University of New South Wales, Sydney,
New South Wales 2052, Australia
| |
Collapse
|