1
|
Padula D. Discriminating Clockwise and Counterclockwise Photoisomerization Paths in Achiral Photoswitches by Excited-State Electronic Circular Dichroism. J Phys Chem B 2024; 128:8303-8312. [PMID: 39171863 DOI: 10.1021/acs.jpcb.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Despite the numerous investigations of photoisomerization reactions from both the computational and experimental points of view, even in complex environments, to date there is no direct demonstration of the direction of rotation of the retinal chromophore, initiating the vision process in several organisms, occurring upon light irradiation. In the literature, many proposals have been formulated to shed light on the details of this process, most of which are extracted from semiclassical simulations. Although high hopes are held in the development of time-resolved X-ray spectroscopy, I argue in this work that simpler but less known techniques can be used to unravel the details of this fascinating photochemical process. In fact, chiroptical spectroscopy would unambiguously prove the direction of the rotatory motion of the chromophore during the photoisomerization process by probing excited state chirality, a piece of information that, so far, has been exclusively extracted from atomistic simulations. I demonstrate this statement by computing the expected chiroptical response along photoisomerization pathways for several models of the retinal chromophores that are found in nature bound to rhodopsins, including nuclear ensemble spectra from semiclassical dynamics simulations, that can be compared with time-resolved experiments.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, Siena 53100, Italy
| |
Collapse
|
2
|
Barneschi L, Kaliakin D, Huix-Rotllant M, Ferré N, Filatov Gulak M, Olivucci M. Assessment of the Electron Correlation Treatment on the Quantum-Classical Dynamics of Retinal Protonated Schiff Base Models: XMS-CASPT2, RMS-CASPT2, and REKS Methods. J Chem Theory Comput 2023; 19:8189-8200. [PMID: 37937990 DOI: 10.1021/acs.jctc.3c00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We compare the performance of three different multiconfigurational wave function-based electronic structure methods and two implementations of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method. The study is characterized by three features: (i) it uses a small set of quantum-classical trajectories rather than potential energy surface mapping, (ii) it focuses, exclusively, on the photoisomerization of retinal protonated Schiff base models, and (iii) it probes the effect of both methyl substitution and the increase in length of the conjugate π-system. For each tested method, the corresponding analytical gradients are used to drive the quantum-classical (Tully's FSSH method) trajectory propagation, including the recent multistate XMS-CASPT2 and RMS-CASPT2 gradients. It is shown that while CASSCF, XMS-CASPT2, and RMS-CASPT2 yield consistent photoisomerization dynamics descriptions, REKS produces, in some of these systems, qualitatively different behavior that is attributed to a flatter and topographically different excited state potential energy surface. The origin of this behavior can be traced back to the effect of the employed density functional approximation. The above studies are further expanded by benchmarking, at the CASSCF and REKS levels, the electronic structure methods using a QM/MM model of the visual pigment rhodopsin.
Collapse
Affiliation(s)
- Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy
| | - Danil Kaliakin
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Miquel Huix-Rotllant
- Aix-Marseille Université, CNRS, Institut Chimie Radicalaire, 13013 Marseille, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, Institut Chimie Radicalaire, 13013 Marseille, France
| | - Michael Filatov Gulak
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
3
|
Talbot JJ, Head-Gordon M, Cotton SJ. The symmetric quasi-classical model using on-the-fly time-dependent density functional theory within the Tamm–Dancoff approximation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Justin J. Talbot
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J. Cotton
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Fang Y, Huang H, Lin K, Xu C, Gu FL, Lan Z. The impact of different geometrical restrictions on the nonadiabatic photoisomerization of biliverdin chromophores. Phys Chem Chem Phys 2022; 24:26190-26199. [PMID: 36278817 DOI: 10.1039/d2cp02941c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photoisomerization mechanism of the chromophore of bacterial biliverdin (BV) phytochromes is explored via nonadiabatic dynamics simulation by using the on-the-fly trajectory surface-hopping method at the semi-empirical OM2/MRCI level. Particularly, the current study focuses on the influence of geometrical constrains on the nonadiabatic photoisomerization dynamics of the BV chromophore. Here a rather simplified approach is employed in the nonadiabatic dynamics to capture the features of geometrical constrains, which adds mechanical restrictions to the specific moieties of the BV chromophore. This simplified method provides a rather quick approach to examine the influence of geometrical restrictions on photoisomerization. As expected, different constrains bring distinctive influences on the photoisomerization mechanism of the BV chromophore, giving either strong or minor modification of both involved reaction channels and excited-state lifetimes after the constrains are added in different ring moieties. These observations not only contribute to the primary understanding of the role of the spatial restriction caused by biological environments in photoinduced dynamics of the BV chromophore, but also provide useful ideas for the artificial regulation of the photoisomerization reaction channels of phytochrome proteins.
Collapse
Affiliation(s)
- Yuan Fang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Haiyi Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top Curr Chem (Cham) 2022; 380:8. [PMID: 35083549 DOI: 10.1007/s41061-021-00361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
We present mixed quantum-classical approaches based on the exact factorization framework. The electron-nuclear correlation term in the exact factorization enables us to deal with quantum coherences by accounting for electronic and nuclear nonadiabatic couplings effectively within classical nuclei approximation. We compare coupled- and independent-trajectory approximations with each other to understand algorithms in description of the bifurcation of nuclear wave packets and the correct spatial distribution of electronic wave functions along with nuclear trajectories. Finally, we show numerical results for comparisons of coupled- and independent-trajectory approaches for the photoisomerization of a protonated Schiff base from excited state molecular dynamics (ESMD) simulations with the recently developed Python-based ESMD code, namely, the PyUNIxMD program.
Collapse
|
6
|
Liu Y, Zhu C. Trajectory surface hopping molecular dynamics simulations for retinal protonated Schiff-base photoisomerization. Phys Chem Chem Phys 2021; 23:23861-23874. [PMID: 34651159 DOI: 10.1039/d1cp03401d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global switching trajectory surface hopping molecular dynamics simulations are performed using accurate on-the-fly (TD)CAM-B3LYP/6-31G potential energy surfaces to study retinal protonated Schiff-base photoisomerization up to S1 excitation. The simulations detected two-layer conical intersection networks: one is at an energy as high as 8 eV and the other is in the energy range around 3-4 eV. Six conical intersections within the low-layer energy region that correspond to active conical intersections under experimental conditions are found via the use of pairwise isomers, within which nonadiabatic molecular dynamics simulations are performed. Eight isomer products are populated with simulated sampling trajectories from which the simulated quantum yield in the gas phase is estimated to be 0.11 (0.08) moving from the all-trans isomer to the 11-cis (11-cis to all-trans) isomer in comparison with an experimental value of 0.09 (0.2) in the solution phase. Each conical intersection is related to one specific twist angle accompanying a related CC double bond motion during photoisomerization. Nonplanar distortion of the entire dynamic process has a significant role in the formation of the relevant photoisomerization products. The present simulation indicates that all hopping points show well-behaved potential energy surface topology, as calculated via the conventional TDDFT method, at conical intersections between S1 and S0 states. Therefore, the present nonadiabatic dynamics simulations with the TDDFT method are very encouraging for simulating various large systems related to retinal Schiff-base photoisomerization in the real world.
Collapse
Affiliation(s)
- Yuxiu Liu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan.
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan. .,Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
Rankine CD. Ultrafast excited-state dynamics of promising nucleobase ancestor 2,4,6-triaminopyrimidine. Phys Chem Chem Phys 2021; 23:4007-4017. [PMID: 33554987 DOI: 10.1039/d0cp05609j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast excited-state dynamics of 2,4,6-triaminopyrimidine - thought to be a promising candidate for a proto-RNA nucleobase - have been investigated via static multireference quantum-chemical calculations and mixed-quantum-classical/trajectory surface-hopping dynamics with a focus on the lowest-lying electronic states of the singlet manifold and with a view towards understanding the UV(C)/UV(B) photostability of the molecule. Ultrafast internal conversion channels have been identified that connect the lowest-lying ππ* electronically-excited state of 2,4,6-triaminopyrimidine with the ground electronic state, and non-radiative decay has been observed to take place on the picosecond timescale via a ππ* out-of-plane NH2 ("oop-NH2") minimum-energy crossing point. The short excited-state lifetime is competitive with the excited-state lifetimes of the canonical pyrimidine nucleobases, affirming the promise of 2,4,6-triaminopyrimidine as an ancestor. Evidence for energy-dependent excited-state dynamics is presented, and the open question of intersystem crossing is discussed speculatively.
Collapse
Affiliation(s)
- Conor D Rankine
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Marsili E, Olivucci M, Lauvergnat D, Agostini F. Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model. J Chem Theory Comput 2020; 16:6032-6048. [PMID: 32931266 DOI: 10.1021/acs.jctc.0c00679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Collapse
Affiliation(s)
- Emanuele Marsili
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France.,Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| |
Collapse
|
9
|
Lee IS, Filatov M, Min SK. Formulation and Implementation of the Spin-Restricted Ensemble-Referenced Kohn–Sham Method in the Context of the Density Functional Tight Binding Approach. J Chem Theory Comput 2019; 15:3021-3032. [DOI: 10.1021/acs.jctc.9b00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- In Seong Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Marsili E, Farag MH, Yang X, De Vico L, Olivucci M. Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model. J Phys Chem A 2019; 123:1710-1719. [PMID: 30753077 DOI: 10.1021/acs.jpca.8b10010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, the potential energy surfaces of the penta-2,4-dieniminium cation have been investigated using several electronic structure methods. The resulting pool of geometrical, electronic, and energy data provides a suitable basis for the construction of a topographically correct analytical model of the molecule force field and, therefore, for a better understanding of this class of molecules, which includes the chromophore of visual pigments. In the present contribution, we report the construction of such a model for regions of the force field that drive the photochemical and thermal isomerization of the central double bound of the cation. While previous models included only two modes, it is here shown that the proposed three-mode model and corresponding set of parameters are able to reproduce the complex topographical and electronic structure features seen in electronically correlated data obtained at the XMCQDPT2//CASSCF/6-31G* level of theory.
Collapse
Affiliation(s)
- Emanuele Marsili
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Marwa H Farag
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0482 , United States
| | - Xuchun Yang
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and.,Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 , Université de Strasbourg-CNRS , F-67034 Strasbourg , France
| |
Collapse
|
11
|
Gómez S, Ibele LM, González L. The 3s Rydberg state as a doorway state in the ultrafast dynamics of 1,1-difluoroethylene. Phys Chem Chem Phys 2019; 21:4871-4878. [DOI: 10.1039/c8cp07766e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation dynamics of 1,1-difluoroethylene after light excitation is studied within the surface hopping formalism in the presence of 3s and 3p Rydberg states using multi-state second order perturbation theory (MS-CASPT2).
Collapse
Affiliation(s)
- Sandra Gómez
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Lea M. Ibele
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| | - Leticia González
- Institute for Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- 1090 Vienna
- Austria
| |
Collapse
|
12
|
Tuna D, Spörkel L, Barbatti M, Thiel W. Nonadiabatic dynamics simulations of photoexcited urocanic acid. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Filatov M, Min SK, Kim KS. Direct Nonadiabatic Dynamics by Mixed Quantum-Classical Formalism Connected with Ensemble Density Functional Theory Method: Application to trans-Penta-2,4-dieniminium Cation. J Chem Theory Comput 2018; 14:4499-4512. [DOI: 10.1021/acs.jctc.8b00217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Michael Filatov
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Seung Kyu Min
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kwang S. Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
14
|
Pang X, Cui X, Hu D, Jiang C, Zhao D, Lan Z, Li F. “Watching” the Dark State in Ultrafast Nonadiabatic Photoisomerization Process of a Light-Driven Molecular Rotary Motor. J Phys Chem A 2017; 121:1240-1249. [DOI: 10.1021/acs.jpca.6b12253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaojuan Pang
- Key
Laboratory for Quantum Information and Quantum Optoelectronic Devices,
Shaanxi, and Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xueyan Cui
- Key
Laboratory for Quantum Information and Quantum Optoelectronic Devices,
Shaanxi, and Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Deping Hu
- Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 Shandong China
| | - Chenwei Jiang
- Key
Laboratory for Quantum Information and Quantum Optoelectronic Devices,
Shaanxi, and Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Di Zhao
- Key
Laboratory for Quantum Information and Quantum Optoelectronic Devices,
Shaanxi, and Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenggang Lan
- Qingdao Institute
of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101 Shandong China
| | - Fuli Li
- Key
Laboratory for Quantum Information and Quantum Optoelectronic Devices,
Shaanxi, and Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
15
|
Bai S, Barbatti M. On the decay of the triplet state of thionucleobases. Phys Chem Chem Phys 2017; 19:12674-12682. [DOI: 10.1039/c7cp02050c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The double-well triplet state of thionucleobases allows for a two-step mechanistic control of their triplet decay lifetime.
Collapse
|
16
|
Mališ M, Novak J, Zgrablić G, Parmigiani F, Došlić N. Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents. Phys Chem Chem Phys 2017; 19:25970-25978. [DOI: 10.1039/c7cp03293e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counterion sensitive photodynamics of the retinal chromophore in solution.
Collapse
Affiliation(s)
- M. Mališ
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
- Centre Européen de Calcul Atomique et Moléculaire
| | - J. Novak
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - G. Zgrablić
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Politehnika Pula
| | - F. Parmigiani
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Department of Physics
| | - N. Došlić
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
17
|
Liu L, Liu J, Martinez TJ. Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model trans-Protonated Schiff Base. J Phys Chem B 2016; 120:1940-9. [DOI: 10.1021/acs.jpcb.5b09838] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Liu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| | - Jian Liu
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Todd J. Martinez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| |
Collapse
|
18
|
Aschi M, Barone V, Carlotti B, Daidone I, Elisei F, Amadei A. Photoexcitation and relaxation kinetics of molecular systems in solution: towards a complete in silico model. Phys Chem Chem Phys 2016; 18:28919-28931. [PMID: 27725986 DOI: 10.1039/c6cp06167b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical–computational method is proposed for modelling the complete kinetics – from photo-excitation to relaxation – of a chromophore in solution.
Collapse
Affiliation(s)
| | | | - Benedetta Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - Isabella Daidone
- Dipartimento di Scienze Fisiche e Chimiche
- University of l'Aquila
- Italy
| | - Fausto Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche
- Universiy of Roma Tor Vergata
- 00100 Roma
- Italy
| |
Collapse
|
19
|
Tuna D, Lefrancois D, Wolański Ł, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J Chem Theory Comput 2015; 11:5758-81. [PMID: 26642989 DOI: 10.1021/acs.jctc.5b00022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Łukasz Wolański
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504 , Strasbourg 67034, France
| | - Tadeusz Andruniów
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá de Siena , 53100 Siena, Italy
| |
Collapse
|
20
|
Krčmář J, Gelin MF, Domcke W. Simulation of femtosecond two-dimensional electronic spectra of conical intersections. J Chem Phys 2015; 143:074308. [PMID: 26298135 DOI: 10.1063/1.4928685] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have simulated femtosecond two-dimensional (2D) electronic spectra for an excited-state conical intersection using the wave-function version of the equation-of-motion phase-matching approach. We show that 2D spectra at fixed values of the waiting time provide information on the structure of the vibronic eigenstates of the conical intersection, while the evolution of the spectra with the waiting time reveals predominantly ground-state wave-packet dynamics. The results show that 2D spectra of conical intersection systems differ significantly from those obtained for chromophores with well separated excited-state potential-energy surfaces. The spectral signatures which can be attributed to conical intersections are discussed.
Collapse
Affiliation(s)
- Jindřich Krčmář
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
21
|
Schapiro I, Roca-Sanjuán D, Lindh R, Olivucci M. A surface hopping algorithm for nonadiabatic minimum energy path calculations. J Comput Chem 2015; 36:312-20. [DOI: 10.1002/jcc.23805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/21/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Igor Schapiro
- Department of Chemistry; Bowling Green State University; Bowling Green Ohio 43403
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular; Universitat de València; P. O. Box 22085 València 46071 Spain
| | - Roland Lindh
- Department of Chemistry-Ångström; Theoretical Chemistry Programme, Uppsala University; P. O. Box 518 Uppsala 75120 Sweden
- Uppsala Center for Computational Chemistry - UC 3; Uppsala University; P. O. Box 518 Uppsala 75120 Sweden
| | - Massimo Olivucci
- Department of Chemistry; Bowling Green State University; Bowling Green Ohio 43403
- Dipartimento di Biotechnologie, Chimica e Farmacia; Università di Siena; Siena 53100 Italy
| |
Collapse
|
22
|
Zhu X, Yarkony DR. Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data. J Chem Phys 2014; 140:024112. [DOI: 10.1063/1.4857335] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaolei Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
23
|
Rivalta I, Nenov A, Garavelli M. Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Phys Chem Chem Phys 2014; 16:16865-79. [DOI: 10.1039/c3cp55211j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling of retinal photoisomerization in different environments is reviewed and ultimate ultrafast electronic spectroscopy is proposed for obtaining new insights.
Collapse
Affiliation(s)
- Ivan Rivalta
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| | - Artur Nenov
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna, Italy
| | - Marco Garavelli
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| |
Collapse
|
24
|
Gozem S, Melaccio F, Lindh R, Krylov AI, Granovsky AA, Angeli C, Olivucci M. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods. J Chem Theory Comput 2013; 9:4495-506. [DOI: 10.1021/ct400460h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Federico Melaccio
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| | - Roland Lindh
- Department
of Chemistry, Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden
| | - Anna I. Krylov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | | | - Celestino Angeli
- Dipartimento
di Chimica, Università di Ferrara, via Borsari 46, I-44121 Ferrara, Italy
| | - Massimo Olivucci
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| |
Collapse
|
25
|
Sellner B, Barbatti M, Müller T, Domcke W, Lischka H. Ultrafast non-adiabatic dynamics of ethylene including Rydberg states. Mol Phys 2013. [DOI: 10.1080/00268976.2013.813590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Curchod BFE, Rothlisberger U, Tavernelli I. Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory. Chemphyschem 2013; 14:1314-40. [DOI: 10.1002/cphc.201200941] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 11/11/2022]
|
27
|
Ruckenbauer M, Barbatti M, Müller T, Lischka H. Nonadiabatic photodynamics of a retinal model in polar and nonpolar environment. J Phys Chem A 2013; 117:2790-9. [PMID: 23470211 PMCID: PMC3619535 DOI: 10.1021/jp400401f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The nonadiabatic photodynamics of
the all-trans-2,4-pentadiene-iminium cation (protonated
Schiff base 3, PSB3) and
the all-trans-3-methyl-2,4-pentadiene-iminium cation
(MePSB3) were investigated in the gas phase and in polar (aqueous)
and nonpolar (n-hexane) solutions by means of surface
hopping using a multireference configuration-interaction (MRCI) quantum
mechanical/molecular mechanics (QM/MM) level. Spectra, lifetimes for
radiationless deactivation to the ground state, and structural and
electronic parameters are compared. A strong influence of the polar
solvent on the location of the crossing seam, in particular in the
bond length alternation (BLA) coordinate, is found. Additionally,
inclusion of the polar solvent changes the orientation of the intersection
cone from sloped in the gas phase to peaked, thus enhancing considerably
its efficiency for deactivation of the molecular system to the ground
state. These factors cause, especially for MePSB3, a substantial decrease
in the lifetime of the excited state despite the steric inhibition
by the solvent.
Collapse
Affiliation(s)
- Matthias Ruckenbauer
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
28
|
Virshup AM, Chen J, Martínez TJ. Nonlinear dimensionality reduction for nonadiabatic dynamics: the influence of conical intersection topography on population transfer rates. J Chem Phys 2013; 137:22A519. [PMID: 23249056 DOI: 10.1063/1.4742066] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conical intersections play a critical role in the nonadiabatic relaxation of excited electronic states. However, there are an infinite number of these intersections and it is difficult to predict which are actually relevant. Furthermore, traditional descriptors such as intrinsic reaction coordinates and steepest descent paths often fail to adequately characterize excited state reactions due to their highly nonequilibrium nature. To address these deficiencies in the characterization of excited state mechanisms, we apply a nonlinear dimensionality reduction scheme (diffusion mapping) to generate reaction coordinates directly from ab initio multiple spawning dynamics calculations. As illustrated with various examples of photoisomerization dynamics, excited state reaction pathways can be derived directly from simulation data without any a priori specification of relevant coordinates. Furthermore, diffusion maps also reveal the influence of intersection topography on the efficiency of electronic population transfer, providing further evidence that peaked intersections promote nonadiabatic transitions more effectively than sloped intersections. Our results demonstrate the usefulness of nonlinear dimensionality reduction techniques as powerful tools for elucidating reaction mechanisms beyond the statistical description of processes on ground state potential energy surfaces.
Collapse
Affiliation(s)
- Aaron M Virshup
- Department of Chemistry, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Fazzi D, Scotognella F, Milani A, Brida D, Manzoni C, Cinquanta E, Devetta M, Ravagnan L, Milani P, Cataldo F, Lüer L, Wannemacher R, Cabanillas-Gonzalez J, Negro M, Stagira S, Vozzi C. Ultrafast spectroscopy of linear carbon chains: the case of dinaphthylpolyynes. Phys Chem Chem Phys 2013; 15:9384-91. [DOI: 10.1039/c3cp50508a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Malhado JP, Hynes JT. Photoisomerization for a model protonated Schiff base in solution: Sloped/peaked conical intersection perspective. J Chem Phys 2012; 137:22A543. [DOI: 10.1063/1.4754505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Gozem S, Krylov AI, Olivucci M. Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods. J Chem Theory Comput 2012; 9:284-92. [DOI: 10.1021/ct300759z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Anna I. Krylov
- Department of Chemistry, University
of Southern California, Los Angeles, California 90089-0482, United
States
| | - Massimo Olivucci
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Chimica,
Università
di Siena, via De Gasperi 2, I-53100 Siena, Italy
| |
Collapse
|
32
|
Gozem S, Huntress M, Schapiro I, Lindh R, Granovsky AA, Angeli C, Olivucci M. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model. J Chem Theory Comput 2012; 8:4069-80. [DOI: 10.1021/ct3003139] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Mark Huntress
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
| | - Roland Lindh
- Department of Chemistry −
Ångström, the Theoretical Chemistry Programme, POB 518,
SE-751 20 Uppsala, Sweden
| | | | - Celestino Angeli
- Dipartimento di
Chimica, Università
di Ferrara, via Borsari 46, I-44121 Ferrara, Italy
| | - Massimo Olivucci
- Department of Chemistry, Bowling
Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento di Chimica, Università
di Siena, via De Gasperi 2, I-53100 Siena, Italy
| |
Collapse
|
33
|
Metal-to-metal charge-transfer transitions: reliable excitation energies from ab initio calculations. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1264-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Plasser F, Barbatti M, Aquino AJA, Lischka H. Electronically excited states and photodynamics: a continuing challenge. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1073-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Kuhlman TS, Glover WJ, Mori T, Møller KB, Martínez TJ. Between ethylene and polyenes - the non-adiabatic dynamics of cis-dienes. Faraday Discuss 2012; 157:193-212; discussion 243-84. [DOI: 10.1039/c2fd20055d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Klaffki N, Weingart O, Garavelli M, Spohr E. Sampling excited state dynamics: influence of HOOP mode excitations in a retinal model. Phys Chem Chem Phys 2012; 14:14299-305. [DOI: 10.1039/c2cp41994g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Fazzi D, Grancini G, Maiuri M, Brida D, Cerullo G, Lanzani G. Ultrafast internal conversion in a low band gap polymer for photovoltaics: experimental and theoretical study. Phys Chem Chem Phys 2012; 14:6367-74. [DOI: 10.1039/c2cp23917e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem Rev 2011; 112:108-81. [DOI: 10.1021/cr200137a] [Citation(s) in RCA: 470] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Péter G. Szalay
- Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P. O. Box 32, H-1518 Budapest, Hungary
| | - Thomas Müller
- Jülich Supercomputer Centre, Institute of Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, 502 East Boone Avenue, Spokane, Washington 99258-0102, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
39
|
Plasser F, Lischka H. Semiclassical dynamics simulations of charge transport in stacked π-systems. J Chem Phys 2011; 134:034309. [PMID: 21261355 DOI: 10.1063/1.3526697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Charge transfer processes within stacked π-systems were examined for the stacked ethylene dimer radical cation with inclusion of a bridge containing up to three formaldehyde molecules. The electronic structure was treated at the complete active space self-consistent field and multireference configuration interaction levels. Nonadiabatic interactions between electronic and nuclear degrees of freedom were included through semiclassical surface hopping dynamics. The processes were analyzed according to fragment charge differences. Static calculations explored the dependence of the electronic coupling and on-site energies on varying geometric parameters and on the inclusion of a bridge. The dynamics simulations gave the possibility for directly observing complex charge transfer and diabatic trapping events.
Collapse
Affiliation(s)
- Felix Plasser
- Institute for Theoretical Chemistry-University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria.
| | | |
Collapse
|
40
|
Zelený T, Hobza P, Nachtigallová D, Ruckenbauer M, Lischka H. Photodynamics of the adenine model 4-aminopyrimidine embedded within double strand of DNA. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
On-the-fly surface hopping nonadiabatic photodynamical simulations using hybrid quantum mechanical/molecular mechanical approach of 4-aminopyrimidine were performed to model the relaxation mechanism of adenine within DNA double strand. The surrounding bases do not affect the overall ring-puckering relaxation mechanisms significantly, however, interesting hydrogen-bond dynamics is observed. First, formation of intra-strand hydrogen bonds is found. It is shown that this effect speeds up the decay process. In addition, the Watson–Crick structure is altered by breaking one of the inter-strand hydrogen bonds also leading to a decrease of the life time.
Collapse
|
41
|
Barbatti M, Szymczak JJ, Aquino AJA, Nachtigallová D, Lischka H. The decay mechanism of photoexcited guanine − A nonadiabatic dynamics study. J Chem Phys 2011; 134:014304. [DOI: 10.1063/1.3521498] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Barbatti M, Ullrich S. Ionization potentials of adenine along the internal conversion pathways. Phys Chem Chem Phys 2011; 13:15492-500. [DOI: 10.1039/c1cp21350d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Nenov A, Cordes T, Herzog TT, Zinth W, de Vivie-Riedle R. Molecular Driving Forces for Z/E Isomerization Mediated by Heteroatoms: The Example Hemithioindigo. J Phys Chem A 2010; 114:13016-30. [DOI: 10.1021/jp107899g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Artur Nenov
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, D-81377 München, Germany, and BioMolecular Optics and Munich Center for Integrated Protein Science CIPSM, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| | - Thorben Cordes
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, D-81377 München, Germany, and BioMolecular Optics and Munich Center for Integrated Protein Science CIPSM, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| | - Teja T. Herzog
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, D-81377 München, Germany, and BioMolecular Optics and Munich Center for Integrated Protein Science CIPSM, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| | - Wolfgang Zinth
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, D-81377 München, Germany, and BioMolecular Optics and Munich Center for Integrated Protein Science CIPSM, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, D-81377 München, Germany, and BioMolecular Optics and Munich Center for Integrated Protein Science CIPSM, Fakultät für Physik, Ludwig-Maximilians-Universität München, Oettingenstrasse 67, D-80538 München, Germany
| |
Collapse
|
44
|
Vazdar M, Eckert-Maksić M, Barbatti M, Lischka H. Excited-state non-adiabatic dynamics simulations of pyrrole. Mol Phys 2010. [DOI: 10.1080/00268970802665639] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Granucci G, Persico M, Zoccante A. Including quantum decoherence in surface hopping. J Chem Phys 2010; 133:134111. [DOI: 10.1063/1.3489004] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Understanding the differences in photochemical properties of substituted aminopyrimidines. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0815-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Szymczak JJ, Müller T, Lischka H. The effect of hydration on the photo-deactivation pathways of 4-aminopyrimidine. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
The photodynamics of 2,4-diaminopyrimidine in comparison with 4-aminopyrimidine: The effect of amino-substitution. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Ruckenbauer M, Barbatti M, Müller T, Lischka H. Nonadiabatic Excited-State Dynamics with Hybrid ab Initio Quantum-Mechanical/Molecular-Mechanical Methods: Solvation of the Pentadieniminium Cation in Apolar Media. J Phys Chem A 2010; 114:6757-65. [DOI: 10.1021/jp103101t] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthias Ruckenbauer
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Mario Barbatti
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Thomas Müller
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria, Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany, and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
50
|
Nachtigallová D, Zelený T, Ruckenbauer M, Müller T, Barbatti M, Hobza P, Lischka H. Does Stacking Restrain the Photodynamics of Individual Nucleobases? J Am Chem Soc 2010; 132:8261-3. [DOI: 10.1021/ja1029705] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Tomáš Zelený
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Matthias Ruckenbauer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Thomas Müller
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Mario Barbatti
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| | - Hans Lischka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic, Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic, Institute of Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A 1090 Vienna, Austria, and Institute of Advanced Simulation, Jülich Supercomputer Centre, Research Centre Jülich, D-52425 Jülich, Germany
| |
Collapse
|