1
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Sun R, Yao Z. Intrinsic statistical regularity of topological charges revealed in dynamical disk model. Phys Rev E 2024; 110:035302. [PMID: 39425396 DOI: 10.1103/physreve.110.035302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Identifying ordered structures hidden in the packings of particles is a common scientific question in multiple fields. In this work, we investigate the dynamical organizations of a large number of initially randomly packed repulsive particles confined on a disk under the Hamiltonian dynamics by the recently developed algorithm called the random batch method. This algorithm is specifically designed for reducing the computational complexity of long-range interacting particle systems. We highlight the revealed intrinsic statistical regularity of topological charges that is otherwise unattainable by the continuum analysis of particle density. We also identify distinct collective dynamics of the interacting particles under short- and long-range repulsive forces. This work shows the robustness and effectiveness of the concept of topological charge for characterizing the convoluted particle dynamics, and it demonstrates the promising potential of the random batch method for exploring fundamental scientific questions arising in a variety of long-range interacting particle systems in soft matter physics and other relevant fields.
Collapse
|
3
|
Tang Y, Chen S, Bowick MJ, Bi D. Cell Division and Motility Enable Hexatic Order in Biological Tissues. PHYSICAL REVIEW LETTERS 2024; 132:218402. [PMID: 38856284 PMCID: PMC11267118 DOI: 10.1103/physrevlett.132.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
Biological tissues transform between solid- and liquidlike states in many fundamental physiological events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these solid-liquid transformations can happen via intermediate states akin to the intermediate hexatic phases observed in equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range (power-law) orientational order but no translational order, thus endowing some structure to an otherwise structureless fluid. While it has been shown that hexatic order in tissue models can be induced by motility and thermal fluctuations, the role of cell division and apoptosis (birth and death) has remained poorly understood, despite its fundamental biological role. Here we study the effect of cell division and apoptosis on global hexatic order within the framework of the self-propelled Voronoi model of tissue. Although cell division naively destroys order and active motility facilitates deformations, we show that their combined action drives a liquid-hexatic-liquid transformation as the motility increases. The hexatic phase is accessed by the delicate balance of dislocation defect generation from cell division and the active binding of disclination-antidisclination pairs from motility. We formulate a mean-field model to elucidate this competition between cell division and motility and the consequent development of hexatic order.
Collapse
Affiliation(s)
- Yiwen Tang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Siyuan Chen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Mark J Bowick
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Bond K, Tsvetkova IB, Wang JCY, Jarrold MF, Dragnea B. Virus Assembly Pathways: Straying Away but Not Too Far. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004475. [PMID: 33241653 DOI: 10.1002/smll.202004475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Non-enveloped RNA viruses pervade all domains of life. In a cell, they co-assemble from viral RNA and capsid proteins. Virus-like particles can form in vitro where virtually any non-cognate polyanionic cargo can be packaged. How only viral RNA gets selected for packaging in vivo, in presence of myriad other polyanionic species, has been a puzzle. Through a combination of charge detection mass spectrometry and cryo-electron microscopy, it is determined that co-assembling brome mosaic virus (BMV) coat proteins and nucleic acid oligomers results in capsid structures and stoichiometries that differ from the icosahedral virion. These previously unknown shell structures are strained and less stable than the native one. However, they contain large native structure fragments that can be recycled to form BMV virions, should a viral genome become available. The existence of such structures suggest the possibility of a previously unknown regulatory pathway for the packaging process inside cells.
Collapse
Affiliation(s)
- Kevin Bond
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
5
|
Konevtsova OV, Roshal DS, Podgornik R, Rochal SB. Irreversible and reversible morphological changes in the φ6 capsid and similar viral shells: symmetry and micromechanics. SOFT MATTER 2020; 16:9383-9392. [PMID: 32945317 DOI: 10.1039/d0sm01338b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the physicochemical processes occurring in viruses during their maturation is of fundamental importance since only mature viruses can infect host cells. Here we consider the irreversible and reversible morphological changes that occur with the dodecahedral φ6 procapsid during the sequential packaging of 3 RNA segments forming the viral genome. It is shown that the dodecahedral shape of all the four observed capsid states is perfectly reproduced by a sphere radially deformed by only two irreducible spherical harmonics with icosahedral symmetry and wave numbers l = 6 and l = 10. The rotation of proteins around the 3-fold axes at the Procapsid → Intermediate 1 irreversible transformation is in fact also well described with the shear field containing only two irreducible harmonics with the same two wave numbers. The high stability of the Intermediate 1 state is discussed and the shapes of the Intermediate 2 state and Capsid (reversibly transforming back to the Intermediate 1 state) are shown to be mainly due to the isotropic pressure that the encapsidated RNA segments exert on the shell walls. The hidden symmetry of the capsid and the physicochemical features of the in vitro genome extraction from the viral shell are also elucidated.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Daria S Roshal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| | - Rudolf Podgornik
- Department of Theoretical Physics, JoŽef Stefan Institute, SI-1000 Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia and School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sergei B Rochal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia.
| |
Collapse
|
6
|
Yao Z. Stress driven fractionalization of vacancies in regular packings of elastic particles. SOFT MATTER 2020; 16:5633-5639. [PMID: 32510072 DOI: 10.1039/d0sm00205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elucidating the interplay of defects and stress at the microscopic level is a fundamental physical problem that has a strong connection with materials science. Here, based on the two-dimensional crystal model, we show that the instability mode of vacancies with varying size and morphology conforms to a common scenario. A vacancy under compression is fissioned into a pair of dislocations that glide and vanish at the boundary. This neat process is triggered by the local shear stress around the vacancy. The remarkable fractionalization of vacancies creates rich modes of interaction between vacancies and other topological defects, and provides a new dimension for mechanical engineering of defects in extensive crystalline structures.
Collapse
Affiliation(s)
- Zhenwei Yao
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Liber SR, Butenko AV, Caspi M, Guttman S, Schultz M, Schofield AB, Deutsch M, Sloutskin E. Precise Self-Positioning of Colloidal Particles on Liquid Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13053-13061. [PMID: 31502850 DOI: 10.1021/acs.langmuir.9b01833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Decorating emulsion droplets by particles stabilizes foodstuff and pharmaceuticals. Interfacial particles also influence aerosol formation, thus impacting atmospheric CO2 exchange. While studies of particles at disordered droplet interfaces abound in the literature, such studies for ubiquitous ordered interfaces are not available. Here, we report such an experimental study, showing that particles residing at crystalline interfaces of liquid droplets spontaneously self-position to specific surface locations, identified as structural topological defects in the crystalline surface monolayer. This monolayer forms at temperature T = Ts, leaving the droplet liquid and driving at Td < Ts a spontaneous shape-change transition of the droplet from spherical to icosahedral. The particle's surface position remains unchanged in the transition, demonstrating these positions to coincide with the vertices of the sphere-inscribed icosahedron. Upon further cooling, droplet shape-changes to other polyhedra occur, with the particles remaining invariably at the polyhedra's vertices. At still lower temperatures, the particles are spontaneously expelled from the droplets. Our results probe the molecular-scale elasticity of quasi-two-dimensional curved crystals, impacting also other fields, such as protein positioning on cell membranes, controlling essential biological functions. Using ligand-decorated particles, and the precise temperature-tunable surface position control found here, may also allow using these droplets for directed supra-droplet self-assembly into larger structures, with a possible post-assembly structure fixation by UV polymerization of the droplet's liquid.
Collapse
Affiliation(s)
- Shir R Liber
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Alexander V Butenko
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Moshe Caspi
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Shani Guttman
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Moty Schultz
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Andrew B Schofield
- The School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3FD , U.K
| | - Moshe Deutsch
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Eli Sloutskin
- Physics Department and Institute of Nanotechnology & Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| |
Collapse
|
8
|
Hernando-Pérez M, Zeng C, Miguel MC, Dragnea B. Intermittency of Deformation and the Elastic Limit of an Icosahedral Virus under Compression. ACS NANO 2019; 13:7842-7849. [PMID: 31241887 DOI: 10.1021/acsnano.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viruses undergo mesoscopic morphological changes as they interact with host interfaces and in response to chemical cues. The dynamics of these changes, over the entire temporal range relevant to virus processes, are unclear. Here, we report on creep compliance experiments on a small icosahedral virus under uniaxial constant stress. We find that even at small stresses, well below the yielding point and generally thought to induce a Hookean response, strain continues to develop in time via sparse, randomly distributed, relatively rapid plastic events. The intermittent character of mechanical compliance only appears above a loading threshold, similar to situations encountered in granular flows and the plastic deformation of crystalline solids. The threshold load is much smaller for the empty capsids of the brome mosaic virus than for the wild-type virions. The difference highlights the involvement of RNA in stabilizing the assembly interface. Numerical simulations of spherical crystal deformation suggest intermittency is mediated by lattice defect dynamics and identify the type of compression-induced defect that nucleates the transition to plasticity.
Collapse
Affiliation(s)
| | - Cheng Zeng
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
- Harvard , John A. Paulson School of Applied Sciences , 29 Oxford Street Cambridge , Massachusetts 02138 , United States
| | - M Carmen Miguel
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
9
|
Roshal D, Konevtsova O, Lošdorfer Božič A, Podgornik R, Rochal S. pH-induced morphological changes of proteinaceous viral shells. Sci Rep 2019; 9:5341. [PMID: 30926857 PMCID: PMC6440952 DOI: 10.1038/s41598-019-41799-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/21/2019] [Indexed: 01/19/2023] Open
Abstract
Changes in environmental pH can induce morphological changes in empty proteinaceous shells of bacteriophages in vitro that are very similar to changes occurring in viral capsids in vivo after encapsidation of DNA. These changes in capsid shape and size cannot be explained with a simple elastic model alone. We propose a new theoretical framework that combines the elasticity of thin icosahedral shells with the pH dependence of capsid charge distribution. Minimization of the sum of elastic and electrostatic free energies leads to equilibrium shapes of viral shells that depend on a single elastic parameter and the detailed configuration of the imbedded protein charges. Based on the in vitro shell reconstructions of bacteriophage HK97 we elucidate the details of how the reversible transition between Prohead II and Expansion Intermediate II states of the HK97 procapsid is induced by pH changes, as well as some other features of the bacteriophage maturation.
Collapse
Affiliation(s)
- D Roshal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia
| | - O Konevtsova
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia
| | - A Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - R Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia.
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - S Rochal
- Physics Faculty, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
10
|
Abstract
Understanding geometric frustration of ordered phases in two-dimensional condensed matter on curved surfaces is closely related to a host of scientific problems in condensed matter physics and materials science. Here, we show how two-dimensional Lennard-Jones crystal clusters confined on a sphere resolve geometric frustration and form pentagonal vacancy structures. These vacancies, originating from the combination of curvature and physical interaction, are found to be topological defects and they can be further classified into dislocational and disclinational types. We analyze the dual role of these crystallographic defects as both vacancies and topological defects, illustrate their formation mechanism, and present the phase diagram. The revealed dual role of the topological vacancies may find applications in the fabrication of robust nanopores. This work also shows the promising potential of exploiting richness in both physical interactions and substrate geometries to create new types of crystallographic defects, which have strong connections with the design of crystalline materials.
Collapse
Affiliation(s)
- Zhenwei Yao
- School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Saxena P, He L, Malyutin A, Datta SAK, Rein A, Bond KM, Jarrold MF, Spilotros A, Svergun D, Douglas T, Dragnea B. Virus Matryoshka: A Bacteriophage Particle-Guided Molecular Assembly Approach to a Monodisperse Model of the Immature Human Immunodeficiency Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5862-5872. [PMID: 27634413 PMCID: PMC6810630 DOI: 10.1002/smll.201601712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/05/2016] [Indexed: 05/27/2023]
Abstract
Immature human immunodeficiency virus type 1 (HIV-1) is approximately spherical, but is constructed from a hexagonal lattice of the Gag protein. As a hexagonal lattice is necessarily flat, the local symmetry cannot be maintained throughout the structure. This geometrical frustration presumably results in bending stress. In natural particles, the stress is relieved by incorporation of packing defects, but the magnitude of this stress and its significance for the particles is not known. In order to control this stress, we have now assembled the Gag protein on a quasi-spherical template derived from bacteriophage P22. This template is monodisperse in size and electron-transparent, enabling the use of cryo-electron microscopy in structural studies. These templated assemblies are far less polydisperse than any previously described virus-like particles (and, while constructed according to the same lattice as natural particles, contain almost no packing defects). This system gives us the ability to study the relationship between packing defects, curvature and elastic energy, and thermodynamic stability. As Gag is bound to the P22 template by single-stranded DNA, treatment of the particles with DNase enabled us to determine the intrinsic radius of curvature of a Gag lattice, unconstrained by DNA or a template. We found that this intrinsic radius is far larger than that of a virion or P22-templated particle. We conclude that Gag is under elastic strain in a particle; this has important implications for the kinetics of shell growth, the stability of the shell, and the type of defects it will assume as it grows.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Li He
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Andrey Malyutin
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Siddhartha A K Datta
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Alan Rein
- National Cancer Institute, P.O. Box B, Building 535, Frederick, MD, 21702-1201, USA
| | - Kevin M Bond
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Alessandro Spilotros
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory-DESY, Notkestrasse 85, Geb. 25a, 22603, Hamburg, Germany
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| |
Collapse
|
12
|
Yong EH, Nelson DR, Mahadevan L. Elastic platonic shells. PHYSICAL REVIEW LETTERS 2013; 111:177801. [PMID: 24206520 DOI: 10.1103/physrevlett.111.177801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Indexed: 06/02/2023]
Abstract
On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.
Collapse
Affiliation(s)
- Ee Hou Yong
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
13
|
Reichhardt C, Reichhardt CO. Defect dynamics: breaking up in a curved plane. NATURE MATERIALS 2012; 11:912-913. [PMID: 23089993 DOI: 10.1038/nmat3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Charles Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
14
|
Irvine WTM, Bowick MJ, Chaikin PM. Fractionalization of interstitials in curved colloidal crystals. NATURE MATERIALS 2012; 11:948-951. [PMID: 23023553 DOI: 10.1038/nmat3429] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Understanding the effect of curvature and topological frustration in crystals yields insights into the fragility of the ordered state. For instance, a one-dimensional crystal of identical charged particles can accommodate an extra particle (interstitial) if all the particle positions are readjusted, yet in a planar hexagonal crystal interstitials remain trapped between lattice sites and diffuse by hopping. Using optical tweezers operated independently of three-dimensional imaging, we inserted interstitials in a lattice of similar colloidal particles sitting on flat or curved oil/glycerol interfaces, and imaged the ensuing dynamics. We find that, unlike in flat space, the curved crystals self-heal through a collective particle rearrangement that redistributes the increased density associated with the interstitial. This process can be interpreted in terms of the out-of-equilibrium interaction of topological defects with each other and with the underlying curvature. Our observations suggest the existence of particle fractionalization on curved surface crystals.
Collapse
Affiliation(s)
- William T M Irvine
- James Franck Institute, University of Chicago, 929 E 57th street, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
15
|
A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc Natl Acad Sci U S A 2008; 105:19142-7. [PMID: 19050075 DOI: 10.1073/pnas.0807603105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon atoms self-assemble into the famous soccer-ball shaped Buckminsterfullerene (C(60)), the smallest fullerene cage that obeys the isolated-pentagon rule (IPR). Carbon atoms self-assemble into larger (n > 60 vertices) empty cages as well-but only the few that obey the IPR-and at least 1 small fullerene (n <or= 60) with adjacent pentagons. Clathrin protein also self-assembles into small fullerene cages with adjacent pentagons, but just a few of those. We asked why carbon atoms and clathrin proteins self-assembled into just those IPR and small cage isomers. In answer, we described a geometric constraint-the head-to-tail exclusion rule-that permits self-assembly of just the following fullerene cages: among the 5,769 possible small cages (n <or= 60 vertices) with adjacent pentagons, only 15; the soccer ball (n = 60); and among the 216,739 large cages with 60 < n <or= 84 vertices, only the 50 IPR ones. The last finding was a complete surprise. Here, by showing that the largest permitted fullerene with adjacent pentagons is one with 60 vertices and a ring of interleaved hexagons and pentagon pairs, we prove that for all n > 60, the head-to-tail exclusion rule permits only (and all) fullerene cages and nanotubes that obey the IPR. We therefore suggest that self-assembly that obeys the IPR may be explained by the head-to-tail exclusion rule, a geometric constraint.
Collapse
|
16
|
Amatore C. Is there an Intrinsic Limit to the Size of 2D Supracrystals Built from Weakly Interacting Nanoparticles? Chemistry 2008; 14:8615-23. [DOI: 10.1002/chem.200801074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|