1
|
Han L, Zhong W, Qian J, Jin M, Tian P, Zhu W, Zhang H, Sun Y, Feng JW, Liu X, Chen G, Farid B, Li R, Xiong Z, Tian Z, Li J, Luo Z, Du D, Chen S, Jin Q, Li J, Li Z, Liang Y, Jin X, Peng Y, Zheng C, Ye X, Yin Y, Chen H, Li W, Chen LL, Li Q, Yan J, Yang F, Li L. A multi-omics integrative network map of maize. Nat Genet 2023; 55:144-153. [PMID: 36581701 DOI: 10.1038/s41588-022-01262-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
Networks are powerful tools to uncover functional roles of genes in phenotypic variation at a system-wide scale. Here, we constructed a maize network map that contains the genomic, transcriptomic, translatomic and proteomic networks across maize development. This map comprises over 2.8 million edges in more than 1,400 functional subnetworks, demonstrating an extensive network divergence of duplicated genes. We applied this map to identify factors regulating flowering time and identified 2,651 genes enriched in eight subnetworks. We validated the functions of 20 genes, including 18 with previously unknown connections to flowering time in maize. Furthermore, we uncovered a flowering pathway involving histone modification. The multi-omics integrative network map illustrates the principles of how molecular networks connect different types of genes and potential pathways to map a genome-wide functional landscape in maize, which should be applicable in a wide range of species.
Collapse
Affiliation(s)
- Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Peng Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guo Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Babar Farid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ruonan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zimo Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Tian
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Zi Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaxin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xinnan Ye
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hong Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Weifu Li
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Identification of Olfactory Genes in Monochamus saltuarius and Effects of Bursaphelenchus xylophilus Infestation on Their Expression. FORESTS 2022. [DOI: 10.3390/f13020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused disastrous losses of pine forests in many countries, and the success of PWN depends strongly on interactions with its insect vectors. Monochamus saltuarius is a newly recorded vector in Northeast China. Feeding (i.e., immature) and egg-laying (i.e., mature) Monochamus spp. target different host plants, and olfactory cues play important roles regarding host choice. Whether infestation with PWN affects olfactory mechanisms in M. saltuarius related to feeding and oviposition is of interest as this may affect the spread of nematodes to new healthy hosts. However, little is known about molecular mechanisms of the olfactory system of M. saltuarius. We identified chemosensory-related genes in adult M. saltuarius and examined the influence of B. xylophilus on the respective expression patterns. Fifty-three odorant-binding proteins (OBPs), 15 chemosensory proteins, 15 olfactory receptors (ORs), 10 gustatory receptors, 22 ionotropic receptors (IRs), and two sensory neuron membrane proteins were identified, and sex bias among non-infested beetles was mainly found with respect to expression of OBPs. Interestingly, OBPs and ORs were markedly down-regulated in male M. saltuarius infested with B. xylophilus, which may reduce olfactory sensitivity of male M. saltuarius and affect the spreading of B. xylophilus to new hosts. Our results will help understand the interactions between B. xylophilus and M. saltuarius, which may lead to the identification of new control targets in the olfactory system of M. saltuarius.
Collapse
|
3
|
Bacher R, Chu LF, Argus C, Bolin JM, Knight P, Thomson J, Stewart R, Kendziorski C. Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization. Nucleic Acids Res 2022; 50:e12. [PMID: 34850101 PMCID: PMC8789062 DOI: 10.1093/nar/gkab1071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
Considerable effort has been devoted to refining experimental protocols to reduce levels of technical variability and artifacts in single-cell RNA-sequencing data (scRNA-seq). We here present evidence that equalizing the concentration of cDNA libraries prior to pooling, a step not consistently performed in single-cell experiments, improves gene detection rates, enhances biological signals, and reduces technical artifacts in scRNA-seq data. To evaluate the effect of equalization on various protocols, we developed Scaffold, a simulation framework that models each step of an scRNA-seq experiment. Numerical experiments demonstrate that equalization reduces variation in sequencing depth and gene-specific expression variability. We then performed a set of experiments in vitro with and without the equalization step and found that equalization increases the number of genes that are detected in every cell by 17-31%, improves discovery of biologically relevant genes, and reduces nuisance signals associated with cell cycle. Further support is provided in an analysis of publicly available data.
Collapse
Affiliation(s)
- Rhonda Bacher
- Department of Biostatistics, University of Florida, FL, USA
| | - Li-Fang Chu
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Morgridge Institute for Research, Madison, WI, USA
| | - Cara Argus
- Morgridge Institute for Research, Madison, WI, USA
| | | | - Parker Knight
- Department of Mathematics, University of Florida, FL, USA
| | | | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
4
|
Zhao J, Duan W, Xu Y, Zhang C, Wang L, Wang J, Tian S, Pei G, Zhan G, Zhuang H, Zhao J, Kang Z. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:198-209. [PMID: 33118856 DOI: 10.1094/mpmi-08-20-0244-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Puccinia striiformis f. sp. tritici is the causal agent of wheat stripe rust that causes severe yield losses all over the world. As a macrocyclic heteroecious rust fungus, it is able to infect two unrelated host plants, wheat and barberry. Its urediniospores infect wheat and cause disease epidemic, while its basidiospores parasitize barberry to fulfill the sexual reproduction. This complex life cycle poses interesting questions on the different mechanisms of pathogenesis underlying the infection of the two different hosts. In the present study, transcriptomes of P. striiformis f. sp. tritici during the initial infection of wheat and barberry leaves were qualitatively and quantitatively compared. As a result, 142 wheat-specifically expressed genes (WEGs) were identified, which was far less than the 2,677 barberry-specifically expressed genes (BEGs). A larger proportion of evolutionarily conserved genes were observed in BEGs than that in WEGs, implying a longer history of the interaction between P. striiformis f. sp. tritici and barberry. Additionally, P. striiformis f. sp. tritici differentially expressed genes (DEGs) between wheat at 1 and 2 days postinoculation (dpi) and barberry at 3 and 4 dpi were identified by quantitative analysis. Gene Ontology analysis of these DEGs and expression patterns of P. striiformis f. sp. tritici pathogenic genes, including those encoding candidate secreted effectors, cell wall-degrading enzymes, and nutrient transporters, demonstrated that urediniospores and basidiospores exploited distinct strategies to overcome host defense systems. These results represent the first analysis of the P. striiformis f. sp. tritici transcriptome in barberry and contribute to a better understanding of the evolutionary processes and strategies of different types of rust spores during the infection process on different hosts.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wanlu Duan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ce Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Long Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Song Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hua Zhuang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jie Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Shen S, Fan Z, Zhang X, Kong X, Liu F, Zhang Z, Zhang X, Hu X, Zhang S. The Characteristics of Chemosensory and Opsin Genes in Newly Emerged and Sexually Mature Agrilus planipennis, an Important Quarantine Forest Beetle. Front Genet 2021; 11:604757. [PMID: 33519910 PMCID: PMC7844324 DOI: 10.3389/fgene.2020.604757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The emerald ash borer (EAB), Agrilus planipennis, is a highly destructive quarantine pest. The olfactory and visual systems of A. planipennis play different but critical roles at newly emerged and sexually mature stages; however, the molecular basis underlying these differences remain unclear. Consequently, based on deep transcriptome sequencing, we evaluated the expression levels of chemosensory-related proteins and opsins at the two developmental stages of A. planipennis. We found 15 new chemosensory-related genes in our transcriptome assembly compared with the previous genome assembly, including 6 that code for odorant-binding proteins (OBPs) and 9 for chemosensory proteins (CSPs). The expression of several chemosensory-related genes (OBP7, OBP10, CSP1, and CSP12) differed markedly between newly emerged and sexually mature A. planipennis. We also found that the expression of UV opsin 2 and LW opsin 1 was higher in sexually mature male A. planipennis, which may be associated with their strong visual mate detection ability. This study forms the basis for further investigation of the chemosensory and visual system of A. planipennis, and these differentially expressed genes between newly emerged and sexually mature stages may serve as targets for the management of this destructive forest pest after sexual maturity.
Collapse
Affiliation(s)
- Sifan Shen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China.,College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xinhua Zhang
- Forest Control Station of Dawu County, Xiaogan, China
| | - Xiumei Hu
- Forest Control Station of Dawu County, Xiaogan, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Hoang NV, Furtado A, Perlo V, Botha FC, Henry RJ. The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome. Front Genet 2019; 10:654. [PMID: 31396260 PMCID: PMC6664245 DOI: 10.3389/fgene.2019.00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed, and many new generally shorter transcripts were detected by normalization. For the same input cDNA and data yield, the normalized library recovered more total transcript isoforms and number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ∼1.25 kb and more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ∼52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk, and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ∼80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.
Collapse
Affiliation(s)
- Nam V. Hoang
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Virginie Perlo
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
7
|
Boone M, De Koker A, Callewaert N. Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 2018; 46:2701-2721. [PMID: 29514322 PMCID: PMC5888575 DOI: 10.1093/nar/gky167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
8
|
Zhang SF, Zhang Z, Kong XB, Wang HB, Liu F. Dynamic Changes in Chemosensory Gene Expression during the Dendrolimus punctatus Mating Process. Front Physiol 2018; 8:1127. [PMID: 29375398 PMCID: PMC5767605 DOI: 10.3389/fphys.2017.01127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
The insect chemosensory system is pivotal for interactions with their environments, and moths have especially sensitive olfaction. Exploration of the connection between the plasticity of olfactory-guided and molecular level pathways in insects is important for understanding the olfactory recognition mechanisms of insects. The pine caterpillar moth, Dendrolimus punctatus Walker, is a dominant conifer defoliator in China, and mating is the priority for adults of this species, during which sex pheromone recognition and oviposition site location are the main activities; these activities are all closely related to chemosensory genes. Thus, we aimed to identify chemosensory related genes and monitor the spectrum of their dynamic expression during the entire mating process in D. punctatus. In this study, we generated transcriptome data from male and female adult D. punctatus specimens at four mating stages: eclosion, calling, copulation, and post-coitum. These data were analyzed using bioinformatics tools to identify the major olfactory-related gene families and determine their expression patterns during mating. Levels of odorant binding proteins (OBPs), chemosensory proteins (CSPs), and odorant receptors (ORs) were closely correlated with mating behavior. Comparison with ORs from other Dendrolimus and Lepidoptera species led to the discovery of a group of ORs specific to Dendrolimus. Furthermore, we identified several genes encoding OBPs and ORs that were upregulated after mating in females; these genes may mediate the location of host plants for oviposition via plant-emitted volatiles. This work will facilitate functional research into D. punctatus chemosensory genes, provide information about the relationship between chemosensory genes and important physiological activities, and promote research into the mechanisms underlying insect olfactory recognition.
Collapse
Affiliation(s)
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | | | | | | |
Collapse
|
9
|
Zhang SF, Liu HH, Kong XB, Wang HB, Liu F, Zhang Z. Identification and Expression Profiling of Chemosensory Genes in Dendrolimus punctatus Walker. Front Physiol 2017; 8:471. [PMID: 28736530 PMCID: PMC5500615 DOI: 10.3389/fphys.2017.00471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Dendrolimus punctatus Walker is a serious pest affecting conifers in southern China. As extensive pesticide spraying is currently required to control D. punctatus, new control strategies are urgently needed. Chemosensory genes represent potential molecular targets for development of alternative pest control strategies, and the expression characteristics of these genes provide an indication of their function. To date, little information is available regarding chemosensory genes in D. punctatus or their expression profiles at different development stages and in various tissues. Here, we assembled and analyzed the transcriptomes of D. punctatus collected at different developmental stages and in a range of organs, using next-generation sequencing. A total of 171 putative chemosensory genes were identified, encoding 53 odorant binding proteins, 26 chemosensory proteins, 60 odorant receptors (OR), 12 gustatory receptors (GR), 18 ionotropic receptors (IR), and 2 sensory neuron membrane proteins (SNMPs). Expression analysis indicated that the antennae possess the largest number of highly expressed olfactory genes and that olfactory gene expression patterns in the eggs, larvae, and head were similar to one another, with each having moderate numbers of highly expressed olfactory genes. Fat body, ovary, midgut, and testis tissues also had similar olfactory gene expression patterns, including few highly expressed olfactory genes. Of particular note, we identified only two pheromone binding proteins and no pheromone receptors in D. punctatus, similar to our previous findings in Dendrolimus houi and Dendrolimus kikuchii, suggesting that insects of the Dendrolimus genus have different pheromone recognition characteristics to other Lepidopteran insects. Overall, this extensive expression profile analysis provides a clear map of D. punctatus chemosensory genes, and will facilitate functional studies and the development of new pest control methods in the future.
Collapse
Affiliation(s)
- Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Hui-Hui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Xiang-Bo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Hong-Bin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry AdministrationBeijing, China
| |
Collapse
|
10
|
Automated multiplex genome-scale engineering in yeast. Nat Commun 2017; 8:15187. [PMID: 28469255 PMCID: PMC5418614 DOI: 10.1038/ncomms15187] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/08/2017] [Indexed: 12/23/2022] Open
Abstract
Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast.
Collapse
|
11
|
Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nat Protoc 2017; 12:697-731. [DOI: 10.1038/nprot.2016.189] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
13
|
Zhang SF, Kong XB, Wang HB, Zhou G, Yu JX, Liu F, Zhang Z. Sensory and immune genes identification and analysis in a widely used parasitoid wasp Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae). INSECT SCIENCE 2016; 23:417-429. [PMID: 26940718 DOI: 10.1111/1744-7917.12330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) is one of the preponderant egg parasitoids of Dendrolimus spp., which are important defoliators of coniferous forests. This parasitoid wasp has been widely released to control pine caterpillar and other lepidopteran pests, but its control efficiency needs to be improved. Sensory systems are crucial for T. dendrolimi to locate hosts, and immunity is probably involved after egg deposition in the host cavity; however, few reports have focused on the molecular mechanism of olfactory detection and survival of T. dendrolimi. It is necessary to identify these genes before further functional research is conducted. In this study, we assembled and analyzed the transcriptome of T. dendrolimi using next-generation sequencing technology. The sequencing and assembly resulted in 38 565 contigs with N50 of 3422 bp. Sequence comparison indicate that T. dendrolimi sequences are very similar to those of another parasitoid Nasonia vitripennis. Then the olfactory, vision, and immune-related gene families were identified, and phylogenetic analyses were performed with these genes from T. dendrolimi and other model insect species. Furthermore, phylogenetic tree with odorant binding proteins of T. dendrolimi and their host Dendrolimus was constructed to determine whether convergent evolution exists. These genes can be valid targets for further gene function research. The present study may help us to understand host location and survival mechanisms of T. dendrolimi and to use them more efficiently for pest control in the future.
Collapse
Affiliation(s)
- Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xiang-Bo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Hong-Bin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Gang Zhou
- Hunan Academy of Forestry, Changsha, China
| | - Jin-Xiu Yu
- Hunan Academy of Forestry, Changsha, China
| | - Fu Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
14
|
Ocaña S, Seoane P, Bautista R, Palomino C, Claros GM, Torres AM, Madrid E. Large-Scale Transcriptome Analysis in Faba Bean (Vicia faba L.) under Ascochyta fabae Infection. PLoS One 2015; 10:e0135143. [PMID: 26267359 PMCID: PMC4534337 DOI: 10.1371/journal.pone.0135143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022] Open
Abstract
Faba bean is an important food crop worldwide. However, progress in faba bean genomics lags far behind that of model systems due to limited availability of genetic and genomic information. Using the Illumina platform the faba bean transcriptome from leaves of two lines (29H and Vf136) subjected to Ascochyta fabae infection have been characterized. De novo transcriptome assembly provided a total of 39,185 different transcripts that were functionally annotated, and among these, 13,266 were assigned to gene ontology against Arabidopsis. Quality of the assembly was validated by RT-qPCR amplification of selected transcripts differentially expressed. Comparison of faba bean transcripts with those of better-characterized plant genomes such as Arabidopsis thaliana, Medicago truncatula and Cicer arietinum revealed a sequence similarity of 68.3%, 72.8% and 81.27%, respectively. Moreover, 39,060 single nucleotide polymorphism (SNP) and 3,669 InDels were identified for genotyping applications. Mapping of the sequence reads generated onto the assembled transcripts showed that 393 and 457 transcripts were overexpressed in the resistant (29H) and susceptible genotype (Vf136), respectively. Transcripts involved in plant-pathogen interactions such as leucine rich proteins (LRR) or plant growth regulators involved in plant adaptation to abiotic and biotic stresses were found to be differently expressed in the resistant line. The results reported here represent the most comprehensive transcript database developed so far in faba bean, providing valuable information that could be used to gain insight into the pathways involved in the resistance mechanism against A. fabae and to identify potential resistance genes to be further used in marker assisted selection.
Collapse
Affiliation(s)
- Sara Ocaña
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
| | - Rocio Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, E-29071, Málaga, Spain
| | - Carmen Palomino
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Gonzalo M. Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071, Málaga, Spain
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, E-29071, Málaga, Spain
| | - Ana M. Torres
- Área de Mejora y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo 3092, E-14080, Córdoba, Spain
| | - Eva Madrid
- Institute for Sustainable Agriculture, CSIC, Apdo 4084, E-14080, Córdoba, Spain
| |
Collapse
|
15
|
Ramond JB, Makhalanyane TP, Tuffin MI, Cowan DA. Normalization of environmental metagenomic DNA enhances the discovery of under-represented microbial community members. Lett Appl Microbiol 2015; 60:359-66. [PMID: 25495929 DOI: 10.1111/lam.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/28/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Normalization is a procedure classically employed to detect rare sequences in cellular expression profiles (i.e. cDNA libraries). Here, we present a normalization protocol involving the direct treatment of extracted environmental metagenomic DNA with S1 nuclease, referred to as normalization of metagenomic DNA: NmDNA. We demonstrate that NmDNA, prior to post hoc PCR-based experiments (16S rRNA gene T-RFLP fingerprinting and clone library), increased the diversity of sequences retrieved from environmental microbial communities by detection of rarer sequences. This approach could be used to enhance the resolution of detection of ecologically relevant rare members in environmental microbial assemblages and therefore is promising in enabling a better understanding of ecosystem functioning. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first testing 'normalization' on environmental metagenomic DNA (mDNA). The aim of this procedure was to improve the identification of rare phylotypes in environmental communities. Using hypoliths as model systems, we present evidence that this post-mDNA extraction molecular procedure substantially enhances the detection of less common phylotypes and could even lead to the discovery of novel microbial genotypes within a given environment.
Collapse
Affiliation(s)
- J-B Ramond
- Centre for Microbial Ecology and Genomics (CMEG), Genomic Research Institute, University of Pretoria, Pretoria, South Africa; Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, South Africa
| | | | | | | |
Collapse
|
16
|
Gagic D, Maclean PH, Li D, Attwood GT, Moon CD. Improving the genetic representation of rare taxa within complex microbial communities using
DNA
normalization methods. Mol Ecol Resour 2014; 15:464-76. [DOI: 10.1111/1755-0998.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Dragana Gagic
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | | | - Dong Li
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | - Graeme T. Attwood
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| | - Christina D. Moon
- AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
| |
Collapse
|
17
|
Zhang S, Zhang Z, Wang H, Kong X. Antennal transcriptome analysis and comparison of olfactory genes in two sympatric defoliators, Dendrolimus houi and Dendrolimus kikuchii (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:69-81. [PMID: 24998398 DOI: 10.1016/j.ibmb.2014.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/15/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
The Yunnan pine and Simao pine caterpillar moths, Dendrolimus houi Lajonquière and Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae), are two closely related and sympatric pests of coniferous forests in southwestern China, and olfactory communication systems of these two insects have received considerable attention because of their economic importance. However, there is little information on the molecular aspect of odor detection about these insects. Furthermore, although lepidopteran species have been widely used in studies of insect olfaction, few work made comparison between sister moths on the olfactory recognition mechanisms. In this study, next-generation sequencing of the antennal transcriptome of these two moths were performed to identify the major olfactory genes. After comparing the antennal transcriptome of these two moths, we found that they exhibit highly similar transcripts-associated GO terms. Chemosensory gene families were further analyzed in both species. We identified 23 putative odorant binding proteins (OBP), 17 chemosensory proteins (CSP), two sensory neuron membrane proteins (SNMP), 33 odorant receptors (OR), and 10 ionotropic receptors (IR) in D. houi; and 27 putative OBPs, 17 CSPs, two SNMPs, 33 ORs, and nine IRs in D. kikuchii. All these transcripts were full-length or almost full-length. The predicted protein sequences were compared with orthologs in other species of Lepidoptera and model insects, including Bombyx mori, Manduca sexta, Heliothis virescens, Danaus plexippus, Sesamia inferens, Cydia pomonella, and Drosophila melanogaster. The sequence homologies of the orthologous genes in D. houi and D. kikuchii are very high. Furthermore, the olfactory genes were classed according to their expression level, and the highly expressed genes are our target for further function investigation. Interestingly, many highly expressed genes are ortholog gene of D. houi and D. kikuchii. We also found that the Classic OBPs were further separated into three groups according to their motifs, which will help future functional researches. Surprisingly, no pheromone receptor was identified in the two Dendrolimus species, which may indicate a special pheromone identification mechanism in Dendrolimus. Our work allows for further functional studies of pheromones and host volatile recognition genes, and give novel candidate targets for pest management.
Collapse
Affiliation(s)
- Sufang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China.
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China.
| | - Hongbin Wang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Dongxiaofu, Haidian, Beijing 100091, China
| |
Collapse
|
18
|
Gene discovery through transcriptome sequencing for the invasive mussel Limnoperna fortunei. PLoS One 2014; 9:e102973. [PMID: 25047650 PMCID: PMC4105566 DOI: 10.1371/journal.pone.0102973] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/24/2014] [Indexed: 11/22/2022] Open
Abstract
The success of the Asian bivalve Limnoperna fortunei as an invader in South America is related to its high acclimation capability. It can inhabit waters with a wide range of temperatures and salinity and handle long-term periods of air exposure. We describe the transcriptome of L. fortunei aiming to give a first insight into the phenotypic plasticity that allows non-native taxa to become established and widespread. We sequenced 95,219 reads from five main tissues of the mussel L. fortunei using Roche’s 454 and assembled them to form a set of 84,063 unigenes (contigs and singletons) representing partial or complete gene sequences. We annotated 24,816 unigenes using a BLAST sequence similarity search against a NCBI nr database. Unigenes were divided into 20 eggNOG functional categories and 292 KEGG metabolic pathways. From the total unigenes, 1,351 represented putative full-length genes of which 73.2% were functionally annotated. We described the first partial and complete gene sequences in order to start understanding bivalve invasiveness. An expansion of the hsp70 gene family, seen also in other bivalves, is present in L. fortunei and could be involved in its adaptation to extreme environments, e.g. during intertidal periods. The presence of toll-like receptors gives a first insight into an immune system that could be more complex than previously assumed and may be involved in the prevention of disease and extinction when population densities are high. Finally, the apparent lack of special adaptations to extremely low O2 levels is a target worth pursuing for the development of a molecular control approach.
Collapse
|
19
|
Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 2013; 14:198. [PMID: 23517120 PMCID: PMC3610139 DOI: 10.1186/1471-2164-14-198] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/13/2013] [Indexed: 12/05/2022] Open
Abstract
Background The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions The protein families important for chemoreception have now been identified in three coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.
Collapse
Affiliation(s)
- Martin N Andersson
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53, Alnarp, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B, Michelmore R. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS One 2013; 8:e55913. [PMID: 23409088 PMCID: PMC3568094 DOI: 10.1371/journal.pone.0055913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/04/2013] [Indexed: 12/22/2022] Open
Abstract
Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.
Collapse
Affiliation(s)
- Marta Matvienko
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Alexander Kozik
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Lutz Froenicke
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Dean Lavelle
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Belinda Martineau
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Bertrand Perroud
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Richard Michelmore
- Genome Center, University of California Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular and Cellular Biology, and Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
21
|
Zhou WZ, Zhang YM, Lu JY, Li JF. Construction and evaluation of normalized cDNA libraries enriched with full-length sequences for rapid discovery of new genes from Sisal (Agave sisalana Perr.) different developmental stages. Int J Mol Sci 2012. [PMID: 23202944 PMCID: PMC3497318 DOI: 10.3390/ijms131013150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing.
Collapse
Affiliation(s)
- Wen-Zhao Zhou
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.
| | | | | | | |
Collapse
|
22
|
Tsoi S, Zhou C, Grant JR, Pasternak JA, Dobrinsky J, Rigault P, Nieminen J, Sirard MA, Robert C, Foxcroft GR, Dyck MK. Development of a porcine (Sus scofa) embryo-specific microarray: array annotation and validation. BMC Genomics 2012; 13:370. [PMID: 22863022 PMCID: PMC3468353 DOI: 10.1186/1471-2164-13-370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The domestic pig is an important livestock species and there is strong interest in the factors that affect the development of viable embryos and offspring in this species. A limited understanding of the molecular mechanisms involved in early embryonic development has inhibited our ability to fully elucidate these factors. Next generation deep sequencing and microarray technologies are powerful tools for delineation of molecular pathways involved in the developing embryo. RESULTS Here we present the development of a porcine-embryo-specific microarray platform created from a large expressed sequence tag (EST) analysis generated by Roche/454 next-generation sequencing of cDNAs constructed from critical stages of in vivo or in vitro porcine preimplantation embryos. Two cDNA libraries constructed from in vitro and in vivo produced preimplantation porcine embryos were normalized and sequenced using 454 Titanium pyrosequencing technology. Over one million high-quality EST sequences were obtained and used to develop the EMbryogene Porcine Version 1 (EMPV1) microarray composed of 43,795 probes. Based on an initial probe sequence annotation, the EMPV1 features 17,409 protein-coding, 473 pseudogenes, 46 retrotransposed, 2,359 non-coding RNA, 4,121 splice variants in 2,862 genes and a total of 12,324 Novel Transcript Regions (NTR). After re-annotation, the total unique genes increased from 11,961 to 16,281 and 1.9% of them belonged to a large olfactory receptor (OR) gene family. Quality control on the EMPV1 was performed and revealed an even distribution of ten clusters of spiked-in control spots and array to array (dye-swap) correlation was 0.97. CONCLUSIONS Using next-generation deep sequencing we have produced a large EST dataset to allow for the selection of probe sequences for the development of the EMPV1 microarray platform. The quality of this embryo-specific array was confirmed with a high-level of reproducibility using current Agilent microarray technology. With more than an estimated 20,000 unique genes represented on the EMPV1, this platform will provide the foundation for future research into the in vivo and in vitro factors that affect the viability of porcine embryos, as well as the effects of these factors on the live offspring that result from these embryos.
Collapse
Affiliation(s)
- Stephen Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nyberg KG, Conte MA, Kostyun JL, Forde A, Bely AE. Transcriptome characterization via 454 pyrosequencing of the annelid Pristina leidyi, an emerging model for studying the evolution of regeneration. BMC Genomics 2012; 13:287. [PMID: 22747785 PMCID: PMC3464666 DOI: 10.1186/1471-2164-13-287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/29/2012] [Indexed: 11/23/2022] Open
Abstract
Background The naid annelids contain a number of species that vary in their ability to regenerate lost body parts, making them excellent candidates for evolution of regeneration studies. However, scant sequence data exists to facilitate such studies. We constructed a cDNA library from the naid Pristina leidyi, a species that is highly regenerative and also reproduces asexually by fission, using material from a range of regeneration and fission stages for our library. We then sequenced the transcriptome of P. leidyi using 454 technology. Results 454 sequencing produced 1,550,174 reads with an average read length of 376 nucleotides. Assembly of 454 sequence reads resulted in 64,522 isogroups and 46,679 singletons for a total of 111,201 unigenes in this transcriptome. We estimate that over 95% of the transcripts in our library are present in our transcriptome. 17.7% of isogroups had significant BLAST hits to the UniProt database and these include putative homologs of a number of genes relevant to regeneration research. Although many sequences are incomplete, the mean sequence length of transcripts (isotigs) is 707 nucleotides. Thus, many sequences are large enough to be immediately useful for downstream applications such as gene expression analyses. Using in situ hybridization, we show that two Wnt/β-catenin pathway genes (homologs of frizzled and β-catenin) present in our transcriptome are expressed in the regeneration blastema of P. leidyi, demonstrating the usefulness of this resource for regeneration research. Conclusions 454 sequencing is a rapid and efficient approach for identifying large numbers of genes in an organism that lacks a sequenced genome. This transcriptome dataset will be a valuable resource for molecular analyses of regeneration in P. leidyi and will serve as a starting point for comparisons to non-regenerating naids. It also contributes significantly to the still limited genomic resources available for annelids and lophotrochozoans more generally.
Collapse
Affiliation(s)
- Kevin G Nyberg
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
24
|
Bogdanova EA, Shagina IA, Ianushevich IG, Vagner LL, Luk'ianov SA, Shagin DA. [Preparation of prokaryotic cDNA for high-throughput transcriptome analysis]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 37:854-7. [PMID: 22497085 DOI: 10.1134/s1068162011060045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High contents of non-coding RNA in total bacteria RNA complicates considerably transcriptome analysis using standard approaches like high-throughput sequencing, gene expression profiles, subtractive hybridization. We suggest a procedure of preparation of bacterial cDNA for transcriptomics that includes rRNA and tRNA depletion with preservation of relative abundance of coding sequences. The method is based on the second order hybridization kinetics and unique properties of Kanchatka crab duplex-specific nuclease. The method efficacy was demonstrated on a model experiments.
Collapse
|
25
|
Mastrokolias A, den Dunnen JT, van Ommen GB, 't Hoen PAC, van Roon-Mom WMC. Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. BMC Genomics 2012; 13:28. [PMID: 22257641 PMCID: PMC3275489 DOI: 10.1186/1471-2164-13-28] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/18/2012] [Indexed: 01/09/2023] Open
Abstract
Background Transcriptome analysis is of great interest in clinical research, where significant differences between individuals can be translated into biomarkers of disease. Although next generation sequencing provides robust, comparable and highly informative expression profiling data, with several million of tags per blood sample, reticulocyte globin transcripts can constitute up to 76% of total mRNA compromising the detection of low abundant transcripts. We have removed globin transcripts from 6 human whole blood RNA samples with a human globin reduction kit and compared them with the same non-reduced samples using deep Serial Analysis of Gene Expression. Results Globin tags comprised 52-76% of total tags in our samples. Out of 21,633 genes only 87 genes were detected at significantly lower levels in the globin reduced samples. In contrast, 11,338 genes were detected at significantly higher levels in the globin reduced samples. Removing globin transcripts allowed us to also identify 2112 genes that could not be detected in the non-globin reduced samples, with roles in cell surface receptor signal transduction, G-protein coupled receptor protein signalling pathways and neurological processes. Conclusions The reduction of globin transcripts in whole blood samples constitutes a reproducible and reliable method that can enrich data obtained from next generation sequencing-based expression profiling.
Collapse
Affiliation(s)
- Anastasios Mastrokolias
- Center for Human and Clinical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333ZC, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Yilmaz S, Singh AK. Single cell genome sequencing. Curr Opin Biotechnol 2011; 23:437-43. [PMID: 22154471 DOI: 10.1016/j.copbio.2011.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 11/29/2022]
Abstract
Whole genome amplification and next-generation sequencing of single cells have become a powerful approach for studying uncultivated microorganisms that represent 90-99% of all environmental microbes. Single cell sequencing enables not only the identification of microbes but also linking of functions to species, a feat not achievable by metagenomic techniques. Moreover, it allows the analysis of low abundance species that may be missed in community-based analyses. It has also proved very useful in complementing metagenomics in the assembly and binning of single genomes. With the advent of drastically cheaper and higher throughput sequencing technologies, it is expected that single cell sequencing will become a standard tool in studying the genome and transcriptome of microbial communities.
Collapse
Affiliation(s)
- Suzan Yilmaz
- Department of Bioengineering and Biotechnology, Sandia National Laboratory, Livermore, CA 94551, United States
| | | |
Collapse
|
27
|
Shagina IA, Bogdanova EA, Al'tshuler IM, Luk'ianov SA, Shagin DA. [Application of the duplex-specific nuclease for fast analysis of single nucleotide polymorphisms and detection of target DNA in complex PCR products]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:522-9. [PMID: 22096995 DOI: 10.1134/s1068162011040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a simple method for fast analysis of single nucleotide polymorphisms and identification of target clones from cloned complex PCR products. The method utilizes Kamchatka crab duplex-specific nuclease and universal fluorescent probe and is alternative to laborious screening procedures using radioactive probes, restriction analysis followed by gel electrophoresis or expensive sequencing. The method efficacy was demonstrated in several model experiments.
Collapse
|
28
|
Yi H, Cho YJ, Won S, Lee JE, Jin Yu H, Kim S, Schroth GP, Luo S, Chun J. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucleic Acids Res 2011; 39:e140. [PMID: 21880599 PMCID: PMC3203590 DOI: 10.1093/nar/gkr617] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing has great potential for application in bacterial transcriptomics. However, unlike eukaryotes, bacteria have no clear mechanism to select mRNAs over rRNAs; therefore, rRNA removal is a critical step in sequencing-based transcriptomics. Duplex-specific nuclease (DSN) is an enzyme that, at high temperatures, degrades duplex DNA in preference to single-stranded DNA. DSN treatment has been successfully used to normalize the relative transcript abundance in mRNA-enriched cDNA libraries from eukaryotic organisms. In this study, we demonstrate the utility of this method to remove rRNA from prokaryotic total RNA. We evaluated the efficacy of DSN to remove rRNA by comparing it with the conventional subtractive hybridization (Hyb) method. Illumina deep sequencing was performed to obtain transcriptomes from Escherichia coli grown under four growth conditions. The results clearly showed that our DSN treatment was more efficient at removing rRNA than the Hyb method was, while preserving the original relative abundance of mRNA species in bacterial cells. Therefore, we propose that, for bacterial mRNA-seq experiments, DSN treatment should be preferred to Hyb-based methods.
Collapse
Affiliation(s)
- Hana Yi
- Institute of Molecular Biology and Genetics, School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B. Synthetic spike-in standards for RNA-seq experiments. Genome Res 2011; 21:1543-51. [PMID: 21816910 DOI: 10.1101/gr.121095.111] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-throughput sequencing of cDNA (RNA-seq) is a widely deployed transcriptome profiling and annotation technique, but questions about the performance of different protocols and platforms remain. We used a newly developed pool of 96 synthetic RNAs with various lengths, and GC content covering a 2(20) concentration range as spike-in controls to measure sensitivity, accuracy, and biases in RNA-seq experiments as well as to derive standard curves for quantifying the abundance of transcripts. We observed linearity between read density and RNA input over the entire detection range and excellent agreement between replicates, but we observed significantly larger imprecision than expected under pure Poisson sampling errors. We use the control RNAs to directly measure reproducible protocol-dependent biases due to GC content and transcript length as well as stereotypic heterogeneity in coverage across transcripts correlated with position relative to RNA termini and priming sequence bias. These effects lead to biased quantification for short transcripts and individual exons, which is a serious problem for measurements of isoform abundances, but that can partially be corrected using appropriate models of bias. By using the control RNAs, we derive limits for the discovery and detection of rare transcripts in RNA-seq experiments. By using data collected as part of the model organism and human Encyclopedia of DNA Elements projects (ENCODE and modENCODE), we demonstrate that external RNA controls are a useful resource for evaluating sensitivity and accuracy of RNA-seq experiments for transcriptome discovery and quantification. These quality metrics facilitate comparable analysis across different samples, protocols, and platforms.
Collapse
Affiliation(s)
- Lichun Jiang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ewen-Campen B, Shaner N, Panfilio KA, Suzuki Y, Roth S, Extavour CG. The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics 2011; 12:61. [PMID: 21266083 PMCID: PMC3040728 DOI: 10.1186/1471-2164-12-61] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/25/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Most evolutionary developmental biology ("evo-devo") studies of emerging model organisms focus on small numbers of candidate genes cloned individually using degenerate PCR. However, newly available sequencing technologies such as 454 pyrosequencing have recently begun to allow for massive gene discovery in animals without sequenced genomes. Within insects, although large volumes of sequence data are available for holometabolous insects, developmental studies of basally branching hemimetabolous insects typically suffer from low rates of gene discovery. RESULTS We used 454 pyrosequencing to sequence over 500 million bases of cDNA from the ovaries and embryos of the milkweed bug Oncopeltus fasciatus, which lacks a sequenced genome. This indirectly developing insect occupies an important phylogenetic position, branching basal to Diptera (including fruit flies) and Hymenoptera (including honeybees), and is an experimentally tractable model for short-germ development. 2,087,410 reads from both normalized and non-normalized cDNA assembled into 21,097 sequences (isotigs) and 112,531 singletons. The assembled sequences fell into 16,617 unique gene models, and included predictions of splicing isoforms, which we examined experimentally. Discovery of new genes plateaued after assembly of ~1.5 million reads, suggesting that we have sequenced nearly all transcripts present in the cDNA sampled. Many transcripts have been assembled at close to full length, and there is a net gain of sequence data for over half of the pre-existing O. fasciatus accessions for developmental genes in GenBank. We identified 10,775 unique genes, including members of all major conserved metazoan signaling pathways and genes involved in several major categories of early developmental processes. We also specifically address the effects of cDNA normalization on gene discovery in de novo transcriptome analyses. CONCLUSIONS Our sequencing, assembly and annotation framework provide a simple and effective way to achieve high-throughput gene discovery for organisms lacking a sequenced genome. These data will have applications to the study of the evolution of arthropod genes and genetic pathways, and to the wider evolution, development and genomics communities working with emerging model organisms.[The sequence data from this study have been submitted to GenBank under study accession number SRP002610 (http://www.ncbi.nlm.nih.gov/sra?term=SRP002610). Custom scripts generated are available at http://www.extavourlab.com/protocols/index.html. Seven Additional files are available.].
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A well-recognized obstacle to efficient high-throughput analysis of cDNA libraries is the differential abundance of various transcripts in any particular cell type. Decreasing the prevalence of clones representing abundant transcripts before sequencing, using cDNA normalization, may significantly increase the efficacy of random sequencing and is essential for rare gene discovery. Duplex-specific nuclease (DSN) normalization allows the generation of normalized full-length-enriched cDNA libraries to permit a high gene discovery rate. The method is based on the unique properties of DSN from the Kamchatka crab and involves denaturation-reassociation of cDNA, degradation of the ds-fraction formed by abundant transcripts by DSN, and PCR amplification of the remaining ss-DNA fraction. The method has been evaluated in various plant and animal models.
Collapse
|
32
|
Abstract
An application of duplex-specific nuclease (DSN) normalization technology to whole-genome shotgun sequencing of genomes with a large proportion of repetitive DNA is described. The method uses a thermostable DSN from the Kamchatka crab that specifically hydrolyzes dsDNA. In model experiments on human genomic DNA, we demonstrated that DSN normalization of double-stranded DNA formed during C0t analysis is effective against abundant repetitive sequences with high sequence identity, while retaining highly divergent repeats and coding regions at base-line levels. Thus, DSN normalization applied to C0t analysis can be used to eliminate evolutionarily young repetitive elements from genomic DNA before sequencing, and should prove invaluable in studies of large eukaryotic genomes, such as those of higher plants.
Collapse
|
33
|
Gremski LH, da Silveira RB, Chaim OM, Probst CM, Ferrer VP, Nowatzki J, Weinschutz HC, Madeira HM, Gremski W, Nader HB, Senff-Ribeiro A, Veiga SS. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. MOLECULAR BIOSYSTEMS 2010; 6:2403-16. [PMID: 20644878 DOI: 10.1039/c004118a] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spiders of the Loxosceles genus are cosmopolitan, and their venom components possess remarkable biological properties associated with their ability to act upon different molecules and receptors. Accidents with Loxosceles intermedia specimens are recognized as a public health problem in the south of Brazil. To describe the transcriptional profile of the L. intermedia venom gland, we generated a wide cDNA library, and its transcripts were functionally and structurally analyzed. After initial analyses, 1843 expressed sequence tags (ESTs) produced readable sequences that were grouped into 538 clusters, 281 of which were singletons. 985 reads (53% of total ESTs) matched to known proteins. Similarity searches showed that toxin-encoding transcripts account for 43% of the total library and comprise a great number of ESTs. The most frequent toxins were from the LiTx family, which are known for their insecticidal activity. Both phospholipase D and astacin-like metalloproteases toxins account for approximately 9% of total transcripts. Toxins components such as serine proteases, hyaluronidases and venom allergens were also found but with minor representation. Almost 10% of the ESTs encode for proteins involved in cellular processes. These data provide an important overview of the L. intermedia venom gland expression scenario and revealed significant differences from profiles of other spiders from the Loxosceles genus. Furthermore, our results also confirm that this venom constitutes an amazing source of novel compounds with potential agrochemical, industrial and pharmacological applications.
Collapse
|
34
|
Babik W, Stuglik M, Qi W, Kuenzli M, Kuduk K, Koteja P, Radwan J. Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics 2010; 11:390. [PMID: 20565972 PMCID: PMC2996923 DOI: 10.1186/1471-2164-11-390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/21/2010] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Understanding the genetic basis of adaptive changes has been a major goal of evolutionary biology. In complex organisms without sequenced genomes, de novo transcriptome assembly using a longer read sequencing technology followed by expression profiling using short reads is likely to provide comprehensive identification of adaptive variation at the expression level and sequence polymorphisms in coding regions. We performed sequencing and de novo assembly of the bank vole heart transcriptome in lines selected for high metabolism and unselected controls. RESULTS A single 454 Titanium run produced over million reads, which were assembled into 63,581 contigs. Searches against the SwissProt protein database and the ENSEMBL collection of mouse transcripts detected similarity to 11,181 and 14,051 genes, respectively. As judged by the representation of genes from the heart-related Gene Ontology categories and UniGenes detected in the mouse heart, our detection of the genes expressed in the heart was nearly complete (> 95% and almost 90% respectively). On average, 38.7% of the transcript length was covered by our sequences, with notably higher (45.0%) coverage of coding regions than of untranslated regions (24.5% of 5' and 32.7% of 3'UTRs). Lower sequence conservation between mouse and bank vole in untranslated regions was found to be partially responsible for poorer UTR representation. Our data might suggest a widespread transcription from noncoding genomic regions, a finding not reported in previous studies regarding transcriptomes in non-model organisms. We also identified over 19 thousand putative single nucleotide polymorphisms (SNPs). A much higher fraction of the SNPs than expected by chance exhibited variant frequency differences between selection regimes. CONCLUSION Longer reads and higher sequence yield per run provided by the 454 Titanium technology in comparison to earlier generations of pyrosequencing proved beneficial for the quality of assembly. An almost full representation of genes known to be expressed in the mouse heart was identified. Usage of the extensive genomic resources available for the house mouse, a moderately (20-40 mln years) divergent relative of the voles, enabled a comprehensive assessment of the transcript completeness. Transcript sequences generated in the present study allowed the identification of candidate SNPs associated with divergence of selection lines and constitute a valuable permanent resource forming a foundation for RNAseq experiments aiming at detection of adaptive changes both at the level of gene expression and sequence variants, that would facilitate studies of the genetic basis of evolutionary divergence.
Collapse
Affiliation(s)
- Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM. Shedding light on an extremophile lifestyle through transcriptomics. THE NEW PHYTOLOGIST 2009; 183:764-775. [PMID: 19549131 DOI: 10.1111/j.1469-8137.2009.02913.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The tropical intertidal ecosystem is defined by trees - mangroves - which are adapted to an extreme and extremely variable environment. The genetic basis underlying these adaptations is, however, virtually unknown. Based on advances in pyrosequencing, we present here the first transcriptome analysis for plants for which no prior genomic information was available. We selected the mangroves Rhizophora mangle (Rhizophoraceae) and Heritiera littoralis (Malvaceae) as ecologically important extremophiles employing markedly different physiological and life-history strategies for survival and dominance in this extreme environment. For maximal representation of conditional transcripts, mRNA was obtained from a variety of developmental stages, tissues types, and habitats. For each species, a normalized cDNA library of pooled mRNAs was analysed using GSFLX pyrosequencing. A total of 537,635 sequences were assembled de novo and annotated as > 13,000 distinct gene models for each species. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology annotations highlighted remarkable similarities in the mangrove transcriptome profiles, which differed substantially from the model plants Arabidopsis and Populus. Similarities in the two species suggest a unique mangrove lifestyle overarching the effects of transcriptome size, habitat, tissue type, developmental stage, and biogeographic and phylogenetic differences between them.
Collapse
Affiliation(s)
- M Dassanayake
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801 USA
| | - J S Haas
- Office of Networked Information Technologies (ONIT), School of Integrative Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801 USA
| | - H J Bohnert
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801 USA
| | - J M Cheeseman
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
36
|
Tang S, Okashah RA, Cordonnier-Pratt MM, Pratt LH, Ed Johnson V, Taylor CA, Arnold ML, Knapp SJ. EST and EST-SSR marker resources for Iris. BMC PLANT BIOLOGY 2009; 9:72. [PMID: 19515254 PMCID: PMC2703627 DOI: 10.1186/1471-2229-9-72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 06/10/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Limited DNA sequence and DNA marker resources have been developed for Iris (Iridaceae), a monocot genus of 200-300 species in the Asparagales, several of which are horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally important cultivars. RESULTS Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851 singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I. brevicaulis x I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms among 39 ecotypes or cultivars of seven species - 100% amplified alleles from wild collected ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42-52% amplified alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I. sibirica). Ecotypes and cultivars were genetically diverse - the number of alleles/locus ranged from two to 18 and mean heterozygosity was 0.76. CONCLUSION Nearly 400 ortholog-specific EST-SSR markers were developed for comparative genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes and cultivars, and have broad utility for genotyping applications within the genus.
Collapse
Affiliation(s)
- Shunxue Tang
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca A Okashah
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | | | - Lee H Pratt
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Virgil Ed Johnson
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Christopher A Taylor
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Michael L Arnold
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Steven J Knapp
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
DSN Depletion is a Simple Method to Remove Selected Transcripts from cDNA Populations. Mol Biotechnol 2009; 41:247-53. [DOI: 10.1007/s12033-008-9131-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|