1
|
Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Liu F, Lin L, Zhang Y, Wang Y, Sheng S, Xu C, Tian H, Chen X. A Tumor-Microenvironment-Activated Nanozyme-Mediated Theranostic Nanoreactor for Imaging-Guided Combined Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902885. [PMID: 31423690 DOI: 10.1002/adma.201902885] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Activatable theranostic agents that can be activated by tumor microenvironment possess higher specificity and sensitivity. Here, activatable nanozyme-mediated 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) loaded ABTS@MIL-100/poly(vinylpyrrolidine) (AMP) nanoreactors (NRs) are developed for imaging-guided combined tumor therapy. The as-constructed AMP NRs can be specifically activated by the tumor microenvironment through a nanozyme-mediated "two-step rocket-launching-like" process to turn on its photoacoustic imaging signal and photothermal therapy (PTT) function. In addition, simultaneously producing hydroxyl radicals in response to the high H2 O2 level of the tumor microenvironment and disrupting intracellular glutathione (GSH) endows the AMP NRs with the ability of enhanced chemodynamic therapy (ECDT), thereby leading to more efficient therapeutic outcome in combination with tumor-triggered PTT. More importantly, the H2 O2 -activated and acid-enhanced properties enable the AMP NRs to be specific to tumors, leaving the normal tissues unharmed. These remarkable features of AMP NRs may open a new avenue to explore nanozyme-involved nanoreactors for intelligent, accurate, and noninvasive cancer theranostics.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Yanbing Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shu Sheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10117-10141. [PMID: 27690335 DOI: 10.1002/adma.201601909] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/27/2016] [Indexed: 05/26/2023]
Abstract
Developing new synthetic methods for the controlled synthesis of Pt-based or non-Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel-cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one-dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt-based, Pd-based, or 1D metal-free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel-cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt-based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt-based NWs or NTs, non-Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel-cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel-cell technology.
Collapse
Affiliation(s)
- Wei Wang
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Lv
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Bo Lei
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Sheng Wan
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mingchuan Luo
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Trogadas P, Ramani V, Strasser P, Fuller TF, Coppens MO. Hierarchisch strukturierte Nanomaterialien für die elektrochemische Energieumwandlung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angew Chem Int Ed Engl 2015; 55:122-48. [DOI: 10.1002/anie.201506394] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 11/07/2022]
|
6
|
An enzyme-free signal amplified strategy based on hollow platinum nanochains catalyzed oxidation of uric acid for electrochemical aptasensor construction. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Yang H, Liu W, Ma C, Zhang Y, Wang X, Yu J, Song X. Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor for Streptococcus suis serotype 2 based on l-cysteine combined with mimicking bi-enzyme synergetic catalysis to in situ generate coreactant. Biosens Bioelectron 2013; 43:63-8. [DOI: 10.1016/j.bios.2012.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
|
9
|
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 2013; 42:6060-93. [DOI: 10.1039/c3cs35486e] [Citation(s) in RCA: 2267] [Impact Index Per Article: 206.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang Y, Yuan R, Chai Y, Yuan Y, Bai L, Liao Y. A multi-amplification aptasensor for highly sensitive detection of thrombin based on high-quality hollow CoPt nanoparticles decorated graphene. Biosens Bioelectron 2011; 30:61-6. [DOI: 10.1016/j.bios.2011.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022]
|
11
|
Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens Bioelectron 2011; 26:4331-6. [PMID: 21592763 DOI: 10.1016/j.bios.2011.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 11/21/2022]
Abstract
In this work, a new signal amplification strategy based on hollow PtCo nanochains (HPtCoNCs) functionalized by bi-enzyme-horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) and glucose oxidase (GOD), as well as ferrocene-labeled secondary thrombin aptamer (Fc-TBA 2), is developed to construct a highly sensitive electrochemical aptasensor. The HRP-DNAzyme contains a special G-quadruplex structure with an intercalated hemin. With the surface area enlarged by HPtCoNCs, the amount of immobilized Fc-TBA 2, hemin and GOD can be enhanced. Under the enzyme catalysis of GOD, d-glucose is rapidly oxidized into gluconic acid accompanying with the generation of H₂O₂, which is further electrocatalyzed by Pt nanoparticles and HPR-DNAzyme to improve the electrochemical signal of Fc. With several amplification factors mentioned above, a wide linear ranged from 0.001 to 30 nM is acquired with a relatively low detection limit of 0.39 pM for thrombin. The present work demonstrates that using HPtCoNCs as labels is a promising way to amplify the analysis signal and improve the sensitivity of aptasensors.
Collapse
|
12
|
Sun Q, Ren Z, Wang R, Wang N, Cao X. Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02563a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Amperometric glucose biosensor based on Prussian blue–multiwall carbon nanotubes composite and hollow PtCo nanochains. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhai Y, Zhai J, Dong S. Temperature-dependent synthesis of CoPt hollow nanoparticles: from “nanochain” to “nanoring”. Chem Commun (Camb) 2010; 46:1500-2. [DOI: 10.1039/b923466g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Shao C, Lu N, Deng Z. DNA-assisted electroless deposition of highly dispersed palladium nanoparticles on glassy carbon surface: Preparation and electrocatalytic properties. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Zhai J, Wang Y, Zhai Y, Dong S. Rapid fabrication of Au nanoparticle films with the aid of centrifugal force. NANOTECHNOLOGY 2009; 20:055609. [PMID: 19417356 DOI: 10.1088/0957-4484/20/5/055609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films. The thus-prepared Au NP films can serve as surface enhanced Raman scatting (SERS) substrates with tunable SERS signal intensity. This method is simple, rapid, and can be used as a general method to rapidly assemble other charged nanoparticles.
Collapse
Affiliation(s)
- Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | | | | | | |
Collapse
|