• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (348)   Subscriber (50597)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
2
Liu F, Lin L, Zhang Y, Wang Y, Sheng S, Xu C, Tian H, Chen X. A Tumor-Microenvironment-Activated Nanozyme-Mediated Theranostic Nanoreactor for Imaging-Guided Combined Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019;31:e1902885. [PMID: 31423690 DOI: 10.1002/adma.201902885] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/20/2019] [Indexed: 06/10/2023]
3
Wang W, Lv F, Lei B, Wan S, Luo M, Guo S. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016;28:10117-10141. [PMID: 27690335 DOI: 10.1002/adma.201601909] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/27/2016] [Indexed: 05/26/2023]
4
Trogadas P, Ramani V, Strasser P, Fuller TF, Coppens MO. Hierarchisch strukturierte Nanomaterialien für die elektrochemische Energieumwandlung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
5
Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angew Chem Int Ed Engl 2015;55:122-48. [DOI: 10.1002/anie.201506394] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Indexed: 11/07/2022]
6
An enzyme-free signal amplified strategy based on hollow platinum nanochains catalyzed oxidation of uric acid for electrochemical aptasensor construction. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
7
Yang H, Liu W, Ma C, Zhang Y, Wang X, Yu J, Song X. Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
8
An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor for Streptococcus suis serotype 2 based on l-cysteine combined with mimicking bi-enzyme synergetic catalysis to in situ generate coreactant. Biosens Bioelectron 2013;43:63-8. [DOI: 10.1016/j.bios.2012.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
9
Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 2013;42:6060-93. [DOI: 10.1039/c3cs35486e] [Citation(s) in RCA: 2267] [Impact Index Per Article: 206.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
10
Wang Y, Yuan R, Chai Y, Yuan Y, Bai L, Liao Y. A multi-amplification aptasensor for highly sensitive detection of thrombin based on high-quality hollow CoPt nanoparticles decorated graphene. Biosens Bioelectron 2011;30:61-6. [DOI: 10.1016/j.bios.2011.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 11/30/2022]
11
Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens Bioelectron 2011;26:4331-6. [PMID: 21592763 DOI: 10.1016/j.bios.2011.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 11/21/2022]
12
Sun Q, Ren Z, Wang R, Wang N, Cao X. Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02563a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
13
Amperometric glucose biosensor based on Prussian blue–multiwall carbon nanotubes composite and hollow PtCo nanochains. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
14
Zhai Y, Zhai J, Dong S. Temperature-dependent synthesis of CoPt hollow nanoparticles: from “nanochain” to “nanoring”. Chem Commun (Camb) 2010;46:1500-2. [DOI: 10.1039/b923466g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Shao C, Lu N, Deng Z. DNA-assisted electroless deposition of highly dispersed palladium nanoparticles on glassy carbon surface: Preparation and electrocatalytic properties. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
16
Zhai J, Wang Y, Zhai Y, Dong S. Rapid fabrication of Au nanoparticle films with the aid of centrifugal force. NANOTECHNOLOGY 2009;20:055609. [PMID: 19417356 DOI: 10.1088/0957-4484/20/5/055609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA