1
|
Duchamp E, Vasquez G, Firoozi N, Freestone GC, Oestergaard M, Seth PP, Hanessian S. Towards combining backbone and sugar constraint in 3'-3' bis-phosphonate tethered 2'-4' bridged LNA oligonucleotide trimers. RSC Adv 2024; 14:23583-23591. [PMID: 39070250 PMCID: PMC11276400 DOI: 10.1039/d4ra04277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutic oligonucleotides are chemically modified to enhance their drug-like properties - including binding affinity for target RNA. Many nucleic acid analogs that enhance RNA binding affinity constrain the furanose sugar in an RNA-like sugar pucker. The improvements in binding affinity result primarily from increased off-rates with minimal effects on on-rates for hybridization. To identify alternate chemical modification strategies that can modulate on- and off-rates for oligonucleotide hybridization, we hypothesized that extending conformational restraint across multiple nucleotides could modulate hybridization kinetics by restricting rotational freedom of the sugar-phosphate backbone. As part of that effort, we recently reported that using hydrocarbon tethers to bridge adjacent phosphodiester linkages as phosphonate tethered bridges can pre-organize nucleic acids in conformations conducive for Watson-Crick base-pairing and modulate hybridization kinetics. In this report, we describe the synthesis of locked nucleic acid (LNA) trimers linked through alkylphosphonate tethers which restrict conformation of the furanose sugar in addition to restricting conformational mobility of the sugar-phosphate backbone across three nucleotide units.
Collapse
Affiliation(s)
- Edouard Duchamp
- Department of Chemistry, Université de Montréal Québec H3C 3J7 Canada
| | - Guillermo Vasquez
- Department of Medicinal Chemistry, Ionis Pharmaceuticals Carlsbad CA 92010 USA
| | - Neda Firoozi
- Department of Chemistry, Université de Montréal Québec H3C 3J7 Canada
| | - Graeme C Freestone
- Department of Medicinal Chemistry, Ionis Pharmaceuticals Carlsbad CA 92010 USA
| | - Michael Oestergaard
- Department of Medicinal Chemistry, Ionis Pharmaceuticals Carlsbad CA 92010 USA
| | - Punit P Seth
- Alnylam Pharmaceuticals 675 West Kendall St Cambridge MA 0214 USA
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal Québec H3C 3J7 Canada
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| |
Collapse
|
2
|
Das G, Harikrishna S, Gore KR. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. CHEM REC 2022; 22:e202200174. [PMID: 36048010 DOI: 10.1002/tcr.202200174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Ribofuranose sugar conformation plays an important role in the structure and dynamics of functional nucleic acids such as siRNAs, AONs, aptamers, miRNAs, etc. To improve their therapeutic potential, several chemical modifications have been introduced into the sugar moiety over the years. The stability of the oligonucleotide duplexes as well as the formation of stable and functional protein-oligonucleotide complexes are dictated by the conformation and dynamics of the sugar moiety. In this review, we systematically categorise various ribofuranose sugar modifications employed in DNAs and RNAs so far. We discuss different stereoelectronic effects imparted by different substituents on the sugar ring and how these effects control sugar puckering. Using this data, it would be possible to predict the precise use of chemical modifications and design novel sugar-modified nucleosides for therapeutic oligonucleotides that can improve their physicochemical properties.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
3
|
Vasquez G, Freestone GC, Wan WB, Low A, De Hoyos CL, Yu J, Prakash TP, Ǿstergaard ME, Liang XH, Crooke ST, Swayze EE, Migawa MT, Seth PP. Site-specific incorporation of 5'-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Res 2021; 49:1828-1839. [PMID: 33544849 PMCID: PMC7913697 DOI: 10.1093/nar/gkab047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
We recently showed that site-specific incorporation of 2′-modifications or neutral linkages in the oligo-deoxynucleotide gap region of toxic phosphorothioate (PS) gapmer ASOs can enhance therapeutic index and safety. In this manuscript, we determined if introducing substitution at the 5′-position of deoxynucleotide monomers in the gap can also enhance therapeutic index. Introducing R- or S-configured 5′-Me DNA at positions 3 and 4 in the oligodeoxynucleotide gap enhanced the therapeutic profile of the modified ASOs suggesting a different positional preference as compared to the 2′-OMe gap modification strategy. The generality of these observations was demonstrated by evaluating R-5′-Me and R-5′-Ethyl DNA modifications in multiple ASOs targeting HDAC2, FXI and Dynamin2 mRNA in the liver. The current work adds to a growing body of evidence that small structural changes can modulate the therapeutic properties of PS ASOs and ushers a new era of chemical optimization with a focus on enhancing the therapeutic profile as opposed to nuclease stability, RNA-affinity and pharmacokinetic properties. The 5′-methyl DNA modified ASOs exhibited excellent safety and antisense activity in mice highlighting the therapeutic potential of this class of nucleic acid analogs for next generation ASO designs.
Collapse
Affiliation(s)
- Guillermo Vasquez
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - W Brad Wan
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Jinghua Yu
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Thazha P Prakash
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Xue-Hai Liang
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael T Migawa
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
4
|
Acosta-Reyes FJ, Pagan M, Fonfría-Subirós E, Saperas N, Subirana JA, Campos JL. The influence of Ni 2+ and other ions on the trigonal structure of DNA. Biopolymers 2020; 112:e23397. [PMID: 32898299 DOI: 10.1002/bip.23397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
We present a new structure of a DNA dodecamer obtained in the presence of Ni2+ ions. The DNA forms Ni-guanine cross-links between neighboring molecules. Our results show that an adequate dosage of Ni2+ may help to form well-defined DNA nanostructures. We also compare our structure with other dodecamers which present unique features and also crystallize in trigonal unit cells, strongly influenced by the counterions associated with DNA. In all cases, the DNA duplexes form parallel pseudo-helical columns in the crystal, similar to DNA-protamine and native DNA fibers.
Collapse
Affiliation(s)
| | - Mireia Pagan
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Elsa Fonfría-Subirós
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Núria Saperas
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan A Subirana
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - J Lourdes Campos
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
5
|
Istrate A, Johannsen S, Istrate A, Sigel RKO, Leumann CJ. NMR solution structure of tricyclo-DNA containing duplexes: insight into enhanced thermal stability and nuclease resistance. Nucleic Acids Res 2019; 47:4872-4882. [PMID: 30916334 PMCID: PMC6511864 DOI: 10.1093/nar/gkz197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023] Open
Abstract
Tc-DNA is a conformationally constrained oligonucleotide analogue which shows significant increase in thermal stability when hybridized with RNA, DNA or tc-DNA. Remarkably, recent studies revealed that tc-DNA antisense oligonucleotides (AO) hold great promise for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. To date, no high-resolution structural data is available for fully modified tc-DNA duplexes and little is known about the origins of their enhanced thermal stability. Here, we report the structures of a fully modified tc-DNA oligonucleotide paired with either complementary RNA, DNA or tc-DNA. All three investigated duplexes maintain a right-handed helical structure with Watson-Crick base pairing and overall geometry intermediate between A- and B-type, but closer to A-type structures. All sugars of the tc-DNA and RNA residues adopt a North conformation whereas the DNA deoxyribose are found in a South-East-North conformation equilibrium. The conformation of the tc-DNA strand in the three determined structures is nearly identical and despite the different nature and local geometry of the complementary strand, the overall structures of the examined duplexes are very similar suggesting that the tc-DNA strand dominates the duplex structure.
Collapse
Affiliation(s)
- Andrei Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Silke Johannsen
- Department of Chemistry, Winterthurerstrasse 190, University of Zürich, Zürich CH-8057, Switzerland
| | - Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Roland K O Sigel
- Department of Chemistry, Winterthurerstrasse 190, University of Zürich, Zürich CH-8057, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| |
Collapse
|
6
|
Molecular Dynamics Simulation of Homo-DNA: The Role of Crystal Packing in Duplex Conformation. CRYSTALS 2019. [DOI: 10.3390/cryst9100532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The (4′→6′)-linked DNA homolog 2′,3′-dideoxy-β-D-glucopyranosyl nucleic acid (dideoxy-glucose nucleic acid or homo-DNA) exhibits stable self-pairing of the Watson–Crick and reverse-Hoogsteen types, but does not cross-pair with DNA. Molecular modeling and NMR solution studies of homo-DNA duplexes pointed to a conformation that was nearly devoid of a twist and a stacking distance in excess of 4.5 Å. By contrast, the crystal structure of the homo-DNA octamer dd(CGAATTCG) revealed a right-handed duplex with average values for helical twist and rise of ca. 15° and 3.8 Å, respectively. Other key features of the structure were strongly inclined base-pair and backbone axes in the duplex with concomitant base-pair slide and cross-strand stacking, and the formation of a dimer across a crystallographic dyad with inter-duplex base swapping. To investigate the conformational flexibility of the homo-DNA duplex and a potential influence of lattice interactions on its geometry, we used molecular dynamics (MD) simulations of the crystallographically observed dimer of duplexes and an isolated duplex in the solution state. The dimer of duplexes showed limited conformational flexibility, and key parameters such as helical rise, twist, and base-pair slide exhibited only minor fluctuations. The single duplex was clearly more flexible by comparison and underwent partial unwinding, albeit without significant lengthening. Thus, base stacking was preserved in the isolated duplex and two adenosines extruded from the stack in the dimer of duplexes were reinserted into the duplex and pair with Ts in a Hoogsteen mode. Our results confirmed that efficient stacking in homo-DNA seen in the crystal structure of a dimer of duplexes was maintained in the separate duplex. Therefore, lattice interactions did not account for the different geometries of the homo-DNA duplex in the crystal and earlier models that resembled inclined ladders with large base-pair separations that precluded efficient stacking.
Collapse
|
7
|
Köllmann C, Wiechert SM, Jones PG, Pietschmann T, Werz DB. Synthesis of 4′/5′-Spirocyclopropanated Uridine and d-Xylouridine Derivatives and Their Activity against the Human Respiratory Syncytial Virus. Org Lett 2019; 21:6966-6971. [DOI: 10.1021/acs.orglett.9b02555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Svenja M. Wiechert
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | | | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | | |
Collapse
|
8
|
Seth PP, Swayze EE. The Medicinal Chemistry of RNase H-activating Antisense Oligonucleotides. ADVANCES IN NUCLEIC ACID THERAPEUTICS 2019. [DOI: 10.1039/9781788015714-00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the properties that an RNase H-activating antisense oligonucleotide (ASO) drug must have to function effectively in animals, as well as on medicinal chemistry strategies to achieve these properties. The biochemistry and structural requirements for activating RNase H are briefly summarized, as well as chemical modifications that can effect activation of RNase H when an ASO is bound to target RNA. The key modifications available to the medicinal chemist to engineer desired properties of the ASO are briefly reviewed, as are ASO design strategies to achieve optimal activity in animal systems. Lastly, the interactions of ASOs with proteins and strategies to control these interactions to improve the profile of ASOs are discussed.
Collapse
Affiliation(s)
- Punit P. Seth
- Ionis Pharmaceuticals 2855 Gazelle Court Carlsbad CA 92010 USA
| | - Eric E. Swayze
- Ionis Pharmaceuticals 2855 Gazelle Court Carlsbad CA 92010 USA
| |
Collapse
|
9
|
Abstract
Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
10
|
Salinas JC, Yu J, Østergaard M, Seth PP, Hanessian S. Conception and Synthesis of Oxabicyclic Nucleoside Phosphonates as Internucleotidic Phosphate Surrogates in Antisense Oligonucleotide Constructs. Org Lett 2018; 20:5296-5299. [PMID: 30146887 DOI: 10.1021/acs.orglett.8b02233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The stereocontrolled synthesis of a novel oxabicyclic nucleoside phosphonate comprising a perhydrofuropyran core unit was achieved. It was incorporated in an oligonucleotide sequence as a 5'-3' phosphonate-phosphate insert, and the stability properties of the resulting duplex were measured. The oxabicyclic nucleoside framework was designed so as to restrict rotation around angles γ, δ, and ε of a natural nucleoside.
Collapse
Affiliation(s)
- Juan C Salinas
- Department of Chemistry , Université de Montréal , P.O. Box 6128, Downtown Station , Montréal , QC H3C 3J7 , Canada
| | - Jeff Yu
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Michael Østergaard
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Punit P Seth
- Department of Medicinal Chemistry , Ionis Pharmaceuticals , 2855 Gazelle Court , Carlsbad , California 92010 , United States
| | - Stephen Hanessian
- Department of Chemistry , Université de Montréal , P.O. Box 6128, Downtown Station , Montréal , QC H3C 3J7 , Canada
| |
Collapse
|
11
|
Diafa S, Evéquoz D, Leumann CJ, Hollenstein M. Enzymatic Synthesis of 7',5'-Bicyclo-DNA Oligonucleotides. Chem Asian J 2017; 12:1347-1352. [PMID: 28371464 DOI: 10.1002/asia.201700374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/30/2017] [Indexed: 01/06/2023]
Abstract
The selection of artificial genetic polymers with tailor-made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo-DNA triphosphate (i.e., 7',5'-bc-TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7',5'-bc-TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA-dependent DNA synthesis and potentially also XNA-dependent XNA synthesis. However, DNA-dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7',5'-bc-TTP.
Collapse
Affiliation(s)
- Stella Diafa
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
12
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
13
|
Hari Y, Dugovič B, Istrate A, Fignolé A, Leumann CJ, Schürch S. The Contribution of the Activation Entropy to the Gas-Phase Stability of Modified Nucleic Acid Duplexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1186-1196. [PMID: 27080005 DOI: 10.1007/s13361-016-1391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yvonne Hari
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Branislav Dugovič
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Alena Istrate
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Annabel Fignolé
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
14
|
Generating Crystallographic Models of DNA Dodecamers from Structures of RNase H:DNA Complexes. Methods Mol Biol 2016; 1320:111-26. [PMID: 26227040 DOI: 10.1007/978-1-4939-2763-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The DNA dodecamer 5'-d(CGCGAATTCGCG)-3' is arguably the best studied oligonucleotide and crystal structures of duplexes with this sequence account for a considerable portion of the total number of oligo-2'-deoxynucleotide structures determined over the last 30 years. The dodecamer has commonly served as a template to analyze the effects of sequence on DNA conformation, the conformational properties of chemically modified nucleotides, DNA-ligand interactions as well as water structure and DNA-cation binding. Although molecular replacement is the phasing method of choice given the large number of available models of the dodecamer, this strategy often fails as a result of conformational changes caused by chemical modification, mismatch pairs, or differing packing modes. Here, we describe an alternative approach to determine crystal structures of the dodecamer in cases where molecular replacement does not produce a solution or when crystals of the DNA alone cannot be grown. It is based on the discovery that many dodecamers of the above sequence can be readily co-crystallized with Bacillus halodurans RNase H, whereby the enzyme is unable to cleave the DNA. Determination of the structure of the complex using the protein portion as the search model yields a structural model of the DNA. Provided crystals of the DNA alone are also available, the DNA model from the complex then enables phasing their structures by molecular replacement.
Collapse
|
15
|
Ittig D, Luisier S, Weiler J, Schümperli D, Leumann CJ. Improving gene silencing of siRNAs via tricyclo-DNA modification. ARTIFICIAL DNA, PNA & XNA 2014; 1:9-16. [PMID: 21687522 DOI: 10.4161/adna.1.1.11385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 01/22/2010] [Accepted: 02/03/2010] [Indexed: 12/16/2022]
Abstract
Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild-type (wt) siRNA. Additional modifications at the 3'-end, the 5'-end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.
Collapse
Affiliation(s)
- Damian Ittig
- Department of Chemistry and Biochemistry; University of Bern; Bern, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Seth PP, Swayze EE. Unnatural Nucleoside Analogs for Antisense Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527676545.ch12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Hanessian S, Schroeder BR, Merner BL, Chen B, Swayze EE, Seth PP. Synthesis of cis- and trans-α-l-[4.3.0]bicyclo-DNA monomers for antisense technology: methods for the diastereoselective formation of bicyclic nucleosides. J Org Chem 2013; 78:9051-63. [PMID: 23937280 DOI: 10.1021/jo401166q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two α-L-ribo-configured bicyclic nucleic acid modifications, represented by analogues 12 and 13, which are epimeric at C3' and C5' have been synthesized using a carbohydrate-based approach to build the bicyclic core structure. An intramolecular L-proline-mediated aldol reaction was employed to generate the cis-configured ring junction of analogue 12 and represents a rare application of this venerable organocatalytic reaction to a carbohydrate system. In the case of analogue 13, where a trans-ring junction was desired, an intermolecular diastereoselective Grignard reaction followed by ring-closing metathesis was used. In order to set the desired stereochemistry at the C5' positions of both nucleoside targets, a study of diastereoselective Lewis acid mediated allylation reactions on a common bicyclic aldehyde precursor was carried out. Analogue 12 was incorporated in oligonucleotide sequences, and thermal denaturation experiments indicate that it is destabilizing when paired with complementary DNA and RNA. However, this construct shows a significant improvement in nuclease stability relative to a DNA oligonucleotide.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal , Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Hanessian S, Wagger J, Merner BL, Giacometti RD, Ostergaard ME, Swayze EE, Seth PP. A constrained tricyclic nucleic acid analogue of α-L-LNA: investigating the effects of dual conformational restriction on duplex thermal stability. J Org Chem 2013; 78:9064-75. [PMID: 23937256 DOI: 10.1021/jo401170y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A constrained tricyclic analogue of α-L-LNA (2), which contains dual modes of conformational restriction about the ribose sugar moiety, has been synthesized and characterized by X-ray crystallography. Thermal denaturation experiments of oligonucleotide sequences containing this tricyclic α-L-LNA analogue (α-L-TriNA 2, 5) indicate that this modification is moderately stabilizing when paired with complementary DNA and RNA, but less stabilizing than both α-L-LNA (2) and α-L-TriNA 1 (4).
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal , Montréal, QC, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Lietard J, Leumann CJ. Synthesis, pairing, and cellular uptake properties of C(6')-functionalized tricyclo-DNA. J Org Chem 2012; 77:4566-77. [PMID: 22551389 DOI: 10.1021/jo300648u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a promising candidate for oligonucleotide-based therapeutic applications exhibiting increased affinity to RNA and increased resistance to nucleases. However, as many other oligonucleotide analogs, tc-DNA does not readily cross cell membranes. We wished to address this issue by preparing a prodrug of tc-DNA containing a metabolically labile group at C(6') that promotes cellular uptake. Two monomeric nucleoside building blocks bearing an ester function at C(6') (tc(ee)-T and tc(hd)-T) were synthesized starting from a known C(6') functionalized bicyclic sugar unit to which the cyclopropane ring was introduced via carbene addition. NIS-mediated nucleosidation of the corresponding glycal with in situ persilylated thymine afforded the β-iodonucleoside exclusively that was dehalogenated via radical reduction. Diversity in the ester function was obtained by hydrolysis and reesterification. The two nucleosides were subsequently incorporated into DNA or tc-DNA by standard phosphoramidite chemistry. The reactivity of the ester function during oligonucleotide deprotection was explored and the corresponding C(6') amide, carboxylic acid, or unchanged ester functions were obtained, depending on the deprotection conditions. Compared to unmodified DNA, these tc-DNA derivatives increased the stability of duplexes investigated with ΔT(m)/mod of +0.4 to +2.0 °C. The only destabilizing residue was tc(hd)-T, most likely due to self-aggregation of the lipophilic side chains in the single stranded oligonucleotide. A decamer containing five tc(hd)-T residues was readily taken up by HeLa and HEK 293T cells without the use of a transfection agent.
Collapse
Affiliation(s)
- Jory Lietard
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | |
Collapse
|
20
|
Pallan PS, Yu J, Allerson CR, Swayze EE, Seth P, Egli M. Insights from crystal structures into the opposite effects on RNA affinity caused by the S- and R-6'-methyl backbone modifications of 3'-fluoro hexitol nucleic acid. Biochemistry 2012; 51:7-9. [PMID: 22229409 PMCID: PMC3257178 DOI: 10.1021/bi201810r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Locked nucleic acid (LNA) analogues with 2',4'-bridged sugars show promise in antisense applications. S-5'-Me-LNA has high RNA affinity, and modified oligonucleotides show weakened immune stimulation in vivo. Conversely, an R-5'-methyl group dramatically lowers RNA affinity. To test the effects of S- and R-6'-methyl groups on 3'-fluoro hexitol nucleic acid (FHNA) stability, we synthesized S- and R-6'-Me-FHNA thymidine and incorporated them into oligo-2'-deoxynucleotides. As with LNA, S-6'-Me is stabilizing whereas R-6'-Me is destabilizing. Crystal structures of 6'-Me-FHNA-modified DNAs explain the divergent consequences for stability and suggest convergent origins of these effects by S- and R-6'-Me (FHNA) [-5'-Me (LNA and RNA)] substituents.
Collapse
Affiliation(s)
| | - Jinghua Yu
- Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010
| | | | - Eric E. Swayze
- Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010
| | - Punit Seth
- Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010
| | - Martin Egli
- CORRESPONDING AUTHORS: Phone: ++1-615-343-8070. Fax: ++1-615-322-7122. and
| |
Collapse
|
21
|
Abstract
Metal ions play a key role in nucleic acid structure and activity. Elucidation of the rules that govern the binding of metal ions is therefore an essential step for better understanding of the nucleic acid functions. This review is as an update to a preceding one (Metal Ions Biol. Syst., 1996, 32, 91-134), in which we offered a general view of metal ion interactions with mono-, di-, tri-, and oligonucleotides in the solid state, based on their crystal structures reported before 1994. In this chapter, we survey all the crystal structures of metal ion complexes with nucleotides involving oligonucleotides reported after 1994 and we have tried to uncover new characteristic metal bonding patterns for mononucleotides and oligonucleotides with A-RNA and A/B/Z-DNA fragments that form duplexes. We do not cover quadruplexes, duplexes with metal-mediated base-pairs, tRNAs, rRNAs in ribosome, ribozymes, and nucleic acid-drug and -protein complexes. Factors that affect metal binding to mononucleotides and oligonucleotide duplexes are also dealt with.
Collapse
|
22
|
Seth PP, Allerson CR, Siwkowski A, Vasquez G, Berdeja A, Migawa MT, Gaus H, Prakash TP, Bhat B, Swayze EE. Configuration of the 5'-methyl group modulates the biophysical and biological properties of locked nucleic acid (LNA) oligonucleotides. J Med Chem 2010; 53:8309-18. [PMID: 21058707 DOI: 10.1021/jm101207e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As part of a program aimed at exploring the structure- activity relationships of 2',4'-bridged nucleic acid (BNA) containing antisense oligonucleotides (ASOs), we report the synthesis and biophysical and biological properties of R- and S-5'-Me LNA modified oligonucleotides. We show that introduction of a methyl group in the (S) configuration at the 5'-position is compatible with the high affinity recognition of complementary nucleic acids observed with LNA. In contrast, introduction of a methyl group in the (R) configuration reversed the stabilization effect of LNA. NMR studies indicated that the R-5'-Me group changes the orientation around torsion angle γ from the +sc to the ap range at the nucleoside level, and this may in part be responsible for the poor hybridization behavior exhibited by this modification. In animal experiments, S-5'-Me-LNA modified gapmer antisense olignucleotides showed slightly reduced potency relative to the sequence matched LNA ASOs while improving the therapeutic profile.
Collapse
|
23
|
Ittig D, Gerber AB, Leumann CJ. Position-dependent effects on stability in tricyclo-DNA modified oligonucleotide duplexes. Nucleic Acids Res 2010; 39:373-80. [PMID: 20719742 PMCID: PMC3017593 DOI: 10.1093/nar/gkq733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A series of oligodeoxyribonucleotides and oligoribonucleotides containing single and multiple tricyclo(tc)-nucleosides in various arrangements were prepared and the thermal and thermodynamic transition profiles of duplexes with complementary DNA and RNA evaluated. Tc-residues aligned in a non-continuous fashion in an RNA strand significantly decrease affinity to complementary RNA and DNA, mostly as a consequence of a loss of pairing enthalpy ΔH. Arranging the tc-residues in a continuous fashion rescues T(m) and leads to higher DNA and RNA affinity. Substitution of oligodeoxyribonucleotides in the same way causes much less differences in T(m) when paired to complementary DNA and leads to substantial increases in T(m) when paired to complementary RNA. CD-spectroscopic investigations in combination with molecular dynamics simulations of duplexes with single modifications show that tc-residues in the RNA backbone distinctly influence the conformation of the neighboring nucleotides forcing them into higher energy conformations, while tc-residues in the DNA backbone seem to have negligible influence on the nearest neighbor conformations. These results rationalize the observed affinity differences and are of relevance for the design of tc-DNA containing oligonucleotides for applications in antisense or RNAi therapy.
Collapse
Affiliation(s)
- Damian Ittig
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
24
|
Egli M, Pallan PS. The many twists and turns of DNA: template, telomere, tool, and target. Curr Opin Struct Biol 2010; 20:262-75. [PMID: 20381338 DOI: 10.1016/j.sbi.2010.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/15/2010] [Indexed: 11/16/2022]
Abstract
If any proof were needed of DNA's versatile roles and use, it is certainly provided by the numerous depositions of new three-dimensional (3D) structures to the coordinate databanks (PDB, NDB) over the last two years. Quadruplex motifs involving G-repeats, adducted sequences and oligo-2'-deoxynucleotides (ODNs) with bound ligands are particularly well represented. In addition, structures of chemically modified DNAs (CNAs) and artificial analogs are yielding insight into stability, pairing properties, and dynamics, including those of the native nucleic acids. Besides being of significance for establishing diagnostic tools and in the analysis of protein-DNA interactions, chemical modification in conjunction with investigations of the structural consequences may yield novel nucleic acid-based therapeutics. DNA's predictable and highly specific pairing behavior makes it the material of choice for constructing 3D-nanostructures of defined architecture. Recently the first examples of DNA nanoparticle and self-assembled 3D-crystals were reported. Although the structures discussed in this review are all based either on X-ray crystallography or solution NMR, small angle X-ray scattering (SAXS), and cryoEM are proving to be useful approaches for the characterization of nanoscale DNA architecture.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | | |
Collapse
|
25
|
Lebreton J, Escudier JM, Arzel L, Len C. Synthesis of Bicyclonucleosides Having a C−C Bridge. Chem Rev 2010; 110:3371-418. [DOI: 10.1021/cr800465j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jacques Lebreton
- Université de Nantes, CNRS, Laboratoire CEISAM-UMR-CNRS 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Université Paul Sabatier Laboratoire de Synthèse et Physicochimie des Molécules d’Intérêt Biologique - UMR-CNRS 5068, 31062 Toulouse Cedex, France, and Université de Technologie de Compiègne, Ecole Supérieure de Chimie Organique Minérale, EA 4297, Transformations Intégrées de la Matière Renouvelable, 1 allée du Réseau Jean-Marie Buckmaster,
| | - Jean-Marc Escudier
- Université de Nantes, CNRS, Laboratoire CEISAM-UMR-CNRS 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Université Paul Sabatier Laboratoire de Synthèse et Physicochimie des Molécules d’Intérêt Biologique - UMR-CNRS 5068, 31062 Toulouse Cedex, France, and Université de Technologie de Compiègne, Ecole Supérieure de Chimie Organique Minérale, EA 4297, Transformations Intégrées de la Matière Renouvelable, 1 allée du Réseau Jean-Marie Buckmaster,
| | - Laurence Arzel
- Université de Nantes, CNRS, Laboratoire CEISAM-UMR-CNRS 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Université Paul Sabatier Laboratoire de Synthèse et Physicochimie des Molécules d’Intérêt Biologique - UMR-CNRS 5068, 31062 Toulouse Cedex, France, and Université de Technologie de Compiègne, Ecole Supérieure de Chimie Organique Minérale, EA 4297, Transformations Intégrées de la Matière Renouvelable, 1 allée du Réseau Jean-Marie Buckmaster,
| | - Christophe Len
- Université de Nantes, CNRS, Laboratoire CEISAM-UMR-CNRS 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France, Université Paul Sabatier Laboratoire de Synthèse et Physicochimie des Molécules d’Intérêt Biologique - UMR-CNRS 5068, 31062 Toulouse Cedex, France, and Université de Technologie de Compiègne, Ecole Supérieure de Chimie Organique Minérale, EA 4297, Transformations Intégrées de la Matière Renouvelable, 1 allée du Réseau Jean-Marie Buckmaster,
| |
Collapse
|
26
|
Egli M, Pallan PS. Crystallographic studies of chemically modified nucleic acids: a backward glance. Chem Biodivers 2010; 7:60-89. [PMID: 20087997 PMCID: PMC2905155 DOI: 10.1002/cbdv.200900177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high-throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein-nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal-structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor-made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
27
|
Boer DR, Canals A, Coll M. DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes. Dalton Trans 2008:399-414. [PMID: 19122895 DOI: 10.1039/b809873p] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we review recent DNA-binding agents that are expected to influence the field of DNA-targeting. We restrict ourselves to binders for which the three-dimensional structure in complex with DNA or RNA has been determined by X-ray crystallography or NMR. Furthermore, we primarily focus on unprecedented ways of targeting peculiar DNA structures, such as junctions, quadruplexes, and duplex DNAs different from the B-form. Classical binding modes of small molecular weight compounds to DNA, i.e. groove binding, intercalation and covalent addition are discussed in those cases where the structures represent a novelty. In addition, we review 3D structures of triple-stranded DNA, of the so-called Peptide Nucleic Acids (PNAs), which are oligonucleotide bases linked by a polypeptide backbone, and of aptamers, which are DNA or RNA receptors that are designed combinatorially. A discussion on perspectives in the field of DNA-targeting and on sequence recognition is also provided.
Collapse
Affiliation(s)
- D Roeland Boer
- Institute for Research in Biomedicine and Institut de Biologia Molecular de Barcelona (CSIC), Barcelona Science Park, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Dupouy C, Iché-Tarrat N, Durrieu MP, Vigroux A, Escudier JM. Alpha,beta-D-CNA induced rigidity within oligonucleotides. Org Biomol Chem 2008; 6:2849-51. [PMID: 18688476 DOI: 10.1039/b809775e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of alpha,beta-D-CNA featuring canonical values of the torsional angles alpha and beta within oligonucleotides leads to an overall stabilization and improved rigidity of the duplex DNA as demonstrated by UV experiments, circular dichroism and corroborated by molecular dynamics simulations.
Collapse
Affiliation(s)
- Christelle Dupouy
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique UMR 5068 CNRS, Université Paul Sabatier, 31062, Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
29
|
Wang F, Li F, Ganguly M, Marky LA, Gold B, Egli M, Stone MP. A bridging water anchors the tethered 5-(3-aminopropyl)-2'-deoxyuridine amine in the DNA major groove proximate to the N+2 C.G base pair: implications for formation of interstrand 5'-GNC-3' cross-links by nitrogen mustards. Biochemistry 2008; 47:7147-57. [PMID: 18549246 DOI: 10.1021/bi800375m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Site-specific insertion of 5-(3-aminopropyl)-2'-deoxyuridine (Z3dU) and 7-deaza-dG into the Dickerson-Drew dodecamers 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7)T (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19)T (20)C (21) Z (22)C (23)G (24))-3' (named DDD (Z10)) and 5'-d(C (1)G (2)C (3)G (4)A (5)A (6)T (7) X (8)C (9) Z (10)C (11)G (12))-3'.5'-d(C (13)G (14)C (15)G (16)A (17)A (18)T (19) X (20)C (21) Z (22)C (23)G (24))-3' (named DDD (2+Z10)) (X = Z3dU; Z = 7-deaza-dG) suggests a mechanism underlying the formation of interstrand N+2 DNA cross-links by nitrogen mustards, e.g., melphalan and mechlorethamine. Analysis of the DDD (2+Z10) duplex reveals that the tethered cations at base pairs A (5).X (20) and X (8).A (17) extend within the major groove in the 3'-direction, toward conserved Mg (2+) binding sites located adjacent to N+2 base pairs C (3).Z (22) and Z (10).C (15). Bridging waters located between the tethered amines and either Z (10) or Z (22) O (6) stabilize the tethered cations and allow interactions with the N + 2 base pairs without DNA bending. Incorporation of 7-deaza-dG into the DDD (2+Z10) duplex weakens but does not eliminate electrostatic interactions between tethered amines and Z (10) O (6) and Z (22) O (6). The results suggest a mechanism by which tethered N7-dG aziridinium ions, the active species involved in formation of interstrand 5'-GNC-3' cross-links by nitrogen mustards, modify the electrostatics of the major groove and position the aziridinium ions proximate to the major groove edge of the N+2 C.G base pair, facilitating interstrand cross-linking.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|