1
|
Nakornkhet C, Nanok T, Wattanathana W, Chuawong P, Hormnirun P. Titanium Complexes of Salicylbenzoxazole and Salicylbenzothiazole Ligands for the Ring-Opening Polymerization of ε-Caprolactone and Substituted ε-Caprolactones and Their Copolymerizations. Inorg Chem 2022; 61:7945-7963. [PMID: 35537466 DOI: 10.1021/acs.inorgchem.2c00577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two series of titanium complexes, including salicylbenzoxazole titanium complexes (1-4) and salicylbenzothiazole titanium complexes (5-8), were successfully synthesized and characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction crystallography (for 2 and 5). The 1H NMR spectra of complexes 7 and 8 reveal fluxional behavior in solution at room temperature, and the activation parameters were determined by lineshape analysis of variable-temperature (VT) NMR spectra in toluene-d8: for 7, ΔH⧧ = 73.0 ± 1.8 kJ mol-1, ΔS⧧ = 22.1 ± 5.5 J mol-1 K-1; for 8, ΔH⧧ = 73.7 ± 1.2 kJ mol-1, ΔS⧧ = 20.3 ± 3.8 J mol-1 K-1. The positive values of ΔS⧧ suggested that the isomerization occurred via a dissociative mechanism. All complexes were active initiators for the ring-opening polymerization of ε-caprolactone (ε-CL) and three substituted ε-CLs: γ-methyl-ε-caprolactone (γMeCL), γ-ethyl-ε-caprolactone (γEtCL), and γ-phenyl-ε-caprolactone (γPhCL). Of all complexes, complex 5 was found to be the most active initiator in this study. The copolymerizations between ε-CL and three substituted ε-CLs produced completely random copolymers. The polymerization was proposed to proceed via a dissociative coordination-insertion mechanism. The catalytic activity of the salicylbenzoxazole titanium complex was lower than that of its closely related salicylbenzothiazole titanium congener. Additionally, DFT calculations unveiled that the ligand decoordination step and the less steric congestion at the titanium center in the salicylbenzothiazole titanium complexes were the key factors in enhancing the catalytic rate.
Collapse
Affiliation(s)
- Chutikan Nakornkhet
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Tanin Nanok
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Pitak Chuawong
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pimpa Hormnirun
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Upitak K, Wattanathana W, Nanok T, Chuawong P, Hormnirun P. Titanium complexes of pyrrolylaldiminate ligands and their exploitation for the ring-opening polymerization of cyclic esters. Dalton Trans 2021; 50:10964-10981. [PMID: 34318841 DOI: 10.1039/d1dt01470f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A series of six-coordinate titanium complexes 1-6 supported by pyrrolylaldiminate ligands were prepared via the reaction of 2 equivalents of ligands and Ti(OiPr)4 in toluene at 70 °C. The X-ray structure of 2 revealed that the two ligands were κ2-coordinated to the titanium center with the two pyrrole nitrogen atoms in trans positions and the two imine nitrogen atoms in cis positions. All complexes were active initiators for the ring-opening polymerization (ROP) of rac-lactide (rac-LA), ε-caprolactone (ε-CL), and three substituted ε-caprolactones (γ-methyl-ε-caprolactone (γMeCL), γ-ethyl-ε-caprolactone (γEtCL), and γ-phenyl-ε-caprolactone (γPhCL)). Polymerizations of all monomers were well controlled, affording predetermined molar masses and narrow dispersity values. Complex 5 exhibited the highest polymerization activities with rac-LA and ε-CL and its performance was comparable to other highly active six-coordinate titanium complexes reported thus far. Kinetic results revealed a first-order dependency on the monomer concentration, and the rate of polymerization was greatly influenced by the substituent on the imine nitrogen. End-group analysis of the isolated PLA and PCL suggested a coordination-insertion mechanism.
Collapse
Affiliation(s)
- Kanokon Upitak
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Tanin Nanok
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Pitak Chuawong
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Pimpa Hormnirun
- Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Zhang Y, Xia B, Li Y, Lin X, Wu Q. Substrate Engineering in Lipase-Catalyzed Selective Polymerization of d-/l-Aspartates and Diols to Prepare Helical Chiral Polyester. Biomacromolecules 2021; 22:918-926. [PMID: 33427463 DOI: 10.1021/acs.biomac.0c01605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of optically pure polymers is one of the most challenging tasks in polymer chemistry. Herein, Novozym 435 (Lipase B from Candida antarctica, immobilized on Lewatit VP OC 1600)-catalyzed polycondensation between d-/l-aspartic acid (Asp) diester and diols for the preparation of helical chiral polyesters was reported. Compared with d-Asp diesters, the fast-reacting l-Asp diesters easily reacted with diols to provide a series of chiral polyesters containing N-substitutional l-Asp repeating units. Besides amino acid configuration, N-substituent side chains and the chain length of diols were also investigated and optimized. It was found that bulky acyl N-substitutional groups like N-Boc and N-Cbz were more favorable for this polymerization than small ones probably due to competitively binding of these small acyl groups into the active site of Novozym 435. The highest molecular weight can reach up to 39.5 × 103 g/mol (Mw, Đ = 1.64). Moreover, the slow-reacting d-Asp diesters were also successfully polymerized by modifying the substrate structure to create a "nonchiral" condensation environment artificially. These enantiocomplementary chiral polyesters are thermally stable and have specific helical structures, which was confirmed by circular dichroism (CD) spectra, scanning electron microscope (SEM), and molecular calculation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bo Xia
- Jiyang College of Zhejiang A&F University, Zhuji 311800, People's Republic of China
| | - Yanyan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
4
|
Batiste DC, Meyersohn MS, Watts A, Hillmyer MA. Efficient Polymerization of Methyl-ε-Caprolactone Mixtures To Access Sustainable Aliphatic Polyesters. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Derek C. Batiste
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marianne S. Meyersohn
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Annabelle Watts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
5
|
Cheng X, Miao T, Ma H, Yin L, Zhang W, Zhang Z, Zhu X. The construction of photoresponsive polymer particles with supramolecular helicity from achiral monomers by helix-sense-selective polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01868a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optically active azobenzene-containing polymer particles successfully prepared from achiral monomers for the first time by helix-sense-selective dispersion polymerization, also known as asymmetric helix-chirogenic polymerization.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Haotian Ma
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
6
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Delgove MAF, Wróblewska AA, Stouten J, van Slagmaat CAMR, Noordijk J, De Wildeman SMA, Bernaerts KV. Organocatalyzed ring opening polymerization of regio-isomeric lactones: reactivity and thermodynamics considerations. Polym Chem 2020. [DOI: 10.1039/c9py01777a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Study of the kinetics and thermodynamics of the organocatalyzed ring opening polymerization of a regio-isomeric mixture of β,δ-trimethyl-ε-caprolactones (TMCL).
Collapse
Affiliation(s)
- Marie A. F. Delgove
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Aleksandra A. Wróblewska
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | | | - Jurrie Noordijk
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Stefaan M. A. De Wildeman
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)
- Maastricht University
- 6167 RD Geleen
- The Netherlands
| |
Collapse
|
8
|
Stereoselectivity-tailored chemo-enzymatic synthesis of enantiocomplementary poly (ω-substituted-δ-valerolactone) enabled by engineered lipase. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Delgove MAF, Elford MT, Bernaerts KV, De Wildeman SMA. Application of a thermostable Baeyer-Villiger monooxygenase for the synthesis of branched polyester precursors. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:2131-2140. [PMID: 30069077 PMCID: PMC6055809 DOI: 10.1002/jctb.5623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND It is widely accepted that the poor thermostability of Baeyer-Villiger monooxygenases limits their use as biocatalysts for applied biocatalysis in industrial applications. The goal of this study was to investigate the biocatalytic oxidation of 3,3,5-trimethylcyclohexanone using a thermostable cyclohexanone monooxygenase from Thermocrispum municipale (TmCHMO) for the synthesis of branched ϵ-caprolactone derivatives as building blocks for tuned polymeric backbones. In this multi-enzymatic reaction, the thermostable cyclohexanone monooxygenase was fused to a phosphite dehydrogenase (PTDH) in order to ensure co-factor regeneration. RESULTS Using reaction engineering, the reaction rate and product formation of the regio-isomeric branched lactones were improved and the use of co-solvents and the initial substrate load were investigated. Substrate inhibition and poor product solubility were overcome using continuous substrate feeding regimes, as well as a biphasic reaction system with toluene as water-immiscible organic solvent. A maximum volumetric productivity, or space-time-yield, of 1.20 g L-1 h-1 was achieved with continuous feeding of substrate using methanol as co-solvent, while a maximum product concentration of 11.6 g L-1 was achieved with toluene acting as a second phase and substrate reservoir. CONCLUSION These improvements in key process metrics therefore demonstrate progress towards the up-scaled Baeyer-Villiger monooxygenase-biocatalyzed synthesis of the target building blocks for polymer application. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marie AF Delgove
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Matthew T Elford
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Katrien V Bernaerts
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| | - Stefaan MA De Wildeman
- Maastricht UniversityAachen‐Maastricht Institute for Biobased Materials (AMIBM)UrmonderbaanThe Netherlands
| |
Collapse
|
10
|
Yang J, Liu Y, Liang X, Yang Y, Li Q. Enantio-, Regio-, and Chemoselective Lipase-Catalyzed Polymer Synthesis. Macromol Biosci 2018; 18:e1800131. [PMID: 29870576 DOI: 10.1002/mabi.201800131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Indexed: 12/19/2022]
Abstract
In contrast to chemical routes, enzymatic polymerization possesses favorable characteristics of mild reaction conditions, few by-products, and high activity toward cyclic lactones which make it a promising technique for constructing polymeric materials. Meanwhile, it can avoid the trace residue of metallic catalysts and potential toxicity, and thus exhibits great potential in the biomedical fields. More importantly, lipase-catalyzed polymer synthesis usually shows favorable enantio-, regio-, and chemoselectivity. Here, the history and recent developments in lipase-catalyzed selective polymerization for constructing polymers with unique structures and properties are highlighted. In particular, the synthesis of polymeric materials which are difficult to prepare in a chemical route and the construction of polymers through the combination of selective enzymatic and chemical methods are focused. In addition, the future direction is proposed especially based on the rapid developments in computational chemistry and protein engineering techniques.
Collapse
Affiliation(s)
- Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Changchun, 130012, China
| |
Collapse
|
11
|
Huang H, Wang H, Wu Y, Shi Y, Deng J. Chiral, crosslinked, and micron-sized spheres of substituted polyacetylene prepared by precipitation polymerization. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Watts A, Kurokawa N, Hillmyer MA. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. Biomacromolecules 2017; 18:1845-1854. [PMID: 28467049 DOI: 10.1021/acs.biomac.7b00283] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol-1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment-segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.
Collapse
Affiliation(s)
- Annabelle Watts
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Naruki Kurokawa
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| |
Collapse
|
13
|
Xiao Y, Lang S, Zhou M, Qin J, Yin R, Gao J, Heise A, Lang M. A highly stretchable bioelastomer prepared by UV curing of liquid-like poly(4-methyl-ε-caprolactone) precursors. J Mater Chem B 2017; 5:595-603. [DOI: 10.1039/c6tb02507b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV curing of PMCL precursors in the absence of any solvent or heating led to highly stretchable bioelastomers.
Collapse
Affiliation(s)
- Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Sihuan Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Miaomiao Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jing Qin
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Rui Yin
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jingming Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Andreas Heise
- Department of Pharmaceutical and Medicinal Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
14
|
Schmidt S, Büchsenschütz HC, Scherkus C, Liese A, Gröger H, Bornscheuer UT. Biocatalytic Access to Chiral Polyesters by an Artificial Enzyme Cascade Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandy Schmidt
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Hanna C. Büchsenschütz
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christian Scherkus
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Harald Gröger
- Organic Chemistry I, Faculty of Chemistry; Bielefeld University; P.O. Box 100131 33501 Bielefeld Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
15
|
Lipases in polymer chemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:69-95. [PMID: 20859733 DOI: 10.1007/10_2010_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers.
Collapse
|
16
|
Song C, Liu X, Liu D, Ren C, Yang W, Deng J. Optically Active Particles of Chiral Polymers. Macromol Rapid Commun 2013; 34:1426-45. [DOI: 10.1002/marc.201300498] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ci Song
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Xuan Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Dong Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Chonglei Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
17
|
Cai T, Li M, Neoh KG, Kang ET. Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry. J Mater Chem B 2013; 1:1304-1315. [PMID: 32260804 DOI: 10.1039/c2tb00273f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperbranched polyglycerols containing terminal alkyne and alkyl bromide groups (CH[triple bond, length as m-dash]C-HPG-Br) were first synthesized via propargyl alcohol-initiated ring-opening polymerization (ROP) of glycidol, followed by reaction of 2-bromoisobutyryl bromide (BIBB) with the hydroxyl groups to introduce the atom transfer radical polymerization (ATRP) initiators on HPG. Hydrophobic azido-terminated poly(ε-caprolactone) (PCL-N3), prepared a priori via 2-azidoethanol-initiated ROP of ε-caprolactone, was then coupled to the CH[triple bond, length as m-dash]C-HPG-Br polymer through a Cu(i)-catalyzed alkyne-azide click reaction. The resultant linear-hyperbranched PCL-click-HPG copolymers were cast by phase inversion in an aqueous medium into microporous membranes of well-defined and uniform pores. Not only could the HPG contents in the PCL-click-HPG copolymers be used to control the pore size and porosity of the resulting membranes, but also the alkyl halide chain-ends of HPG allowed the subsequent functionalization of membrane and pore surfaces. The PCL-click-HPG-b-PMPC membrane was prepared via surface-initiated ATRP of zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) from the PCL-click-HPG membrane and pore surfaces. The PCL-click-HPG-b-PMPC membranes exhibit good antifouling and antibacterial adhesion properties with negligible cytotoxicity effects, making the membranes potentially useful for biomaterials and biomedical applications.
Collapse
Affiliation(s)
- Tao Cai
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576.
| | | | | | | |
Collapse
|
18
|
Zhang D, Song C, Deng J, Yang W. Chiral Microspheres Consisting Purely of Optically Active Helical Substituted Polyacetylene: The First Preparation via Precipitation Polymerization and Application in Enantioselective Crystallization. Macromolecules 2012. [DOI: 10.1021/ma301250u] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongyue Zhang
- State Key Laboratory of Chemical
Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - Ci Song
- State Key Laboratory of Chemical
Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical
Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical
Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
19
|
Yeniad B, Köklükaya NO, Naik H, Fijten MWM, Koning CE, Heise A. Synthesis of enantiopure homo and copolymers by raft polymerization and investigation of their enantioselective lipase-catalyzed esterification. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Wang C, Xiao Y, Heise A, Lang M. Organometallic and enzymatic catalysis for ring opening copolymerization of ε-caprolactone and 4-methyl-ε-caprolactone. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Yang Y, Yu Y, Zhang Y, Liu C, Shi W, Li Q. Lipase/esterase-catalyzed ring-opening polymerization: A green polyester synthesis technique. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
van der Meulen I, Li Y, Deumens R, Joosten EAJ, Koning CE, Heise A. Copolymers from Unsaturated Macrolactones: Toward the Design of Cross-Linked Biodegradable Polyesters. Biomacromolecules 2011; 12:837-43. [DOI: 10.1021/bm200084y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Inge van der Meulen
- Eindhoven University of Technology; Laboratory of Polymer Chemistry, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yingyuan Li
- Eindhoven University of Technology; Laboratory of Polymer Chemistry, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ronald Deumens
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elbert A. J. Joosten
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cor E. Koning
- Eindhoven University of Technology; Laboratory of Polymer Chemistry, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andreas Heise
- Eindhoven University of Technology; Laboratory of Polymer Chemistry, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
23
|
Wei Y, Wang YX, Wang W, Ho SV, Wei W, Ma GH. mPEG-PLA microspheres with narrow size distribution increase the controlled release effect of recombinant human growth hormone. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12643a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Hydrolases in Polymer Chemistry: Chemoenzymatic Approaches to Polymeric Materials. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_74] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
25
|
Xiao Y, Takwa M, Hult K, Koning CE, Heise A, Martinelle M. Systematic Comparison of HEA and HEMA as Initiators in Enzymatic Ring-Opening Polymerizations. Macromol Biosci 2009; 9:713-20. [DOI: 10.1002/mabi.200800290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
|
27
|
Hans M, Xiao Y, Keul H, Heise A, Moeller M. Novel Biodegradable Heterografted Polymer Brushes Prepared via
a Chemoenzymatic Approach. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200800590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Dove AP. Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. Chem Commun (Camb) 2008:6446-70. [DOI: 10.1039/b813059k] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|