1
|
Guo YF, Xu TT, Zhang GH, Dong H. Synthesis of 2-Deoxyglycosides with Exclusive β-Configuration Using 2-SAc Glycosyl Bromide Donors. Molecules 2025; 30:185. [PMID: 39795241 PMCID: PMC11721102 DOI: 10.3390/molecules30010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
In this study, we developed an indirect method for the synthesis of 2-deoxyglycosides with an exclusive β-configuration using glucosyl and galactosyl bromide donors with 2-thioacetyl (SAc) groups. The 2-SAc glucosyl and galactosyl bromide donors were easily obtained through the treatment of 1-OAc, 2-SAc glucose and galactose with HBr-CH3COOH solution, respectively. The glycosylation of such donors with acceptors under an improved Koenigs-Knorr condition resulted in glycosylation products with an exclusive β-configuration in excellent yields. The synthetic approach of 2-SAc glycosyl donors using glycals as the starting materials was also investigated. Based on these studies, the synthetic method of using 2-deoxyglycosides with an exclusive β-configuration through desulfurization will have more practical applications.
Collapse
Affiliation(s)
| | | | | | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Ministry of Education, Luoyu Road 1037, Wuhan 430074, China
| |
Collapse
|
2
|
Carder HM, Occhialini G, Bistoni G, Riplinger C, Kwan EE, Wendlandt AE. The sugar cube: Network control and emergence in stereoediting reactions. Science 2024; 385:456-463. [PMID: 39052778 DOI: 10.1126/science.adp2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Stereochemical editing strategies have recently enabled the transformation of readily accessible substrates into rare and valuable products. Typically, site selectivity is achieved by minimizing kinetic complexity by using protecting groups to suppress reactivity at undesired sites (substrate control) or by using catalysts with tailored shapes to drive reactivity at the desired site (catalyst control). We propose "network control," a contrasting paradigm that exploits hidden interactions between rate constants to greatly amplify modest intrinsic biases and enable precise multisite editing. When network control is applied to the photochemical isomerization of hexoses, six of the eight possible diastereomers can be selectively obtained. The amplification effect can be viewed as a mesoscale phenomenon between the limiting regimes of kinetic control in simple chemical systems and metabolic regulation in complex biological systems.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | | | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Ge J, Zhang L, Pu L, Zhang Y, Pei Z, Dong H. The Oxidation of
S
‐Acetyl by Nitrite: Mechanism and Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202003566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian‐Tao Ge
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
- School of Chemistry and Chemical Engineering Hubei Polytechnic University Guilinbei Road 16 Huangshi 435003 P. R. China
| | - Le‐Feng Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Liang Pu
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Ying Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| | - Zhi‐Chao Pei
- College of Chemistry and Pharmacy Northwest A&F University Yangling 712100 Shaanxi P. R. China
| | - Hai Dong
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering Huazhong University of Science & Technology Luoyu Road 1037 430074 Wuhan P. R. China
| |
Collapse
|
4
|
Luo T, Zhang Y, Xi J, Lu Y, Dong H. Improved Synthesis of Sulfur-Containing Glycosides by Suppressing Thioacetyl Migration. Front Chem 2020; 8:319. [PMID: 32391332 PMCID: PMC7191076 DOI: 10.3389/fchem.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Complex mixtures were often observed when we attempted to synthesize 4-thio- and 2,4-dithio-glycoside derivatives by double parallel and double serial inversion, thus leading to no or low yields of target products. The reason was later found to be that many unexpected side products were produced when a nucleophile substituted the leaving group on the substrate containing the thioacetate group. We hypothesized that thioacetyl migration is prone to occur due to the labile thioacetate group even under weak basic conditions caused by the nucleophile, leading to this result. Therefore, we managed to inhibit the generation of thiol groups from thioacetate groups by the addition of an appropriate amount of conjugate acid/anhydride, successfully improving the synthesis of 4-thio- and 2,4-dithio-glycoside derivatives. The target products which were previously difficult to synthesize, were herein obtained in relatively high yields. Finally, 4-deoxy- and 2,4-dideoxy-glycoside derivatives were efficiently synthesized through the removal of thioacetate groups under UV light, starting from 4-thio- and 2,4-dithio-glycoside derivatives.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jiafeng Xi
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Lv J, Zhu JJ, Liu Y, Dong H. Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl 3 Combined with Benzoyltrifluoroacetone and Its Mechanism Study. J Org Chem 2020; 85:3307-3319. [PMID: 31984732 DOI: 10.1021/acs.joc.9b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A catalytic amount of FeCl3 combined with benzoyl trifluoroacetone (Hbtfa) (FeCl3/Hbtfa = 1/2) was used to catalyze sulfonylation/acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K2CO3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that FeCl3 initially formed [Fe(btfa)3] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature. Then, Fe(btfa)3 and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.
Collapse
Affiliation(s)
- Jian Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jia-Jia Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
6
|
Lv J, Luo T, Zou D, Dong H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Lv
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Tao Luo
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; 450052 Zhengzhou P. R. China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System; Ministry of Education; School of Chemistry & Chemical Engineering; Huazhong University of Science & Technology; Luoyu Road 1037 430074 Hongshan Wuhan P.R. China
| |
Collapse
|
7
|
Lv J, Luo T, Zhang Y, Pei Z, Dong H. Regio/Site-Selective Benzoylation of Carbohydrates by Catalytic Amounts of FeCl 3. ACS OMEGA 2018; 3:17717-17723. [PMID: 31458369 PMCID: PMC6643987 DOI: 10.1021/acsomega.8b02360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/06/2018] [Indexed: 05/10/2023]
Abstract
This work uncovered the regio/site-selective benzoylation of 1,2- and 1,3-diols and glycosides containing a cis-vicinal diol using a catalytic amount of FeCl3 with the assistance of acetylacetone. FeCl3 may initially form [Fe(acac)3] (acac = acetylacetonate) with excess acetylacetone in the presence of diisopropylethylamine (DIPEA) in acetonitrile at room temperature. Then, benzoylation was catalyzed by Fe(acac)3 with added benzoyl chloride in the presence of DIPEA under mild conditions as reported. This reaction produced selectivities and isolated yields similar to or slightly lower than the reaction using Fe(acac)3 as a catalyst in most cases. The result provides not only the green and convenient selective benzoylation method associated with the most inexpensive catalysts but also the possibility that the effects of various metal salts and ligands on the regioselective protection can be extensively investigated in future study to obtain the optimized catalytic system.
Collapse
Affiliation(s)
- Jian Lv
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Tao Luo
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Ying Zhang
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhichao Pei
- College
of Chemistry and Pharmacy, Northwest A&F
University, Yangling, 712100 Shaanxi, P. R. China
| | - Hai Dong
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
8
|
Ge JT, Zhou L, Zhao FL, Dong H. Straightforward S-S Bond Formation via the Oxidation of S-Acetyl by Iodine in the Presence of N-Iodosuccinimide. J Org Chem 2017; 82:12613-12623. [PMID: 29084384 DOI: 10.1021/acs.joc.7b02367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Straightforward S-S bond formation via the oxidation of S-acetyl group by iodine was reported here. The reaction was further applied in the synthesis of per-O-acetylated glycosyl disulfides. These studies demonstrated great improvement in reaction rate, yield, and general convenience in the presence of N-iodosuccinimide. Furthermore, selectively deacetylated glycosyl thiols were obtained in high yields when these per-O-acetylated glycosyl disulfides were reduced with tris(2-carboxyethyl)-phosphine (TCEP). Our method supplied an efficient way to obtain both per-O-acetylated glycosyl disulfides and per-O-acetylated glycosyl thiols in which the sulfur group was located at any position.
Collapse
Affiliation(s)
- Jian-Tao Ge
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, PR China
| | - Lang Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, PR China
| | - Fu-Long Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, PR China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, PR China
| |
Collapse
|
9
|
Xu H, Zhang Y, Dong H, Lu Y, Pei Y, Pei Z. Organotin-catalyzed regioselective benzylation of carbohydrate trans-diols. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Affiliation(s)
- Someswara Rao Sanapala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Zhou Y, Zhang X, Ren B, Wu B, Pei Z, Dong H. S-Acetyl migration in synthesis of sulfur-containing glycosides. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Ren B, Rahm M, Zhang X, Zhou Y, Dong H. Regioselective Acetylation of Diols and Polyols by Acetate Catalysis: Mechanism and Application. J Org Chem 2014; 79:8134-42. [DOI: 10.1021/jo501343x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo Ren
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Martin Rahm
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca 14853, New York, United States
- Department
of Applied Physical Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden
| | - Xiaoling Zhang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Yixuan Zhou
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| | - Hai Dong
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, People’s Republic of China
| |
Collapse
|
13
|
Ren B, Dong H, Ramström O. A carbohydrate-anion recognition system in aprotic solvents. Chem Asian J 2014; 9:1298-304. [PMID: 24616327 PMCID: PMC4524415 DOI: 10.1002/asia.201301617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/15/2014] [Indexed: 11/11/2022]
Abstract
A carbohydrate–anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-d-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate–π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate–anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A− hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions.
Collapse
Affiliation(s)
- Bo Ren
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan (P.R. China), Fax: (+86) 27-87793242
| | | | | |
Collapse
|
14
|
Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H. H-bonding activation in highly regioselective acetylation of diols. J Org Chem 2013; 78:11618-22. [PMID: 24164588 DOI: 10.1021/jo402036u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-bonding activation in the regioselective acetylation of vicinal and 1,3-diols is presented. Herein, the acetylation of the hydroxyl group with acetic anhydride can be activated by the formation of H-bonds between the hydroxyl group and anions. The reaction exhibits high regioselectivity when a catalytic amount of tetrabutylammonium acetate is employed. Mechanistic studies indicated that acetate anion forms dual H-bonding complexes with the diol, which facilitates the subsequent regioselective monoacetylation.
Collapse
Affiliation(s)
- Yixuan Zhou
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology , Luoyu Road 1037, Wuhan 430074, P. R. China
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Dong H, Rahm M, Thota N, Deng L, Brinck T, Ramström O. Control of the ambident reactivity of the nitrite ion. Org Biomol Chem 2013; 11:648-53. [DOI: 10.1039/c2ob26980e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Dong H, Zhou Y, Pan X, Cui F, Liu W, Liu J, Ramström O. Stereoelectronic Control in Regioselective Carbohydrate Protection. J Org Chem 2012; 77:1457-67. [DOI: 10.1021/jo202336y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Dong
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, 430074, Wuhan, P. R. China
| | - Yixuan Zhou
- School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Luoyu Road 1037, 430074, Wuhan, P. R. China
| | - Xiaoliang Pan
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Fengchao Cui
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Wei Liu
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Jingyao Liu
- Institute of Theoretical Chemistry,
State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Liutiao Road 2, 130023, Changchun,
P. R. China
| | - Olof Ramström
- Department of
Chemistry, Royal Institute of Technology (KTH), Teknikringen 30,
S-10044, Stockholm, Sweden
| |
Collapse
|
18
|
Zhou Y, Ramström O, Dong H. Organosilicon-mediated regioselective acetylation of carbohydrates. Chem Commun (Camb) 2012; 48:5370-2. [DOI: 10.1039/c2cc31556d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dong H, Rahm M, Brinck T, Ramström O. Supramolecular Control in Carbohydrate Epimerization: Discovery of a New Anion Host−Guest System. J Am Chem Soc 2008; 130:15270-1. [DOI: 10.1021/ja807044p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Dong
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Martin Rahm
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Tore Brinck
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|