1
|
Koshy DM, Hossain MD, Masuda R, Yoda Y, Gee LB, Abiose K, Gong H, Davis R, Seto M, Gallo A, Hahn C, Bajdich M, Bao Z, Jaramillo TF. Investigation of the Structure of Atomically Dispersed NiN x Sites in Ni and N-Doped Carbon Electrocatalysts by 61Ni Mössbauer Spectroscopy and Simulations. J Am Chem Soc 2022; 144:21741-21750. [DOI: 10.1021/jacs.2c09825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David M. Koshy
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Md Delowar Hossain
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ryo Masuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Leland B. Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kabir Abiose
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ryan Davis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
- National Institutes for Quantum Science and Technology (QST), Sayo, Hyogo 679-5148, Japan
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Christopher Hahn
- Materials Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Michal Bajdich
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Thomas F. Jaramillo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Akhtar R, Kaulage SH, Sangole MP, Tothadi S, Parvathy P, Parameswaran P, Singh K, Khan S. First-Row Transition Metal Complexes of a Phosphine-Silylene-Based Hybrid Ligand. Inorg Chem 2022; 61:13330-13341. [PMID: 35969438 DOI: 10.1021/acs.inorgchem.2c01233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared two new silylene-phosphine-based hybrid ligands Si{N(R)C6H4(PPh2)}{PhC(NtBu)2} [R = TMS {trimethylsilyl} (1) and TBDMS {tert-butyldimethylsilyl} (2)], which possess two donor sites. Furthermore, the treatment of the bidentate ligand 1 with base metal halides {FeBr2, CoBr2, NiCl2·dme [nickel chloride(II) ethylene glycol dimethyl ether]} and 2 with NiBr2·dme [nickel bromide(II) ethylene glycol dimethyl ether] afforded four-coordinate six-membered metal complexes 3-6, respectively, which feature coordination from both Si(II) and P(III) sites. Subsequently, complexes 3 [(FeBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 4 [(CoBr2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], 5 [(NiCl2)Si{N(SiMe3)C6H4(PPh2)}{PhC(NtBu)2}], and 6 [(NiBr2)Si{N(SitBuMe2)C6H4(PPh2)}{PhC(NtBu)2}] are studied for their redox and magnetic properties with the help of UV-vis spectroscopy, cyclic voltammetry, SQUID magnetometry, and theoretical calculations. Complexes 3-6 were found to display a paramagnetic behavior. All the compounds are well established by single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandeep H Kaulage
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Mayur P Sangole
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar 364002, India
| | - Parameswaran Parvathy
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Kirandeep Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
3
|
Cheng MC, Cheng CH, Chen PJ, Lin TS, Lee GH, Liu YC, Chiang MH, Peng SM. Helical Homometallic Trinickel String Complexes with Mixed Hard Nitrogen and Sulfur Donors: Structural and Magnetic Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ming-Chuan Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Chien-Hung Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Po-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Tien-Sung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
| | - Yu-Chiao Liu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC, 106
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC, 115
| |
Collapse
|
4
|
Ho CC, Olding A, Fuller RO, Canty AJ, Lucas NT, Bissember AC. Suzuki–Miyaura Csp 2–Csp 2 Cross-Couplings Employing Nickel(II) Pincer Precatalysts: Mechanistic Investigations. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Curtis C. Ho
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Angus Olding
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Rebecca O. Fuller
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Allan J. Canty
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Nigel T. Lucas
- Department of Chemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Alex C. Bissember
- School of Natural Sciences − Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
5
|
Jones CL, Hughes CE, Yeung HHM, Paul A, Harris KDM, Easun TL. Exploiting in situ NMR to monitor the formation of a metal-organic framework. Chem Sci 2020; 12:1486-1494. [PMID: 34163912 PMCID: PMC8179150 DOI: 10.1039/d0sc04892e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
The formation processes of metal-organic frameworks are becoming more widely researched using in situ techniques, although there remains a scarcity of NMR studies in this field. In this work, the synthesis of framework MFM-500(Ni) has been investigated using an in situ NMR strategy that provides information on the time-evolution of the reaction and crystallization process. In our in situ NMR study of MFM-500(Ni) formation, liquid-phase 1H NMR data recorded as a function of time at fixed temperatures (between 60 and 100 °C) afford qualitative information on the solution-phase processes and quantitative information on the kinetics of crystallization, allowing the activation energies for nucleation (61.4 ± 9.7 kJ mol-1) and growth (72.9 ± 8.6 kJ mol-1) to be determined. Ex situ small-angle X-ray scattering studies (at 80 °C) provide complementary nanoscale information on the rapid self-assembly prior to MOF crystallization and in situ powder X-ray diffraction confirms that the only crystalline phase present during the reaction (at 90 °C) is phase-pure MFM-500(Ni). This work demonstrates that in situ NMR experiments can shed new light on MOF synthesis, opening up the technique to provide better understanding of how MOFs are formed.
Collapse
Affiliation(s)
- Corey L Jones
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Colan E Hughes
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Hamish H-M Yeung
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Alison Paul
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Kenneth D M Harris
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Timothy L Easun
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
6
|
Modaberi MR, Brahma S, Rooydell R, Wang R, Liu C. Novel hybrid transition metal complexes of diaquabis(acetylacetonato‐κ
2
o,o′)[nickel(II)/zinc (II)] as solid metal–organic precursors: Synthesis, properties and magnetic response. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Sanjaya Brahma
- Department of Materials Science and EngineeringNational Cheng Kung University Tainan 70101 Taiwan
| | - Reza Rooydell
- Department of Materials Science and EngineeringNational Cheng Kung University Tainan 70101 Taiwan
| | - Ruey‐Chi Wang
- Department of Chemical and Materials EngineeringNational University of Kaohsiung Kaohsiung 81148 Taiwan
| | - Chuan‐Pu Liu
- Department of Materials Science and EngineeringNational Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
7
|
Rabaâ H, Khaledi H, Olmstead MM, Sundholm D. Computational Studies of a Paramagnetic Planar Dibenzotetraaza[14]annulene Ni(II) Complex. J Phys Chem A 2015; 119:5189-96. [DOI: 10.1021/jp509824z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hassan Rabaâ
- Department
of Chemistry, University Ibn Tofail, P.O. Box 133, 14000 Kenitra, Morocco
| | - Hamid Khaledi
- Department
of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Marilyn M. Olmstead
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Dage Sundholm
- Department
of Chemistry, P.O. Box 55 (A. I. Virtanens plats 1), FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Shankar S, Balgley R, Lahav M, Cohen SR, Popovitz-Biro R, van der Boom ME. Metal–Organic Microstructures: From Rectangular to Stellated and Interpenetrating Polyhedra. J Am Chem Soc 2014; 137:226-31. [DOI: 10.1021/ja509428a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sreejith Shankar
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Renata Balgley
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lahav
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sidney R. Cohen
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronit Popovitz-Biro
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Milko E. van der Boom
- Department of Organic Chemistry and ‡Department of
Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Schultz M, Plessow PN, Rominger F, Weigel L. Structure, magnetism and colour in simple bis(phosphine)nickel(II) dihalide complexes: an experimental and theoretical investigation. Acta Crystallogr C 2013; 69:1437-47. [DOI: 10.1107/s0108270113030692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022] Open
Abstract
The complex [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]diiodidonickel(II), [NiI2(C18H40P2] or (dtbpe-κ2P)NiI2, [dtbpe is 1,2-bis(di-tert-butylphosphanyl)ethane], is bright blue–green in the solid state and in solution, but, contrary to the structure predicted for a blue or green nickel(II) bis(phosphine) complex, it is found to be close to square planar in the solid state. The solution structure is deduced to be similar, because the optical spectra measured in solution and in the solid state contain similar absorptions. In solution at room temperature, no31P{1H} NMR resonance is observed, but the very small solid-state magnetic moment at temperatures down to 4 K indicates that the weak paramagnetism of this nickel(II) complex can be ascribed to temperature independent paramagnetism, and that the complex has no unpaired electrons. The red [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]dichloridonickel(II), [NiCl2(C18H40P2] or (dtbpe-κ2P)NiCl2, is very close to square planar and very weakly paramagnetic in the solid state and in solution, while the maroon [1,2-bis(di-tert-butylphosphanyl)ethane-κ2P,P′]dibromidonickel(II), [NiBr2(C18H40P2] or (dtbpe-κ2P)NiBr2, is isostructural with the diiodide in the solid state, and displays paramagnetism intermediate between that of the dichloride and the diiodide in the solid state and in solution. Density functional calculations demonstrate that distortion from an ideal square plane for these complexes occurs on a flat potential energy surface. The calculations reproduce the observed structures and colours, and explain the trends observed for these and similar complexes. Although theoretical investigation identified magnetic-dipole-allowed excitations that are characteristic for temperature-independent paramagnetism (TIP), theory predicts the molecules to be diamagnetic.
Collapse
|
10
|
WITHDRAWN: Two new twisted helical nickel(II) and cobalt(III) octahedral monomers: Easy-plane anisotropy of nickel(II). J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|
12
|
Keene TD, Rankine D, Evans JD, Southon PD, Kepert CJ, Aitken JB, Sumby CJ, Doonan CJ. Solvent-modified dynamic porosity in chiral 3D kagome frameworks. Dalton Trans 2013; 42:7871-9. [DOI: 10.1039/c3dt00096f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Maganas D, Krzystek J, Ferentinos E, Whyte AM, Robertson N, Psycharis V, Terzis A, Neese F, Kyritsis P. Investigating magnetostructural correlations in the pseudooctahedral trans-[Ni(II){(OPPh2)(EPPh2)N}2(sol)2] complexes (E = S, Se; sol = DMF, THF) by magnetometry, HFEPR, and ab initio quantum chemistry. Inorg Chem 2012; 51:7218-31. [PMID: 22697407 DOI: 10.1021/ic300453y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wurzenberger X, Piotrowski H, Klüfers P. Ein stabiler molekularer Ausschnitt aus seltenen Eisen(II)-Mineralen: der quadratisch-planare High-Spin-d6-FeIIO4-Chromophor. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Wurzenberger X, Piotrowski H, Klüfers P. A Stable Molecular Entity Derived from Rare Iron(II) Minerals: The Square-Planar High-Spin-d6 FeIIO4 Chromophore. Angew Chem Int Ed Engl 2011; 50:4974-8. [DOI: 10.1002/anie.201006898] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/16/2011] [Indexed: 11/10/2022]
|
16
|
Maganas D, Grigoropoulos A, Staniland SS, Chatziefthimiou SD, Harrison A, Robertson N, Kyritsis P, Neese F. Tetrahedral and square planar Ni[(SPR(2))(2)N](2) complexes, R = Ph & (i)Pr revisited: experimental and theoretical analysis of interconversion pathways, structural preferences, and spin delocalization. Inorg Chem 2010; 49:5079-93. [PMID: 20462270 DOI: 10.1021/ic100163g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur-containing mono- or bidentate types of ligands, usually form square planar Ni((II))S(4) complexes. However, it has already been established that the bidentate L(-) dithioimidodiphosphinato ligands, [R(2)P(S)NP(S)R'(2)](-), R, and R' = aryl or alkyl, can afford both tetrahedral and square planar, NiS(4)-containing, homoleptic Ni(R,R')L(2) complexes, owing to an apparent structural flexibility, which has not, so far, been probed. In this work, the literature tetrahedral Ni[R(2)P(S)NP(S)R(2)](2) complexes, R = Ph (Ni(Ph,Ph)L(2), 1(Td)) and R = (i)Pr (Ni(iPr,iPr)L(2), 2) as well as the newly synthesized Ni[(i)Pr(2)P(S)NP(S)Ph(2)](2) complex (Ni(iPr,Ph)L(2), 3), have been studied by UV-vis, IR, and (31)P NMR spectroscopy. Complex 3 was shown by X-ray crystallography to be square planar, and magnetic studies confirmed that it is diamagnetic in the solid state. However, it becomes paramagnetic in solution, as it shows a similar UV-vis spectrum to one of the tetrahedral 1(Td) and 2 complexes. The crystal structure of the potassium salt of the asymmetric ligand, [(i)Pr(2)P(S)NP(S)Ph(2)]K, has also been determined and compared to those of the protonated (i)Pr(2)P(S)NHP(S)Ph(2) ligand and complex 3. All three, 1(Td), 2, and 3, Ni(R,R')L(2) complexes show strong paramagnetic effects in their solution (31)P NMR spectra. The magnetic properties of paramagnetic complexes 1 and 2 in the solid state were investigated on oriented crystals, and their analysis afforded remarkably small values of the spin-orbit coupling constant (lambda) and orbital reduction factor (k) parameters, implying significant delocalization of unpaired electronic density toward the ligands. The above experimental findings are combined with data from standard density functional theory and correlated multiconfiguration ab initio theoretical methods, in an effort to investigate the interplay between the square planar and tetrahedral geometries of the NiS(4) core, the mechanistic pathway for the spin-state interconversion, the degree of covalency of the Ni-S bonds, and the distribution of the spin density in this type of system. The analysis provides justification for the structural flexibility of such ligands, affording Ni(R,R')L(2) complexes with variable metallacycle conformation and NiS(4) core geometries. Of particular importance are the large zero-field splitting values estimated by both experimental and theoretical means, which have not, as yet, been verified by direct methods, such as electron paramagnetic resonance spectroscopy. The findings of our work confirm earlier observations on the feasibility of synthesizing either tetrahedral or square planar NiS(4) complexes containing the same type of ligands. They can also form the basis of investigating structure-properties relationships in other NiS(4)-containing systems.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-157 71 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Oudart Y, Artero V, Norel L, Train C, Pécaut J, Fontecave M. Synthesis, crystal structure, magnetic properties and reactivity of a Ni–Ru model of NiFe hydrogenases with a pentacoordinated triplet (S=1) NiII center. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|