1
|
Wang Z, Ye X, Chen Y, Liu Y, Xie S, Tao Y, Zhang J, Wan X. Stereoselective Crystallization of Chiral Pharmaceuticals Aided by Cellulose Derivatives through Helical Pattern Matching. Chemistry 2024; 30:e202401550. [PMID: 38925570 DOI: 10.1002/chem.202401550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Stereoselective inhibition aided by "tailor-made" polymeric additives is an efficient approach to obtain enantiopure compounds through conglomerate crystallization. The chemical and configurational match between the side groups of polymers and the molecules of undesired enantiomer is considered to be a necessary condition for successful stereoseparation. Whereas in this contribution, we present an effective resolution of chiral pharmaceuticals by using cellulose acetates as the additives, which stereoselectively reside on the specific crystal faces of one enantiomer and inhibit its crystal nucleation and growth through helical pattern and supramolecular interaction complementarity. An investigation of nimodipine serves as a case study to highlight the novelty of this strategy wherein R-crystals exhibiting an impressive enantiomeric excess value of 97 % can be attained by employing a mere 0.01 wt % cellulose acetate. Guaifenesin and phenyl lactic acid are also well-resolved by utilizing this methodology. Our work not only brings about a brand-new design strategy for "tailor-made" additives, but will also promote the further exploration of the endless potential for utilizing natural biomolecules in chiral recognition and resolution.
Collapse
Affiliation(s)
- Zhaoxu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030032, China
| | - Xichong Ye
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yifu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingze Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siyu Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi Tao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Chhatre S, Nagane SS, Wu Y, Lee J, Yap GPA, Martin DC. Influence of Controlled Chirality on the Crystallization of Maleimide-Functionalized 3,4-Ethylenedioxythiophene (EDOT-MA) Monomers. ACS OMEGA 2024; 9:13655-13665. [PMID: 38559998 PMCID: PMC10975600 DOI: 10.1021/acsomega.3c07719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Conjugated poly(alkoxythiophenes) such as poly(3,4-ethylenedioxythiophene) (PEDOT) have attracted considerable interest for use in a variety of applications such as biomedical devices, energy storage, and chemical sensing. Functionalized versions of the 3,4-ethylenedioxythiophene (EDOT) monomer make it possible to create polymers with properties tailored for specific applications. The maleimide functional group shows particular promise due to the wide variety of chemical modifications that it can undergo. Here, we examine the role that control of the chirality of the maleimide (MA) substituent has on the crystal structure and crystallization of the EDOT-MA monomer. We describe a method for the synthesis of a homochiral (S) variant of EDOT-MA and compare its crystallography, morphology, and thermal properties to that of the (R,S) EDOT-MA racemic compound. The conformation of the EDOT-MA molecule was substantially different, with the molecules adopting an "L" shape in the homochiral crystal, while in the racemic crystals, they were more colinear. The thermal stability of the homochiral crystals (Tm = 128.6 °C) was slightly higher than the racemic ones (Tm = 102.8 °C). We expect these results to be important in better understanding the solid-state assembly of the corresponding polymers prepared from these monomers.
Collapse
Affiliation(s)
- Shrirang
S. Chhatre
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Samadhan S. Nagane
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Yuhang Wu
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Junghyun Lee
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Glenn P. A. Yap
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
4
|
Jiang L, Liu G, Liu H, Han J, Liu Z, Ma H. Molecular weight impact on the mechanical forces between hyaluronan and its receptor. Carbohydr Polym 2018; 197:326-336. [PMID: 30007620 DOI: 10.1016/j.carbpol.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Hyaluronan (HA) possesses manifold mechanical and signaling properties in the body. Most of these activities are largely regulated by its molecular weight, which often triggers opposing functions. However the molecular basis for such function distinction between HA size categories remains unclear. Using a combination of biophysical techniques, we measured the physical forces between HA ligand and its specific receptor CD44 in both normal and lateral directions, at different HA molecular weights and bound states. It was found that the impact of HA multivalency is more than just the sum of separate monovalent bindings. The HA-CD44 specific interaction enhances with HA molecular weight and the maximum binding occurs at ∼1000 kD, possibly due to the balance between multivalent HA zipping effect and conformational entropy. High friction patches, probably from CD44 protein clustering, was observed in friction force microscopy (FFM) upon HA shearing, which is also dependent on HA molecular weight. These results could help to understand the biophysical mechanism of HA in regulating CD44-induced physiological activities and thus facilitate the new design of HA-based material in fine tuning the receptor responses.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Guihua Liu
- Department of Common Courses, Weifang Medical University, Weifang, Shandong 261042, PR China.
| | - Hanyun Liu
- Department of Infectious Diseases, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003,PR China
| | - Juan Han
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Zhibin Liu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| |
Collapse
|
5
|
Jiang L, Titmuss S, Klein J. Interactions of hyaluronan layers with similarly charged surfaces: the effect of divalent cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12194-12202. [PMID: 24011082 DOI: 10.1021/la401931y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We used colloidal probe atomic force microscopy to measure the normal forces between the surface of a silica colloidal particle and a sparse layer of hyaluronan (hyaluronic acid, HA, MW ≈ 10(6) Da) covalently attached to a planar silica surface, both across pure water and following the addition of 1 mM MgCl2. It was found that in the absence of salt the HA layer repelled the colloidal silica surface during both approach and retraction. The addition of the MgCl2, however, changes the net force between the negatively charged HA layer and the opposing negatively charged silica surface from repulsion to adhesion. This interaction reversal is attributed to the bridging effect of the added Mg(2+) ions. Our results provide first direct force data to support earlier simulation and predictions that such divalent cations could bridge between negative charges on opposing surfaces, leading to an overall reversal of force from repulsion to attraction.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum , 66 Changjiang West Road, Qingdao, Shandong 266580, P. R. China
| | | | | |
Collapse
|
6
|
Abstract
Chiral phenomena are ubiquitous in nature from macroscopic to microscopic, including the high chirality preference of small biomolecules, special steric conformations of biomacromolecules induced by it, as well as chirality-triggered biological and physiological processes. The introduction of chirality into the study of interface interactions between materials and biological systems leads to the generation of chiral biointerface materials, which provides a new platform for understanding the chiral phenomena in biological system, as well as the development of novel biomaterials and devices. This critical review gives a brief introduction to the recent advances in this field. We start from the fabrication of chiral biointerface materials, and further investigate the stereo-selective interaction between biological systems and chiral interface materials to find out key factors governing the performance of such materials in given conditions, then introduce some special functionalities and potential applications of chiral biointerface materials, and finally present our own thinking about the future development of this area (108 references).
Collapse
Affiliation(s)
- Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | | | | |
Collapse
|