1
|
Wu G, Zheng H, Xing Y, Wang C, Yuan X, Zhu X. A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite. CHEMOSPHERE 2022; 286:131602. [PMID: 34298299 DOI: 10.1016/j.chemosphere.2021.131602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
There has been growing concern about the toxic effects of pollutants in the aquatic environment. In this study, a novel cell-based electrochemical sensor was developed to detect the toxicity of contaminants in water samples. A screen-printed carbon electrode, which was low-cost, energy-efficient, and disposable, was modified with tungsten disulfide nanosheets/hydroxylated multi-walled carbon nanotubes (WS2/MWCNTs-OH) to improve electrocatalytic performance and sensitivity. The surface morphology, structure, and electrochemical property of WS2/MWCNTs-OH composite film were characterized by emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, and electrochemical impedance spectroscopy. Grass carp kidney cell line was utilized as the sensor biorecognition element to determine the electrochemical signals and evaluate cell viability. The sensor was used to detect the toxicity of one typical contaminant (2,4,6-trichlorophenol) and two emerging contaminants (bisphenol AF and polystyrene nanoplastics). The 48 h half inhibitory concentration (IC50) values were 169.96 μM, 21.88 μM, and 123.01 μg mL-1, respectively, which were lower than those of conventional MTT assay, indicating the higher sensitivity of the proposed sensor. Furthermore, the practical application of the sensor was evaluated in chemical wastewater samples. This study provides an up-and-coming tool for environmental toxicity monitoring.
Collapse
Affiliation(s)
- Guanlan Wu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yi Xing
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Chengzhi Wang
- School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Xing Yuan
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun, 130117, PR China.
| |
Collapse
|
2
|
Sharma NK, Kaushal A, Thakur S, Thakur N, Kumar D, Bhalla TC. Nanohybrid electrochemical enzyme sensor for xanthine determination in fish samples. 3 Biotech 2021; 11:212. [PMID: 33928000 DOI: 10.1007/s13205-021-02735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
An amperometric biosensor for xanthine was designed, based on covalent immobilization of xanthine oxidase (XO) of Bacillus pumilus RL-2d onto a screen-printed multi-walled carbon nanotubes gold nanoparticle-based electrodes (Nano-Au/c-MWCNT). The carboxyl groups at the electrode surface were activated by the use of 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDC) and N-hydroxysuccinimide (NHS). The working electrode was then coated with 6 μL of xanthine oxidase (0.273 U/mg protein). The cyclic voltammetry (CV) study was done for the characterization of the sensor using [K3Fe(CN)6] as an artificial electron donor. The sensitivity (S) and the limit of detection (LOD) of the biosensor were 2388.88 µA/cm2/nM (2.388 µA/cm2/µM) and 1.14 nM, respectively. The developed biosensor was used for determination of fish meat freshness.
Collapse
Affiliation(s)
- Nirmal Kant Sharma
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005 India
| | | | - Shikha Thakur
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005 India
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005 India
| | | | - Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005 India
| |
Collapse
|
3
|
A microfluidic electrochemical flow cell capable of rapid on-chip dilution for fast-scan cyclic voltammetry electrode calibration. Anal Bioanal Chem 2020; 412:6287-6294. [PMID: 32064570 DOI: 10.1007/s00216-020-02493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Here, we developed a microfluidic electrochemical flow cell for fast-scan cyclic voltammetry which is capable of rapid on-chip dilution for efficient and cost-effective electrode calibration. Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes is a robust electroanalytical technique used to measure subsecond changes in neurotransmitter concentration over time. Traditional methods of electrode calibration for FSCV require several milliliters of a standard. Additionally, generating calibration curves can be time-consuming because separate solutions must be prepared for each concentration. Microfluidic electrochemical flow cells have been developed in the past; however, they often require incorporating the electrode in the device, making it difficult to remove for testing in biological tissues. Likewise, current microfluidic electrochemical flow cells are not capable of rapid on-chip dilution to eliminate the requirement of making multiple solutions. We designed a T-channel device, with microchannel dimensions of 100 μm × 50 μm, that delivered a standard to a 2-mm-diameter open electrode sampling well. A waste channel with the same dimensions was designed perpendicular to the well to flush and remove the standard. The dimensions of the T-microchannels and flow rates were chosen to facilitate complete mixing in the delivery channel prior to reaching the electrode. The degree of mixing was computationally modeled using COMSOL and was quantitatively assessed in the device using both colored dyes and electrochemical detection. On-chip electrode calibration for dopamine with FSCV was not significantly different than the traditional calibration method demonstrating its utility for FSCV calibration. Overall, this device improves the efficiency and ease of electrode calibration. Graphical abstract.
Collapse
|
4
|
Khan MZH, Ahommed MS, Daizy M. Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT:PSS and functionalized gold nanoparticles. RSC Adv 2020; 10:36147-36154. [PMID: 35517073 PMCID: PMC9056998 DOI: 10.1039/d0ra06806c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023] Open
Abstract
An innovative biosensor assembly relying on glassy carbon electrodes modified with nanocomposites consisting of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a host matrix with functionalized gold nanoparticles (GCE/PEDOT:PSS-AuNPs) is presented for the selective and sensitive detection of xanthine (XA). The developed sensor was successfully applied for the quantification of XA in the presence of significant interferents like hypoxanthine (HXA) and uric acid (UA). Different spectroscopy and electron microscopy analyses were done to characterize the as-prepared nanocomposite. Calibration responses for the quantification of XA was linear from 5.0 × 10−8 to 1.0 × 10−5 M (R2 = 0.994), with a detection limit as low as 3.0 × 10−8 (S/N = 3). Finally, the proposed sensor was applied for the analyses of XA content in commercial fish and meat samples and satisfactory recovery percentage was obtained. An innovative biosensor with glassy carbon electrodes modified with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate nanocomposites as a host matrix with functionalized gold nanoparticles for the selective and sensitive detection of xanthine.![]()
Collapse
Affiliation(s)
- M. Z. H. Khan
- Dept. of Chemical Engineering
- Jashore University of Science and Technology
- Jashore 7408
- Bangladesh
| | - M. S. Ahommed
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - M. Daizy
- Dept. of Chemical Engineering
- Jashore University of Science and Technology
- Jashore 7408
- Bangladesh
| |
Collapse
|
5
|
Biosensing based on pencil graphite electrodes. Talanta 2018; 190:235-247. [DOI: 10.1016/j.talanta.2018.07.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
6
|
Reskety AA, Chamjangali MA, Boujnane M, Brajter-Toth A. High Sensitivity and Fast Oxidation of Caffeine in Coffee and Theophylline at Nanostructured Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atiye Ahmadi Reskety
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- College of Chemistry; Shahrood University of Technology; Shahrood 36155-316 Iran
| | | | - Mehdi Boujnane
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace; Mulhouse 68093 France
| | - Anna Brajter-Toth
- Department of Chemistry; University of Florida; Gainesville FL, 32611 USA
- Department of Chemistry; University of Florida, Gainesville; FL, 32611-7200 USA
| |
Collapse
|
7
|
Effect of carbon microfiber materials on sensitivity of adenosine and hydroxyadenine at carbon microfiber sensors. ARAB J CHEM 2015. [DOI: 10.1016/j.arabjc.2013.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Highly selective detection of cellular guanine and xanthine by polyoxometalate modified 3D graphene foam. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Chen R, Wang Q, Li Y, Gu Y, Tang L, Li C, Zhang Z. One-pot green synthesis of Ag/AgCl nanocube/reduced graphene oxide and its application to the simultaneous determination of hydroquinone and catechol. RSC Adv 2015. [DOI: 10.1039/c5ra04128g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Uniformly dispersed Ag/AgCl nanocubes (AgNC) were successfully obtained on reduced graphene oxide (rGO) through the simultaneous reduction of Ag+and graphene oxide (GO) by chitosan in the presence of a little HCl.
Collapse
Affiliation(s)
- Ruixue Chen
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Qingqing Wang
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yaru Li
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yue Gu
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Liu Tang
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Cong Li
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Zhiquan Zhang
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
10
|
A colorimetric method for the determination of xanthine based on the aggregation of gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1342-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Shaidarova LG, Chelnokova IA, Makhmutova GF, Degteva MA, Gedmina AV, Budnikov HC. Flow-injection and sequential injection determination of hydroxypurines on an electrode modified with mixed-valence ruthenium and iridium oxides. JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1134/s106193481409010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Boateng A, Irague F, Brajter-Toth A. Low nM Detection Limits at Porous 1-3 nm Thick Membrane-Coated Nanostructured Microdisk Electrodes. ELECTROANAL 2013. [DOI: 10.1002/elan.201200489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Kalimuthu P, Leimkühler S, Bernhardt PV. Low-Potential Amperometric Enzyme Biosensor for Xanthine and Hypoxanthine. Anal Chem 2012; 84:10359-65. [DOI: 10.1021/ac3025027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular
Biosciences, University of Queensland,
Brisbane, 4072, Australia
| | - Silke Leimkühler
- Institut für Biochemie
und Biologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Paul V. Bernhardt
- School of Chemistry and Molecular
Biosciences, University of Queensland,
Brisbane, 4072, Australia
| |
Collapse
|
14
|
Boateng A, Brajter-Toth A. Nanomolar detection of p-nitrophenol via in situ generation of p-aminophenol at nanostructured microelectrodes. Analyst 2012; 137:4531-8. [DOI: 10.1039/c2an35811e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Talik P, Krzek J, Ekiert RJ. Analytical Techniques Used for Determination of Methylxanthines and their Analogues—Recent Advances. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.569047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Permeable porous 1–3nm thick overoxidized polypyrrole films on nanostructured carbon fiber microdisk electrodes. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.06.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Wang XX, Wu Q, Shan Z, Huang QM. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 2011; 26:3614-9. [DOI: 10.1016/j.bios.2011.02.014] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/27/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
18
|
Kalimuthu P, Leimkühler S, Bernhardt PV. Xanthine dehydrogenase electrocatalysis: autocatalysis and novel activity. J Phys Chem B 2011; 115:2655-62. [PMID: 21361328 DOI: 10.1021/jp111809f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme xanthine dehydrogenase (XDH) from the purple photosynthetic bacterium Rhodobacter capsulatus catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid as part of purine metabolism. The native electron acceptor is NAD(+) but herein we show that uric acid in its 2-electron oxidized form is able to act as an artificial electron acceptor from XDH in an electrochemically driven catalytic system. Hypoxanthine oxidation is also observed with the novel production of uric acid in a series of two consecutive 2-electron oxidation reactions via xanthine. XDH exhibits native activity in terms of its pH optimum and inhibition by allopurinol.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane, 4072, Australia and
| | | | | |
Collapse
|
19
|
Mazloum-Ardakani M, Beitollahi H, Amini MK, Mirkhalaf F, Abdollahi-Alibeik M. Simultaneous and selective voltammetric determination of , and at a nanoparticles modified paste electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:673-677. [PMID: 32938089 DOI: 10.1039/c0ay00740d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new carbon paste electrode modified with ZrO2 nanoparticles (ZONMCPE) was prepared, and used to study the electrooxidation of epinephrine (EP), acetaminophen (AC), folic acid (FA) and their mixtures by electrochemical methods. The modified electrode displayed strong resolving function for the overlapping voltammetric responses of EP, AC and FA into three well-defined peaks. The potential differences between EP - AC, AC - FA and EP - FA were 210, 290 and 500 mV respectively. Differential pulse voltammetry (DPV) peak currents of EP, AC and FA increased linearly with their concentration at the ranges of 2.0 × 10-7-2.2 × 10-3 M, 1.0 × 10-6-2.5 × 10-3 M and 2.0 × 10-5-2.5 × 10-3 M, respectively. The detection limits for EP, AC and FA were found to be 9.5 × 10-8, 9.1 × 10-7and 9.8 × 10-6 M, respectively.
Collapse
Affiliation(s)
| | - Hadi Beitollahi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, I.R. Iran.
| | | | | | | |
Collapse
|
20
|
A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode. Talanta 2011; 83:1410-4. [DOI: 10.1016/j.talanta.2010.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/22/2022]
|
21
|
Boateng A, Cohen-Shohet R, Brajter-Toth A. Electrode Kinetics and Sensitivity of Nanostructured Electrodes from Different Carbon Fiber Precursor Materials. ELECTROANAL 2010. [DOI: 10.1002/elan.201000389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
HPLC-UV measurements of metabolites in the supernatant of endothelial cells exposed to oxidative stress. Anal Bioanal Chem 2010; 396:1763-71. [DOI: 10.1007/s00216-009-3398-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/10/2009] [Indexed: 01/08/2023]
|
23
|
Kathiwala M, Abou El-Nour KM, Cohen-Shohet R, Brajter-Toth A. Rapid measurements of 2,8-dihydroxyadenine (2,8-DHA) with a nanostructured electrochemical sensor in 5-fold diluted supernatants of endothelial cells exposed to oxidative stress. Analyst 2010; 135:296-301. [DOI: 10.1039/b911649d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Mautjana NA, Looi DW, Eyler JR, Brajter-Toth A. Sensitivity of positive ion mode electrospray ionization mass spectrometry (ESI MS) in the analysis of purine bases in ESI MS and on-line electrochemistry ESI MS (EC/ESI MS). Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.07.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Goyal R, Chatterjee S, Bishnoi S. Voltammetric Determination of 2′-Deoxyadenosine and Adenine in Urine of Patients with Hepatocellular Carcinoma Using Fullerene-C60-modified Glassy Carbon Electrode. ELECTROANAL 2009. [DOI: 10.1002/elan.200804533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Hason S, Stepankova S, Kourilova A, Vetterl V, Lata J, Fojta M, Jelen F. Simultaneous Electrochemical Monitoring of Metabolites Related to the Xanthine Oxidase Pathway Using a Grinded Carbon Electrode. Anal Chem 2009; 81:4302-7. [DOI: 10.1021/ac900201g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stanislav Hason
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Sona Stepankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alena Kourilova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Vladimir Vetterl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jan Lata
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Frantisek Jelen
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-612 65 Brno, Czech Republic, Department of Internal Medicine and Hepatogastroenterology, University Hospital and Faculty of Medicine, Masaryk University, CZ-625 00 Brno, Czech Republic
| |
Collapse
|