1
|
Chandrabalan A, Firth A, Litchfield RB, Appleton CT, Getgood A, Ramachandran R. Human osteoarthritis knee joint synovial fluids cleave and activate Proteinase-Activated Receptor (PAR) mediated signaling. Sci Rep 2023; 13:1124. [PMID: 36670151 PMCID: PMC9859807 DOI: 10.1038/s41598-023-28068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disorder with increasing worldwide incidence. Mechanistic insights into OA pathophysiology are evolving and there are currently no disease-modifying OA drugs. An increase in protease activity is linked to progressive degradation of the cartilage in OA. Proteases also trigger inflammation through a family of G protein-coupled receptors (GPCRs) called the Proteinase-Activated Receptors (PARs). PAR signaling can trigger pro-inflammatory responses and targeting PARs is proposed as a therapeutic approach in OA. Several enzymes can cleave the PAR N-terminus, but the endogenous protease activators of PARs in OA remain unclear. Here we characterized PAR activating enzymes in knee joint synovial fluids from OA patients and healthy donors using genetically encoded PAR biosensor expressing cells. Calcium signaling assays were performed to examine receptor activation. The class and type of enzymes cleaving the PARs was further characterized using protease inhibitors and fluorogenic substrates. We find that PAR1, PAR2 and PAR4 activating enzymes are present in knee joint synovial fluids from healthy controls and OA patients. Compared to healthy controls, PAR1 activating enzymes are elevated in OA synovial fluids while PAR4 activating enzyme levels are decreased. Using enzyme class and type selective inhibitors and fluorogenic substrates we find that multiple PAR activating enzymes are present in OA joint fluids and identify serine proteinases (thrombin and trypsin-like) and matrix metalloproteinases as the major classes of PAR activating enzymes in the OA synovial fluids. Synovial fluid driven increase in calcium signaling was significantly reduced in cells treated with PAR1 and PAR2 antagonists, but not in PAR4 antagonist treated cells. OA associated elevation of PAR1 cleavage suggests that targeting this receptor may be beneficial in the treatment of OA.
Collapse
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, Bone and Joint Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Firth
- Division of Orthopedic Surgery, Bone and Joint Institute, Fowler Kennedy Sport Medicine Clinic, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Robert B Litchfield
- Division of Orthopedic Surgery, Bone and Joint Institute, Fowler Kennedy Sport Medicine Clinic, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Bone and Joint Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.,Department of Medicine, Bone and Joint Institute, Schulich School of Medicine and Dentistry, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, London, ON, Canada
| | - Alan Getgood
- Division of Orthopedic Surgery, Bone and Joint Institute, Fowler Kennedy Sport Medicine Clinic, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Bone and Joint Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
2
|
Pluda S, Mazzocato Y, Angelini A. Peptide-Based Inhibitors of ADAM and ADAMTS Metalloproteinases. Front Mol Biosci 2021; 8:703715. [PMID: 34368231 PMCID: PMC8335159 DOI: 10.3389/fmolb.2021.703715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
ADAM and ADAMTS are two large metalloproteinase families involved in numerous physiological processes, such as shedding of cell-surface protein ectodomains and extra-cellular matrix remodelling. Aberrant expression or dysregulation of ADAMs and ADAMTSs activity has been linked to several pathologies including cancer, inflammatory, neurodegenerative and cardiovascular diseases. Inhibition of ADAM and ADAMTS metalloproteinases have been attempted using various small molecules and protein-based therapeutics, each with their advantages and disadvantages. While most of these molecular formats have already been described in detail elsewhere, this mini review focuses solely on peptide-based inhibitors, an emerging class of therapeutic molecules recently applied against some ADAM and ADAMTS members. We describe both linear and cyclic peptide-based inhibitors which have been developed using different approaches ranging from traditional medicinal chemistry and rational design strategies to novel combinatorial peptide-display technologies.
Collapse
Affiliation(s)
- Stefano Pluda
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- Fidia Farmaceutici S.p.A., Abano Terme, Italy
| | - Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venice, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| |
Collapse
|
3
|
Richaud AD, Roche SP. Structure-Property Relationship Study of N-(Hydroxy)Peptides for the Design of Self-Assembled Parallel β-Sheets. J Org Chem 2020; 85:12329-12342. [PMID: 32881524 DOI: 10.1021/acs.joc.0c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of novel and functional biomimetic foldamers remains a major challenge in creating mimics of native protein structures. Herein, we report the stabilization of a remarkably short β-sheet by incorporating N-(hydroxy)glycine (Hyg) residues into the backbone of peptides. These peptide-peptoid hybrids form unique parallel β-sheet structures by self-assembly upon hydrogenation. Our spectroscopic and crystallographic data suggest that the local conformational perturbations induced by N-(hydroxy)amides are outweighed by a network of strong interstrand hydrogen bonds.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
4
|
Development of matrix metalloproteinase-targeted probes for lung inflammation detection with positron emission tomography. Sci Rep 2018; 8:1347. [PMID: 29358724 PMCID: PMC5778071 DOI: 10.1038/s41598-018-19890-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
As matrix metalloproteinases (MMPs), especially MMP-9 and MMP-12 are involved in the pathological processes associated with chronic obstructive pulmonary disease (COPD), we developed a novel radiofluorinated probe, 18F-IPFP, for MMPs-targeted positron emission tomography (PET). 18F-IPFP was designed by iodination of MMP inhibitor to enhance the affinity, and labelled with a compact prosthetic agent, 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP). As a result, IPFP demonstrated the highest affinity toward MMP-12 (IC50 = 1.5 nM) among existing PET probes. A COPD model was employed by exposing mice to cigarette smoke and the expression levels of MMP-9 and MMP-12 were significantly increased in the lungs. Radioactivity accumulation in the lungs 90 min after administration of 18F-IPFP was 4× higher in COPD mice than normal mice, and 10× higher than in the heart, muscle, and blood. Ex vivo PET confirmed the radioactivity distribution in the tissues and autoradiography analysis demonstrated that accumulation differences in the lungs of COPD mice were 2× higher than those of normal mice. These results suggest that 18F-IPFP is a promising probe for pulmonary imaging and expected to be applied to various MMP-related diseases for early diagnosis, tracking of therapeutic effects, and new drug development in both preclinical and clinical applications.
Collapse
|
5
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
6
|
Prely L, Klein T, Geurink PP, Paal K, Overkleeft HS, Bischoff R. Activity-Dependent Photoaffinity Labeling of Metalloproteases. Methods Mol Biol 2017; 1491:103-111. [PMID: 27778284 DOI: 10.1007/978-1-4939-6439-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metalloproteases, notably members of the matrix metalloprotease (MMP) and A Disintegrin And Metalloprotease (ADAM) families play crucial roles in tissue remodeling, the liberation of growth factors and cytokines from cell membranes (shedding) and cell-cell or cell-matrix interactions. Activity of MMPs or ADAMs must therefore be tightly controlled in time and space by activation of pro-enzymes upon appropriate stimuli and inhibition by endogenous tissue inhibitors of metalloproteases (TIMPs) or α2-macroglobulin to prevent irreversible tissue damage due to excessive degradation or uncontrolled release of potent inflammatory mediators, such as tumor necrosis factor-α (TNF-α).Although there is a wide range of methods to measure the amount of metalloproteases based on immunological approaches, relatively little is known about the activation status of a given enzyme at any given time and location. This information is, however, critical in order to understand the function and possible implication of these enzymes in disease. Since metalloproteases use an active-site bound water molecule to cleave the peptide bond, it is not possible to apply known active-site-directed labeling approaches with electrophilic "warheads." We therefore developed novel metalloprotease inhibitors that contain a photoactivatable trifluoromethylphenyldiazirine group and show that such inhibitors are suitable for activity-dependent photoaffinity labeling of MMPs and ADAMs.
Collapse
Affiliation(s)
- Laurette Prely
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Theo Klein
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Paul P Geurink
- Leiden Institute of Chemistry and the Netherlands Proteomics Center, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Krisztina Paal
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Herman S Overkleeft
- Bio-Organic Synthesis Groups, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300, RA, Leiden, The Netherlands
| | - Rainer Bischoff
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|
7
|
Matusiak N, Castelli R, Tuin AW, Overkleeft HS, Wisastra R, Dekker FJ, Prély LM, Bischoff R, Bischoff RPM, van Waarde A, Dierckx RAJO, Elsinga PH. A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [¹⁸F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging. Bioorg Med Chem 2014; 23:192-202. [PMID: 25438884 DOI: 10.1016/j.bmc.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Numerous clinical studies have shown a correlation between increased matrix metalloproteinase (MMP)/a disintegrin and metalloproteinase (ADAM) activity and poor outcome of cancer. Various MMP inhibitors (MMPIs) have been developed for therapeutic purposes in oncology. In addition, molecular imaging of MMP/ADAM levels in vivo would allow the diagnosis of tumors. We selected the dual inhibitor of MMPs and ADAMs, ML5, which is a hydroxamate-based inhibitor with affinities for many MMPs and ADAMs. ML5 was radiolabelled with (18)F and the newly obtained radiolabelled inhibitor was evaluated in vitro and in vivo. MATERIALS AND METHODS ML5 was radiolabelled by direct acylation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) for PET (positron emission tomography). The resulting radiotracer [(18)F]FB-ML5 was evaluated in vitro in human bronchial epithelium 16HBE cells and breast cancer MCF-7 cells. The non-radioactive probe FB-ML5 and native ML5 were tested in a fluorogenic inhibition assay against MMP-2, -9, -12 and ADAM-17. The in vivo kinetics of [(18)F]FB-ML5 were examined in a HT1080 tumor-bearing mouse model. Specificity of probe binding was examined by co-injection of 0 or 2.5mg/kg ML5. RESULTS ML5 and FB-ML5 showed high affinity for MMP-2, -9, -12 and ADAM-17; indeed IC50 values were respectively 7.4 ± 2.0, 19.5 ± 2.8, 2.0 ± 0.2 and 5.7 ± 2.2 nM and 12.5 ± 3.1, 31.5 ± 13.7, 138.0 ± 10.9 and 24.7 ± 2.8 nM. Radiochemical yield of HPLC-purified [(18)F]FB-ML5 was 13-16% (corrected for decay). Cellular binding of [(18)F]FB-ML5 was reduced by 36.6% and 27.5% in MCF-7 and 16 HBE cells, respectively, after co-incubation with 10 μM of ML5. In microPET scans, HT1080 tumors exhibited a low and homogeneous uptake of the tracer. Tumors of mice injected with [(18)F]FB-ML5 showed a SUVmean of 0.145 ± 0.064 (n=6) which decreased to 0.041 ± 0.027 (n=6) after target blocking (p<0.05). Ex vivo biodistribution showed a rapid excretion through the kidneys and the liver. Metabolite assays indicated that the parent tracer represented 23.2 ± 7.3% (n=2) of total radioactivity in plasma, at 90 min post injection (p.i.). CONCLUSION The nanomolar affinity MMP/ADAM inhibitor ML5 was successfully labelled with (18)F. [(18)F]FB-ML5 demonstrated rather low binding in ADAM-17 overexpressing cell lines. [(18)F]FB-ML5 uptake showed significant reduction in the HT1080 tumor in vivo after co-injection of ML5. [(18)F]FB-ML5 may be suitable for the visualization/quantification of diseases overexpressing simultaneously MMPs and ADAMs.
Collapse
Affiliation(s)
- Nathalie Matusiak
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Riccardo Castelli
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Adriaan W Tuin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Rosalina Wisastra
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Laurette M Prély
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Rainer P M Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
8
|
Prely LM, Paal K, Hermans J, van der Heide S, van Oosterhout AJ, Bischoff R. Quantification of matrix metalloprotease-9 in bronchoalveolar lavage fluid by selected reaction monitoring with microfluidics nano-liquid-chromatography–mass spectrometry. J Chromatogr A 2012; 1246:103-10. [DOI: 10.1016/j.chroma.2012.02.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/15/2012] [Accepted: 02/20/2012] [Indexed: 12/25/2022]
|
9
|
Deu E, Verdoes M, Bogyo M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 2012; 19:9-16. [PMID: 22218294 DOI: 10.1038/nsmb.2203] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteases are well-established targets for pharmaceutical development because of their known enzymatic mechanism and their regulatory roles in many pathologies. However, many potent clinical lead compounds have been unsuccessful either because of a lack of specificity or because of our limited understanding of the biological roles of the targeted protease. In order to successfully develop protease inhibitors as drugs, it is necessary to understand protease functions and to expand the platform of inhibitor development beyond active site-directed design and in vitro optimization. Several newly developed technologies will enhance assessment of drug selectivity in living cells and animal models, allowing researchers to focus on compounds with high specificity and minimal side effects in vivo. In this review, we highlight advances in the development of chemical probes, proteomic methods and screening tools that we feel will help facilitate this paradigm shift in drug discovery.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
10
|
Geurink PP, Klein T, Prèly L, Paal K, Leeuwenburgh MA, van der Marel GA, Kauffman HF, Overkleeft HS, Bischoff R. Design of Peptide Hydroxamate-Based Photoreactive Activity-Based Probes of Zinc-Dependent Metalloproteases. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Bregant S, Huillet C, Devel L, Dabert-Gay AS, Beau F, Thai R, Czarny B, Yiotakis A, Dive V. Detection of matrix metalloproteinase active forms in complex proteomes: evaluation of affinity versus photoaffinity capture. J Proteome Res 2009; 8:2484-94. [PMID: 19271733 DOI: 10.1021/pr801069c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various attempts to detect matrix metalloproteinase (MMP) active forms from complex proteomes, based on the use of specific photoactivatable affinity probes, have up to now failed. To overcome this failure, an affinity approach has been evaluated as an alternative to the photoaffinity one. For this purpose, two probes were synthesized to interact specifically with the active site of MMPs and allow isolation of MMP/probe complexes on magnetic beads through a biotin linker. Using phosphinic peptide chemistry, we prepared an affinity probe displaying picomolar potency toward several MMPs, and a related photoaffinity probe incorporating a photoactivatable azido group exhibiting subnanomolar affinity toward these targets. By a combination of silver-staining detection and MALDI peptide mass fingerprints, a systematic comparison was made of both strategies in terms of hMMP-12 and hMMP-8 recovery and identification when present in mixtures of different complexity. The results obtained show that the affinity protocol is superior to the photoaffinity strategy in terms of quantity of captured MMPs and number of MMP tryptic fragments detected in MALDI-MS. The specificity and efficiency of the affinity capture protocol developed in this study allowed easy, fast, and unambiguous detection by MALDI-MS of three hMMPs (2, 8, and 12), from a single affinity capture experiment, when added (10-36 ng of MMPs) to a tumor extract (10 microg). Thus, the tools and approaches reported should enable us to progress in the detection of endogenous active forms of MMPs in complex proteomes, an important objective with many diagnostic applications.
Collapse
Affiliation(s)
- Sarah Bregant
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Bat 152, CE-Saclay Gif/Yvette, F-91191, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Klein T, P Geurink P, S Overkleeft H, K Kauffman H, Bischoff R. Functional proteomics on zinc-dependent metalloproteinases using inhibitor probes. ChemMedChem 2009; 4:164-70. [PMID: 19072819 DOI: 10.1002/cmdc.200800284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metzincins are a family of zinc(II)-dependent metalloproteinases with well known members such as the matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs). Metzincins are largely responsible for the modulation and regulation of the extracellular matrix by proteolytic degradation of extracellular matrix (ECM) proteins, and by liberation or production of biologically active proteins from their pro-forms. Since metzincin activity is strictly regulated in vivo, novel analysis methods are necessary to elucidate the role of the active enzymes in health and disease. This concept gives an overview of available methods, and describes an approach to use synthetic metzincin inhibitors as affinity probes for selective determination of active metzincins in biological and clinical samples.
Collapse
Affiliation(s)
- Theo Klein
- Center of Pharmacy, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Rouffet M, Denhez C, Bourguet E, Bohr F, Guillaume D. In silico study of MMP inhibition. Org Biomol Chem 2009; 7:3817-25. [DOI: 10.1039/b910543c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|