1
|
Ermakova EV, Zvyagina AI, Kharlamova AD, Abel AS, Andraud C, Bessmertnykh-Lemeune A. Preparation of Langmuir-Blodgett Films from Quinoxalines Exhibiting Aggregation-Induced Emission and Their Acidochromism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15117-15128. [PMID: 38979711 DOI: 10.1021/acs.langmuir.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The development of aggregation-induced emission (AIE)-exhibiting compounds heavily relies on our evolving comprehension of their behavior at interfaces, an understanding that still remains notably limited. In this study, we explored the preparation of two-dimensional (2D) sensing films from 2,3-diphenylquinoxaline-based diazapolyoxa- and polyazamacrocycles displaying AIE via the Langmuir-Blodgett (LB) technique. This systematic investigation highlights the key role of the heteroatom-containing tether of 2,3-diphenylquinoxalines in the successful fabrication of Langmuir layers at the air-water interface and the transfer of AIE-emitting supramolecular aggregates onto solid supports. Using both diazapolyoxa- and polyazamacrocycles, we prepared AIE-exhibiting monolayer films containing emissive supramolecular aggregates on silica, mica, and quartz glass and characterized them using ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopies, atomic force microscopy (AFM) imaging, and fluorescence microscopy. We also obtained multilayer AIE-emitting films through the LB technique, albeit with increased complexity. Remarkably, by employing the smallest macrocycle N2C3Q, we successfully prepared LB films suitable for the visual detection of acidic vapors. This sensing material, which contains a much lesser amount of organic dye compared with traditional drop-cast films, can be regenerated and utilized for real-life sample analysis, such as monitoring the presence of ammonia in the air and the freshness of meat.
Collapse
Affiliation(s)
- Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alexandra I Zvyagina
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Alisa D Kharlamova
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Anton S Abel
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3, Leninskie Gory, Moscow 119991, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69342 Lyon, France
| |
Collapse
|
2
|
Kharlamova AD, Ermakova EV, Abel AS, Gontcharenko VE, Cheprakov AV, Averin AD, Beletskaya IP, Andraud C, Bretonnière Y, Bessmertnykh-Lemeune A. Quinoxaline-based azamacrocycles: synthesis, AIE behavior and acidochromism. Org Biomol Chem 2024; 22:5181-5192. [PMID: 38864283 DOI: 10.1039/d4ob00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The development of luminescent molecular materials has advanced rapidly in recent decades, primarily driven by the synthesis of novel emissive compounds and a deeper understanding of excited-state mechanisms. Herein, we report a streamlined synthetic approach to light-emitting diazapolyoxa- and polyazamacrocycles N2CnOxQ and NyCnQ (n = 3-10; x = 2, 3; y = 2-5), incorporating a 2,3-diphenylquinoxaline residue (DPQ). This synthetic strategy based on macrocyclization through Pd-catalyzed amination reaction yields the target macrocycles in good or high yields (46-92%), enabling precise control over their structural parameters. A key role of the PhPF-tBu ligand belonging to the JosiPhos series in this macrocyclization was elucidated through DFT computation. This macrocyclization reaction eliminates the need for complex protecting-deprotecting procedures of secondary amine groups, offering a convenient and scalable method for the preparation of target compounds. Moreover, it boasts a potentially broad substrate scope, making it promising for structure-properties studies within photophysics, sensor development, and material synthesis. Photophysical properties of representative macrocycles were investigated, employing spectroscopic techniques and DFT computation. It was demonstrated that DPQ-containing macrocycles display aggregation-induced emission in a DCM-hexane solvent mixture despite the presence of flexible tethers within their structures. Single-crystal X-ray diffraction analysis of a representative compound N2C8O3Q allowed us to gain deeper insight into its molecular structure and AIE behaviour. The emissive aggregates of the N2C10O3Q macrocycle were immobilized on filter paper yielding AIE-exhibiting test strips for measuring acidity in vapors and in aqueous media.
Collapse
Affiliation(s)
- Alisa D Kharlamova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Anton S Abel
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Victoria E Gontcharenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
- Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Pr. 53, Moscow, 119071, Russia
| | - Andrei V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Alexei D Averin
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory, 1-3, Moscow 119991, Russia.
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Chantal Andraud
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Yann Bretonnière
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Alla Bessmertnykh-Lemeune
- Université de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| |
Collapse
|
3
|
Maity A, Shyamal M, Mudi N, Giri PK, Samanta SS, Hazra P, Beg H, Misra A. An efficient fluorescent aggregates for selective recognition of 4-nitrophenol based on 9,10-dihydrobenzo[a]pyrene-7(8 H)-one. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Granchak VM, Sakhno TV, Korotkova IV, Sakhno YE, Kuchmy SY. Aggregation-Induced Emission in Organic Nanoparticles: Properties and Applications: a Review. THEOR EXP CHEM+ 2018. [DOI: 10.1007/s11237-018-9558-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Jiménez-Sánchez A, Lei EK, Kelley SO. A Multifunctional Chemical Probe for the Measurement of Local Micropolarity and Microviscosity in Mitochondria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Arturo Jiménez-Sánchez
- Department of Biochemistry; Faculty of Medicine; University of Toronto; Toronto Ontario M5S 1A8 Canada
| | - Eric K. Lei
- Department of Biochemistry; Faculty of Medicine; University of Toronto; Toronto Ontario M5S 1A8 Canada
| | - Shana O. Kelley
- Department of Biochemistry; Faculty of Medicine; University of Toronto; Toronto Ontario M5S 1A8 Canada
- Department of Pharmaceutical Sciences; Leslie Dan Faculty of Pharmacy; Institute for Biomedical and Biomaterials Engineering; Departments of Biochemistry and Chemistry; University of Toronto; Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
6
|
Jiménez-Sánchez A, Lei EK, Kelley SO. A Multifunctional Chemical Probe for the Measurement of Local Micropolarity and Microviscosity in Mitochondria. Angew Chem Int Ed Engl 2018; 57:8891-8895. [PMID: 29808513 DOI: 10.1002/anie.201802796] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/06/2018] [Indexed: 12/13/2022]
Abstract
The measurement of physicochemical parameters in living cells can provide information on individual cellular organelles, helping us to understand subcellular function in health and disease. While organelle-specific chemical probes have allowed qualitative evaluation of microenvironmental variations, the simultaneous quantification of mitochondrial local microviscosity (ηm ) and micropolarity (ϵm ), along with concurrent structural variations, has remained an unmet need. Herein, we describe a new multifunctional mitochondrial probe (MMP) for simultaneous monitoring of ηm and ϵm by fluorescence lifetime and emission intensity recordings, respectively. The MMP enables highly precise measurements of ηm and ϵm in the presence of a variety of agents perturbing cellular function, and the observed changes can also be correlated with alterations in mitochondrial network morphology and motility. This strategy represents a promising tool for the analysis of subtle changes in organellar structure.
Collapse
Affiliation(s)
- Arturo Jiménez-Sánchez
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Eric K Lei
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Institute for Biomedical and Biomaterials Engineering, Departments of Biochemistry and Chemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
7
|
Li K, Cui J, Yang Z, Huo Y, Duan W, Gong S, Liu Z. Solvatochromism, acidochromism and aggregation-induced emission of propeller-shaped spiroborates. Dalton Trans 2018; 47:15002-15008. [DOI: 10.1039/c8dt03374a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Propeller-shaped pyridyl-enolato-catecholate/-salicyl spiroborates (Sborepy1–6) were synthesized.
Collapse
Affiliation(s)
- Kang Li
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Jichun Cui
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Zeren Yang
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Yanmin Huo
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Wenzeng Duan
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Shuwen Gong
- Institute of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- People's Republic of China
| | - Zhipeng Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing
- P.R. China
| |
Collapse
|
8
|
Wang X, Liu L, Zhu S, Li L. Preparation of organic fluorescent nanocomposites and their application in DNA detection. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Yang Y, Wang X, Cui Q, Cao Q, Li L. Self-Assembly of Fluorescent Organic Nanoparticles for Iron(III) Sensing and Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7440-8. [PMID: 26950776 DOI: 10.1021/acsami.6b00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fluorescent organic nanoparticles have attracted increasing attentions for chemical or biological sensing and imaging due to their low-toxicity, facile fabrication and surface functionalization. In this work, we report novel fluorescent organic nanoparticles via facile self-assembly method in aqueous solution. First, the designed water-soluble fluorophore shows a weak and negligible intrinsic fluorescence in water. Upon binding with adenosine-5'-triphosphate (ATP), fluorescent nanoparticles were formed immediately with strongly enhanced fluorescence. These fluorescent nanoparticles exhibit high sensitivity and selectivity toward Fe(3+) sensing with detection limit of 0.1 nM. In addition, after incubation with HeLa cells, the fluorophore shows excellent imaging performance by interaction with entogenous ATP in cells. Finally, this fluorescent system is also demonstrated to be capable of Fe(3+) sensing via fluorescence quenching in cellular environment.
Collapse
Affiliation(s)
- Yu Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Qian Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
10
|
Tang F, Wang C, Wang J, Wang X, Li L. Organic–inorganic hybrid nanoparticles with enhanced fluorescence. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Preparation of hybrid fluorescent nanocomposites with enhanced fluorescence and their application. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Wang C, Tang F, Wang X, Li L. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13653-13658. [PMID: 26031912 DOI: 10.1021/acsami.5b03440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.
Collapse
Affiliation(s)
- Chun Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Fu Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
13
|
Wu M, Xu X, Wang J, Li L. Fluorescence resonance energy transfer in a binary organic nanoparticle system and its application. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8243-8250. [PMID: 25823879 DOI: 10.1021/acsami.5b01338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescent organic nanoparticles have a much better photostability than molecule-based probes. Here, we report a simple strategy to detect chemicals and biomolecules by a binary nanoparticle system based on fluorescence resonance energy transfer (FRET). Poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO, energy donor) and poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV, energy acceptor) are utilized to prepare the binary nanoparticle system through a reprecipitation method. Since the FRET process is strongly distance-dependent, a change in the interparticle distance between the two kinds of nanoparticles after introduction of analytes will alter the FRET efficiency. The response of the binary nanoparticle system to cationic polyelectrolytes was investigated by monitoring the FRET efficiency from PFO to MEH-PPV nanoparticles and the fluorescence color of the nanoparticle solutions. Furthermore, the cationic polyelectrolyte pretreated binary nanoparticle system can be used to detect DNA by desorption of nanoparticles from the polyelectrolyte's chains and the detection concentration can go down to 10(-14) M. Thus, the binary nanoparticle system shows great promise for applications in chemical sensing or biosensing.
Collapse
Affiliation(s)
- Meng Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xinjun Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jinshan Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
14
|
Xu X, Liu R, Li L. Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications. Chem Commun (Camb) 2015; 51:16733-49. [DOI: 10.1039/c5cc06439b] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This feature article summarizes the recent applications of nanoparticles made of π-conjugated compounds in bio/chemo-sensing, disease therapy, and photoacoustic imaging.
Collapse
Affiliation(s)
- Xinjun Xu
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Ronghua Liu
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Lidong Li
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
15
|
Mouslmani M, Bouhadir KH, Patra D. Poly (9-(2-diallylaminoethyl)adenine HCl-co-sulfur dioxide) deposited on silica nanoparticles constructs hierarchically ordered nanocapsules: curcumin conjugated nanocapsules as a novel strategy to amplify guanine selectivity among nucleobases. Biosens Bioelectron 2014; 68:181-188. [PMID: 25569875 DOI: 10.1016/j.bios.2014.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Poly (9-(2-diallylaminoethyl)adenine HCl-co-sulfur dioxide) (Poly A) deposited on silica nanoparticles self-assembles to form hierarchically ordered nanocapsules. These nanocapsules can be conjugated with curcumin. The curcumin-conjugated nanocapsules are found to be spherical in size and their size ranges between 200 and 600 nm. We found that curcumin conjugated with silica nanoparticles marginally shows a selectivity (∼20%) for guanine over adenine, cytosine, thymine and uracil, but this selectivity is extraordinarily amplified to more than 500% in curcumin-conjugated nanocapsules prepared from the above procedure. FT-IR spectra along with lifetime measurements suggest that specific interaction between adenine moieties of Poly A nanocapsules and thymine/uracil does not affect the fluorescence of poly A nanocapsules. Thus, the sensitivity and selectivity for guanine estimation is due to hydrophobic interactions, which are assisted by the low water solubility of guanine as compared to the other nucleobases. The present method illustrates a wider linear dynamic range in the higher concentration range as compared to the reported methods. Finally, the degradation study proves that stability of curcumin is improved dramatically in such nanocapsules demonstrating that nanotechnology could be a viable method to improve selectivity of specific analyte and robustness of probe molecule during fluorescence based bio-sensing.
Collapse
Affiliation(s)
- Mai Mouslmani
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Kamal H Bouhadir
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Digambara Patra
- Department of Chemistry, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
16
|
Tang F, Wang C, Wang J, Wang X, Li L. Fluorescent organic nanoparticles with enhanced fluorescence by self-aggregation and their application to cellular imaging. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18337-18343. [PMID: 25275214 DOI: 10.1021/am505776a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a simple strategy to prepare organic biocompatible fluorescent nanoparticles with enhanced fluorescence. A significant fluorescence enhancement was realized by designing a fluorescent small molecule, 4,4'-(2,7-bis[4-{1,2,2-triphenylvinyl}phenyl]-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylbutan-1-aminum)bromide (TPEFN), with aggregation-induced emission enhancement (AIEE) effect. Nanoparticles of TPEFN can be formed through molecular self-aggregation by gradually increasing the water fraction in TPEFN mixed solution (methanol/water). Fluorescence enhancement by about 120-fold was observed after nanoparticle formation. By addition of the biomolecule adenosine triphosphate (ATP), larger nanoparticles of TPEFN are formed and further fluorescence enhancement can be achieved, yielding a total fluorescence enhancement of 420-fold compared with the TPEFN molecular solution. Both of these nanoparticles show very good biocompatibility. Ultrabright spots present in the confocal laser scanning microscopy image again proved the formation of nanoparticles. Positively charged side chains of TPEFN endow these nanoparticles cationic surfaces. The size of the prepared TPEFN nanoparticles and their cationic surface allow them to be rapidly internalized into cells. Cell viability assays prove that the TPEFN nanoparticles have high biocompatibility. These organic fluorescent nanoparticles show great promise for applications in cellular imaging or biotechnology.
Collapse
Affiliation(s)
- Fu Tang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Wang X, He F, Li L, Wang H, Yan R, Li L. Conjugated oligomer-based fluorescent nanoparticles as functional nanocarriers for nucleic acids delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5700-5708. [PMID: 23721201 DOI: 10.1021/am401118r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oligonucleotides such as siRNA and plasmid DNA (pDNA) have great potential for gene therapies. Multifunctional, environment-resistant carriers with imaging capabilities are required to track the assembly and disassembly of oligonucleotides, monitor the delivery processes, and develop new delivery systems. Conjugated polymers and oligomers can potentially be used as novel materials for functional nanocarriers with both delivery and imaging abilities. In this work, a novel π-conjugated oligomer 4,7-(9,9'-bis(6-adenine hexyl)fluorenyl)-2,1,3-benzothiadiazole (OFBT-A) modified with nucleotide adenine (A) groups in its side chains is synthesized and characterized. Fluorescent nanoparticles based on the π-conjugated oligomers OFBT-A are developed as novel functional nanocarriers for oligonucleotides. Single-stranded DNA (ssDNA) TR-T5 labeled with Texas Red (TR) fluorescent dye is selected as a model payload oligonucleotide. The capture abilities and stability of OFBT-A are investigated by monitoring the fluorescence resonance energy transfer (FRET) efficiency between the OFBT-A nanoparticles and TR labels in solution. The OFBT-A/TR-T5 composites are stable in solution at high ionic strengths (0-500 mM) and have a wide working pH range, from 3.0 to 9.5. The in vitro profile demonstrates that the release of the TR-DNA is induced by the ssDNA A43, which has a high charge density. The release process is monitored by measuring the changes in FRET efficiency and fluorescence color for the OFBT-A/TR-T5 composites. Using this carrier, the uptake of TR-DNA by A549 lung cancer cells is observed. Both the OFBT-A nanoparticles and the OFBT-A/TR-T5 composites show high cytocompatibility. We anticipate that these novel functional nanocarriers will provide a safe strategy for monitoring the gene delivery process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Wang J, Xu X, Shi L, Li L. Fluorescent organic nanoparticles based on branched small molecule: preparation and ion detection in lithium-ion battery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3392-3400. [PMID: 23530569 DOI: 10.1021/am4004396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescent organic nanoparticles (FONs) as a new class of nanomaterials can provide more advantages than molecule based probes. However, their applications in specific metal ion detection have rarely been exploited. We design and synthesize a branched small-molecule compound with triazole as a core and benzothiadiazole derivative as branches. By a facile reprecipitation method, nanoparticles (NPs) of this compound can be prepared in aqueous solutions, which can show high selectivity and sensitivity to Fe(III) ions based on fluorescence quenching. In addition, the fluorescence intensity of these NPs is resistant to pH changes in solutions. Such characters of this kind of NPs can be utilized in Fe(3+) impurity detection in a promising cathode material (LiFePO4) for lithium ion batteries. When exposed to Fe(3+), both the triazole and benzothiadiazole groups contribute to the fluorescence quenching of NPs, but the former one plays a more important role in Fe(3+) impurity detection. The sensing mechanism has also been investigated which indicates that a Fe-organic complex formation may be responsible for such sensing behavior. Our findings demonstrate that specific metal ion detection can be realized by FONs and have extended the application field of FONs for chemical sensing in aqueous solutions.
Collapse
Affiliation(s)
- Jinshan Wang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | | | | | | |
Collapse
|
19
|
Balan B, Vijayakumar C, Ogi S, Takeuchi M. Oligofluorene-based nanoparticles in aqueous medium: hydrogen bond assisted modulation of functional properties and color tunable FRET emission. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30315a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
A rigid conjugated pyridinylthiazole derivative and its nanoparticles for divalent copper fluorescent sensing in aqueous media. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Salini PS, Thomas AP, Sabarinathan R, Ramakrishnan S, Sreedevi KCG, Reddy MLP, Srinivasan A. Calix[2]-m-benzo[4]phyrin with Aggregation-Induced Enhanced-Emission Characteristics: Application as a HgII Chemosensor. Chemistry 2011; 17:6598-601. [DOI: 10.1002/chem.201100046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Indexed: 11/07/2022]
|
22
|
Vijayakumar C, Sugiyasu K, Takeuchi M. Oligofluorene-based electrophoretic nanoparticles in aqueous medium as a donor scaffold for fluorescence resonance energy transfer and white-light emission. Chem Sci 2011. [DOI: 10.1039/c0sc00343c] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Xu X, He C, Li L, Ma N, Li Y. Surface modification and shape adjustment of polymer semiconductor nanowires. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04296j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Zheng C, Xu X, He F, Li L, Wu B, Yu G, Liu Y. Preparation of high-quality organic semiconductor nanoparticle films by solvent-evaporation-induced self-assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:16730-16736. [PMID: 20942425 DOI: 10.1021/la103449q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Organic semiconductor nanoparticles are expected to be used in organic optical and electronic devices due to their unique optical and electrical properties. However, no method has been reported for the preparation of high-quality organic nanoparticle films without remaining additives and being capable of dealing with binary nanoparticle blends. We developed a simple approach to fabricate high-quality organic semiconductor nanoparticle films from their aqueous solutions by solvent-evaporation-induced self-assembly. Only volatile solvents are employed in the nanoparticle solutions, so the self-assembled nanoparticle films are free of additives. Moreover, this method is also suitable for fabricating thin films containing binary nanoparticles. Therefore, it paves the way for potential applications of organic semiconductor nanoparticles in nanoscale optical and electronic devices.
Collapse
Affiliation(s)
- Changchun Zheng
- State Key Laboratory of Advanced Metal and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Lamère JF, Saffon N, Dos Santos I, Fery-Forgues S. Aggregation-induced emission enhancement in organic ion pairs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10210-10217. [PMID: 20163130 DOI: 10.1021/la100349d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present here a new example of aggregation-induced emission enhancement (AIEE), which involves an original mechanism based on the formation of organic ion pairs. The phenol 4-hydroxy-7-nitrobenzoxadiazole (NBDOH) is dissociated in water at pH 5.0 to give the corresponding phenolate, which is poorly fluorescent in this medium. We bring evidence that fluorescence quenching is due to an interaction with water molecules. In the presence of a relatively bulky ammonium salt, specifically tetrabutylammonium bromide (TBAB), NBDOH forms a hydrophobic salt, TBA(+)NBDO(-). This has no influence on the fluorescence of the anion as long as the salt is dissolved. However, the salt readily crystallizes in the medium and transition to the solid state is accompanied by a strong increase in fluorescence intensity. This effect can be explained by two reasons. The anions are protected from water molecules, and above all, the presence of the bulky cations prevents parallel-stacking of the anions, thus leading to an original molecular arrangement that is favorable to fluorescence. As the nature of the organic cation may be easily changed, the versatility of the system is very interesting for the design of new organic micro- and nanoparticles that must be fluorescent in the solid state, possibly in an aqueous environment.
Collapse
Affiliation(s)
- Jean-François Lamère
- Laboratoire des Interactions Moléculaires Réactivité Chimique et Photochimique, UMR CNRS 5623, Université Paul Sabatier, 31062 Toulouse cedex 9, France
| | | | | | | |
Collapse
|
26
|
Qian L, Tong B, Shen J, Shi J, Zhi J, Dong Y, Yang F, Dong Y, Lam JWY, Liu Y, Tang BZ. Crystallization-Induced Emission Enhancement in a Phosphorus-Containing Heterocyclic Luminogen. J Phys Chem B 2009; 113:9098-103. [DOI: 10.1021/jp900665x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijun Qian
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bin Tong
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinbo Shen
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianbing Shi
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junge Zhi
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yongqiang Dong
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fan Yang
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuping Dong
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Liu
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- College of Materials Science and Engineering and College of Science, Beijing Institute of Technology (BIT), 5 South Zhongguancun Street, Beijing 100081, China, Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100037, China, College of Chemistry, Beijing Normal University, Beijing 100875, China, and Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Iwasawa T, Kamei T, Watanabe S, Nishiuchi M, Kawamura Y. A functionalized phosphine ligand with a pentaarylbenzene moiety in palladium-catalyzed Suzuki–Miyaura coupling of aryl chlorides. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|