1
|
Orzeł Ł, Oszajca M, Polaczek J, Porębska D, van Eldik R, Stochel G. High-Pressure Mechanistic Insight into Bioinorganic NO Chemistry. Molecules 2021; 26:molecules26164947. [PMID: 34443535 PMCID: PMC8401417 DOI: 10.3390/molecules26164947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Pressure is one of the most important parameters controlling the kinetics of chemical reactions. The ability to combine high-pressure techniques with time-resolved spectroscopy has provided a powerful tool in the study of reaction mechanisms. This review is focused on the supporting role of high-pressure kinetic and spectroscopic methods in the exploration of nitric oxide bioinorganic chemistry. Nitric oxide and other reactive nitrogen species (RNS) are important biological mediators involved in both physiological and pathological processes. Understanding molecular mechanisms of their interactions with redox-active metal/non-metal centers in biological targets, such as cofactors, prosthetic groups, and proteins, is crucial for the improved therapy of various diseases. The present review is an attempt to demonstrate how the application of high-pressure kinetic and spectroscopic methods can add additional information, thus enabling the mechanistic interpretation of various NO bioinorganic reactions.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
| | - Dominika Porębska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr 1, 91058 Erlangen, Germany
- Correspondence: (R.v.E.); (G.S.); Tel.: +48-66-777-2932 (R.v.E.); +48-12-686-2502 (G.S.)
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (Ł.O.); (M.O.); (J.P.); (D.P.)
- Correspondence: (R.v.E.); (G.S.); Tel.: +48-66-777-2932 (R.v.E.); +48-12-686-2502 (G.S.)
| |
Collapse
|
2
|
Yamala AK, Nadella V, Mastai Y, Prakash H, Paik P. P‐LME polymer nanocapsules stimulate naïve macrophages and protect them from oxidative damage during controlled drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.48363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anil K. Yamala
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
| | - Vinod Nadella
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
| | - Yitzhak Mastai
- Department of Chemistry, Institute of NanotechnologyBar‐Ilan University Ramat‐Gan 52900 Israel
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life SciencesUniversity of Hyderabad, Prof. C. R. Rao Road 500046 Hyderabad Telangana India
- Institute of Virology and ImmunologyAmity University Uttar Pradesh 201313 India
| | - Pradip Paik
- School of Engineering Science and TechnologyUniversity of Hyderabad, Prof. CR Rao Road 500046 Hyderabad Telangana India
- School of Biomedical EngineeringIndian Institute of Technology, BHU Varanasi 221005 India
| |
Collapse
|
3
|
Rahut S, Patra SK, Basu JK. Surfactant assisted self assembly of novel ultrathin Cu[Fe(CN)5NO] nanosheets for enhanced electrocatalytic oxygen evolution: Effect of nanosheet thickness. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Yamala AK, Nadella V, Mastai Y, Prakash H, Paik P. Poly-N-acryloyl-(l-phenylalanine methyl ester) hollow core nanocapsules facilitate sustained delivery of immunomodulatory drugs and exhibit adjuvant properties. NANOSCALE 2017; 9:14006-14014. [PMID: 28891586 DOI: 10.1039/c7nr03724d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymeric hollow nanocapsules have attracted significant research attention as novel drug carriers and their preparation is of particular concern owing to the feasibility to encapsulate a broad range of drug molecules. This work presents for the first time the synthesis and development of novel poly-N-acryloyl l-phenylalanine methyl ester hollow core nanocapsules (NAPA-HPNs) of avg. size ca. 100-150 nm by the mini-emulsion technique. NAPA-HPNs are biocompatible and capable of encapsulating sodium nitroprusside (SNP) at a rate of ∼1.3 μM per mg of capsules. These NAPA-HPNs + SNP nano-formulations maintained homeostasis of macrophages which carry and facilitate the action of various drug molecules used against various diseases. These NAPA-HPNs also facilitate the prolonged release of a low level of nitric oxide (NO) and enhance the metabolic activities of pro-inflammatory macrophages, which are important for the action of various drugs in body fluids. NAPA-HPN mediated skewing of naïve macrophages toward the M1 phenotype potentially demonstrates its adjuvant action on the innate immune system. These results potentially suggested that NAPA-HPNs can serve both as a carrier of drugs as well as an adjuvant for the immune system. Thus, these nanocapsules could be used for the effective management of various infectious or tumor diseases where immune-stimulation is paramount for treatment.
Collapse
Affiliation(s)
- Anil Kumar Yamala
- School of Engineering Science and Technology, University of Hyderabad, Prof. C. R. Rao Road, 500046, Hyderabad, Telangana, India.
| | | | | | | | | |
Collapse
|
5
|
Rahut S, Bharti A, Basu JK. Optical and electronic configuration of a novel semiconductor-silver nitroprusside for enhanced electrocatalytic and photocatalytic performance. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01940h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study presents a novel n-type semiconductor material, silver nitroprusside, possessing a π-acceptor ligand bridged octahedral geometry with a poor spin state metal ligand charge transfer effect.
Collapse
Affiliation(s)
- Sibsankar Rahut
- Department of Chemical Engineering
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Awinash Bharti
- Department of Chemical Engineering
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Jayanta Kumar Basu
- Department of Chemical Engineering
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
6
|
Shumaev KB, Kosmachevskaya OV, Nasybullina EI, Gromov SV, Novikov AA, Topunov AF. New dinitrosyl iron complexes bound with physiologically active dipeptide carnosine. J Biol Inorg Chem 2016; 22:153-160. [PMID: 27878396 DOI: 10.1007/s00775-016-1418-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Dinitrosyl iron complexes (DNICs) are physiological NO derivatives and account for many NO functions in biology. Polyfunctional dipeptide carnosine (beta-alanyl-L-histidine) is considered to be a very promising pharmacological agent. It was shown that in the system containing carnosine, iron ions and Angeli's salt, a new type of DNICs bound with carnosine as ligand {(carnosine)2-Fe-(NO)2}, was formed. We studied how the carbonyl compound methylglyoxal influenced this process. Carnosine-bound DNICs appear to be one of the cell's adaptation mechanisms when the amount of reactive carbonyl compounds increases at hyperglycemia. These complexes can also participate in signal and regulatory ways of NO and can act as protectors at oxidative and carbonyl stress conditions.
Collapse
Affiliation(s)
- Konstantin B Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Elvira I Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation
| | - Sergey V Gromov
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Alexander A Novikov
- National University of Science and Technology MISiS, Moscow, 119049, Russian Federation
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russian Federation.
| |
Collapse
|
7
|
Rodrigues GLS, Rocha WR. Formation and Release of NO from Ruthenium Nitrosyl Ammine Complexes [Ru(NH3)5(NO)]2+/3+ in Aqueous Solution: A Theoretical Investigation. J Phys Chem B 2016; 120:11821-11833. [DOI: 10.1021/acs.jpcb.6b08813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel L. S. Rodrigues
- LQC-MM (Laboratório
de Química Computacional e Modelagem Molecular), Departamento
de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, Belo
Horizonte 31270-901, MG, Brazil
| | - Willian R. Rocha
- LQC-MM (Laboratório
de Química Computacional e Modelagem Molecular), Departamento
de Química, ICEx, Universidade Federal de Minas Gerais, Pampulha, Belo
Horizonte 31270-901, MG, Brazil
| |
Collapse
|
8
|
Piñeiro-López L, Ortega-Villar N, Muñoz MC, Molnár G, Cirera J, Moreno-Esparza R, Ugalde-Saldívar VM, Bousseksou A, Ruiz E, Real JA. Electronic Structure Modulation in an Exceptionally Stable Non-Heme Nitrosyl Iron(II) Spin-Crossover Complex. Chemistry 2016; 22:12741-51. [DOI: 10.1002/chem.201601172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Lucía Piñeiro-López
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; 46980 Paterna Valencia Spain
| | - Norma Ortega-Villar
- Facultad de Química (UNAM); Edificio B.; Av. Universidad 3000, Coyoacán México D.F. 04510 México
| | - M. Carmen Muñoz
- Departamento de Física Aplicada; Universitat Politècnica de València; 46022 Valencia Spain
| | - Gábor Molnár
- LCC; CNRS & Université de Toulouse (UPS, INP); 205 route de Narbonne 31077 Toulouse France
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica; Secció de Química Inorgànica; Institut de Recerca de Química Teòrica i Computacional; Universitat de Barcelona; Diagonal 645 Barcelona 08028 Spain
| | - Rafael Moreno-Esparza
- Facultad de Química (UNAM); Edificio B.; Av. Universidad 3000, Coyoacán México D.F. 04510 México
| | | | - Azzedine Bousseksou
- LCC; CNRS & Université de Toulouse (UPS, INP); 205 route de Narbonne 31077 Toulouse France
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica; Secció de Química Inorgànica; Institut de Recerca de Química Teòrica i Computacional; Universitat de Barcelona; Diagonal 645 Barcelona 08028 Spain
| | - José A. Real
- Instituto de Ciencia Molecular (ICMol); Universidad de Valencia; 46980 Paterna Valencia Spain
| |
Collapse
|
9
|
|
10
|
|
11
|
de Ruiter G, Thompson NB, Lionetti D, Agapie T. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes. J Am Chem Soc 2015; 137:14094-106. [PMID: 26390375 DOI: 10.1021/jacs.5b07397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more electron-rich cluster.
Collapse
Affiliation(s)
- Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Niklas B Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Davide Lionetti
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
12
|
Venâncio MF, Rocha WR. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Attia AA, Dereven’kov IA, Silaghi-Dumitrescu R. Ruthenium dinitrosyl complexes – computational characterization of structure and reactivity. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1041936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amr A.A. Attia
- Department of Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ilia A. Dereven’kov
- Department of Food Chemistry and Biotechnology, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | | |
Collapse
|
14
|
Foi A, Di Salvo F, Doctorovich F, Roy TG, Stirnat K, Biewer C, Klein A. Tracing the Iron Nitrosyl Complex [Fe(2,2′‐bipyridine)(CN)
3
(NO)]
–. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Foi
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE‐CONICET, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE‐CONICET, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE‐CONICET, Ciudad Universitaria, Pabellón 2, Piso 3, C1428EHA Buenos Aires, Argentina
| | | | - Kathrin Stirnat
- Universität zu Köln, Institut für Anorganische Chemie, Greinstraße 6, 50939 Köln, http://www.klein.uni‐koeln.de/
| | - Christian Biewer
- Universität zu Köln, Institut für Anorganische Chemie, Greinstraße 6, 50939 Köln, http://www.klein.uni‐koeln.de/
| | - Axel Klein
- Universität zu Köln, Institut für Anorganische Chemie, Greinstraße 6, 50939 Köln, http://www.klein.uni‐koeln.de/
| |
Collapse
|
15
|
Maity S, Kundu S, Saha Roy A, Weyhermüller T, Ghosh P. Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]6/7 Derivatives. Inorg Chem 2015; 54:1384-94. [DOI: 10.1021/ic502320m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvendu Maity
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Suman Kundu
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Amit Saha Roy
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| |
Collapse
|
16
|
Bari SE, Olabe JA, Slep LD. Three Redox States of Metallonitrosyls in Aqueous Solution. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Ruthenium complexes as NO donors for vascular relaxation induction. Molecules 2014; 19:9628-54. [PMID: 25004072 PMCID: PMC6271244 DOI: 10.3390/molecules19079628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) donors are substances that can release NO. Vascular relaxation induction is among the several functions of NO, and the administration of NO donors is a pharmacological alternative to treat hypertension. This review will focus on the physicochemical description of ruthenium-derived NO donor complexes that release NO via reduction and light stimulation. In particular, we will discuss the complexes synthesized by our research group over the last ten years, and we will focus on the vasodilation and arterial pressure control elicited by these complexes. Soluble guanylyl cyclase (sGC) and potassium channels are the main targets of the NO species released from the inorganic compounds. We will consider the importance of the chemical structure of the ruthenium complexes and their vascular effects.
Collapse
|
18
|
Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
|
20
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Nucleophilic Addition Reactions of the Nitroprusside Ion – The Case of
O
‐Methylhydroxylamine. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María M. Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| | - José A. Olabe
- Department of Inorganic, Analytical and Physical Chemistry and INQUIMAE/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Valentín T. Amorebieta
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| |
Collapse
|
21
|
Osa Codesido N, De Candia AG, Weyhermüller T, Olabe JA, Slep LD. An Electron-Rich {RuNO}6 Complex: trans-[Ru(DMAP)4(NO)(OH)]2+ - Structure and Reactivity. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway--evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int 2012; 32:531-43. [PMID: 22316165 DOI: 10.1111/j.1478-3231.2012.02755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/29/2011] [Indexed: 02/13/2023]
Abstract
Ischaemia reperfusion (IR) injury is a clinical entity with a major contribution to the morbidity and mortality of liver surgery and transplantation. A central pathway of protection against IR injury utilizes nitric oxide (NO). Nitric oxide synthase (NOS) enzymes manufacture NO from L-arginine. NO generated by the endothelial NOS (eNOS) isoform protects against liver IR injury, whereas inducible NOS (iNOS)-derived NO may have either a protective or a deleterious effect during the early phase of IR injury, depending on the length of ischaemia, length of reperfusion and experimental model. In late phase hepatic IR injury, iNOS-derived NO plays a protective role. In addition to NOS consumption of L-arginine during NO synthesis, this amino acid may also be metabolized by arginase, an enzyme whose release is increased during prolonged ischaemia, and therefore diverts L-arginine away from NOS metabolism leading to a drop in the rate of NO synthesis. NO most commonly acts through the soluble guanylyl cyclase-cyclic GMP- protein kinase G pathway to ameliorate hepatic IR injury. Both endogenously generated and exogenously administered NO donors protect against liver IR injury. The beneficial effects of NO on liver IR are not, however, universal, and certain conditions, such as steatosis, may influence the protective effects of NO. In this review, the evidence for, and mechanisms of these protective actions of NO are discussed, and areas in need of further research are highlighted.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | |
Collapse
|
23
|
Chowdhury AD, De P, Mobin SM, Lahiri GK. Influence of nitrosyl coordination on the binding mode of quinaldate in selective ruthenium frameworks. Electronic structure and reactivity aspects. RSC Adv 2012. [DOI: 10.1039/c2ra00953f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Caramori GF, Kunitz AG, Andriani KF, Doro FG, Frenking G, Tfouni E. The nature of Ru–NO bonds in ruthenium tetraazamacrocycle nitrosyl complexes—a computational study. Dalton Trans 2012; 41:7327-39. [DOI: 10.1039/c2dt12094a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Disproportionation of O-methylhydroxylamine catalyzed by aquapentacyanoferrate(II). Inorg Chem 2011; 50:8817-25. [PMID: 21859073 DOI: 10.1021/ic2007155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(•)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(•), thus establishing a radical path leading to N-methoxyamino ((•)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(•), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.
Collapse
Affiliation(s)
- María M Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
| | | | | |
Collapse
|
26
|
Montenegro AC, Dabrowski SG, Gutiérrez MM, Amorebieta VT, Bari SE, Olabe JA. Catalytic oxidation of hydroxyurea to bound NO+/ NO2- mediated by pentacyano(L)ferrates. Characterization of the nitroxide radical, bound C-nitrosoformamide and NO as reaction intermediates. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
|
28
|
Silva FO, Cândido MC, Holanda AK, Diógenes IC, Sousa EH, Lopes LG. Mechanism and biological implications of the NO release of cis-[Ru(bpy)2L(NO)]n+ complexes: A key role of physiological thiols. J Inorg Biochem 2011; 105:624-9. [DOI: 10.1016/j.jinorgbio.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 11/25/2022]
|
29
|
Quiroga SL, Almaraz AE, Amorebieta VT, Perissinotti LL, Olabe JA. Addition and Redox Reactivity of Hydrogen Sulfides (H2S/HS−) with Nitroprusside: New Chemistry of Nitrososulfide Ligands. Chemistry 2011; 17:4145-56. [DOI: 10.1002/chem.201002322] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/16/2010] [Indexed: 12/25/2022]
|
30
|
De P, Maji S, Dutta Chowdhury A, Mobin SM, Kumar Mondal T, Paretzki A, Lahiri GK. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2′-bipyridine (bpy) or 2-phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects. Dalton Trans 2011; 40:12527-39. [DOI: 10.1039/c1dt10761e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
De P, Mondal TK, Mobin SM, Sarkar B, Lahiri GK. {Ru–NO}6 and {Ru–NO}7 configurations in [Ru(trpy)(tmp)(NO)]n+ (trpy=2,2′:6′,2′′-terpyridine, tmp=3,4,7,8-tetramethyl-1,10-phenanthroline): An experimental and theoretical investigation. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Pereira JCM, Carregaro V, Costa DL, da Silva JS, Cunha FQ, Franco DW. Antileishmanial activity of ruthenium(II)tetraammine nitrosyl complexes. Eur J Med Chem 2010; 45:4180-7. [PMID: 20598778 DOI: 10.1016/j.ejmech.2010.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Accepted: 06/06/2010] [Indexed: 10/19/2022]
Abstract
The complexes trans-[Ru(NO)(NH(3))(4)L](X)(3) (X = BF(4)(-), PF(6)(-) or Cl(-) and L = N-heterocyclic ligands, P(OEt)(3), SO(3)(-2)), and [Ru(NO)Hedta)] were shown to exhibit IC(50pro) in the range of 36 (L = imN) to 5000 microM (L = imC). The inhibitory effects of trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) and of the Angeli's salt on the growth of the intramacrophage amastigote form studied were found to be similar while the trans-[Ru(NH(3))(4)imN(H(2)O)](2+) complex was found not to exhibit any substantial antiamastigote effect. The trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compound, administered (500 nmol kg(-1) day(-1)) in BALB/c mice infected with Leishmania major, was found to exhibit a 98% inhibition on the parasite growth. Furthermore, this complex proved to be at least 66 times more efficient than glucantime in in vivo experiments.
Collapse
Affiliation(s)
- José Clayston Melo Pereira
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos-Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
De P, Sarkar B, Maji S, Das AK, Bulak E, Mobin SM, Kaim W, Lahiri GK. Stabilization of {RuNO}6and {RuNO}7States in [RuII(trpy)(bik)(NO)]n+{trpy = 2,2′:6′,2″-terpyridine, bik = 2,2′-bis(1-methylimidazolyl) ketone} - Formation, Reactivity, and Photorelease of Metal-Bound Nitrosyl. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Montenegro A, Amorebieta V, Slep L, Martín D, Roncaroli F, Murgida D, Bari S, Olabe J. Three Redox States of Nitrosyl: NO+, NO., and NO−/HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform. Angew Chem Int Ed Engl 2009; 48:4213-6. [DOI: 10.1002/anie.200806229] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Montenegro A, Amorebieta V, Slep L, Martín D, Roncaroli F, Murgida D, Bari S, Olabe J. Three Redox States of Nitrosyl: NO+, NO., and NO−/HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|