1
|
Ríos-García M, Fernández B, Rodríguez-Otero J, Cabaleiro-Lago EM, Vázquez SA. The PM6-FGC Method: Improved Corrections for Amines and Amides. Molecules 2022; 27:molecules27051678. [PMID: 35268779 PMCID: PMC8924896 DOI: 10.3390/molecules27051678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Recently, we reported a new approach to develop pairwise analytical corrections to improve the description of noncovalent interactions, by approximate methods of electronic structures, such as semiempirical quantum mechanical (SQM) methods. In particular, and as a proof of concept, we used the PM6 Hamiltonian and we named the method PM6-FGC, where the FGC acronym, corresponding to Functional Group Corrections, emphasizes the idea that the corrections work for specific functional groups rather than for individual atom pairs. The analytical corrections were derived from fits to B3LYP-D3/def2-TZVP (reference). PM6 interaction energy differences, evaluated for a reduced set of small bimolecular complexes, were chosen as representatives of saturated hydrocarbons, carboxylic, amine and, tentatively, amide functional groups. For the validation, the method was applied to several complexes of well-known databases, as well as to complexes of diglycine and dialanine, assuming the transferability of amine group corrections to amide groups. The PM6-FGC method showed great potential but revealed significant inaccuracies for the description of some interactions involving the –NH2 group in amines and amides, caused by the inadequate selection of the model compound used to represent these functional groups (an NH3 molecule). In this work, methylamine and acetamide are used as representatives of amine and amide groups, respectively. This new selection leads to significant improvements in the calculation of noncovalent interactions in the validation set.
Collapse
|
2
|
Pérez-Tabero S, Fernández B, Cabaleiro-Lago EM, Martínez-Núñez E, Vázquez SA. New Approach for Correcting Noncovalent Interactions in Semiempirical Quantum Mechanical Methods: The Importance of Multiple-Orientation Sampling. J Chem Theory Comput 2021; 17:5556-5567. [PMID: 34424696 PMCID: PMC8486165 DOI: 10.1021/acs.jctc.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
A new
approach is presented to improve the performance of semiempirical
quantum mechanical (SQM) methods in the description of noncovalent
interactions. To show the strategy, the PM6 Hamiltonian was selected,
although, in general, the procedure can be applied to other semiempirical
Hamiltonians and to different methodologies. A set of small molecules
were selected as representative of various functional groups, and
intermolecular potential energy curves (IPECs) were evaluated for
the most relevant orientations of interacting molecular pairs. Then,
analytical corrections to PM6 were derived from fits to B3LYP-D3/def2-TZVP
reference–PM6 interaction energy differences. IPECs provided
by the B3LYP-D3/def2-TZVP combination of the electronic structure
method and basis set were chosen as the reference because they are
in excellent agreement with CCSD(T)/aug-cc-pVTZ curves for the studied
systems. The resulting method, called PM6-FGC (from functional group
corrections), significantly improves the performance of PM6 and shows
the importance of including a sufficient number of orientations of
the interacting molecules in the reference data set in order to obtain
well-balanced descriptions.
Collapse
Affiliation(s)
- Sergio Pérez-Tabero
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Berta Fernández
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Enrique M Cabaleiro-Lago
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Saulo A Vázquez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
Chakraborty D, Lischka H, Hase WL. Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation. J Phys Chem A 2020; 124:8907-8917. [DOI: 10.1021/acs.jpca.0c06677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S, Song K, Hase WL, Spezia R. Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2-24. [PMID: 32881516 DOI: 10.1021/jasms.9b00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.
Collapse
Affiliation(s)
- Ana Martin Somer
- Departamento de Química, Facultad de Ciencias, Módulo 13 Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Subha Pratihar
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Kihyung Song
- Department of Chemistry, Korea National University of Education, Chungbuk 28644, Republic of Korea
| | - William L Hase
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4, Place Jussieu, Paris, 75252 Cedex 05, France
| |
Collapse
|
5
|
Pratihar S, Barnes GL, Hase WL. Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces. Chem Soc Rev 2016; 45:3595-608. [DOI: 10.1039/c5cs00482a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different simulation approaches like MM, QM + MM, and QM/MM, were used to study surface-induced dissociation, soft-landing, and reactive-landing for the peptide-H+ + surface collisions.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - George L. Barnes
- Department of Chemistry and Biochemistry
- Siena College
- Loudonville
- USA
| | - William L. Hase
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
6
|
Paul AK, Kolakkandy S, Hase WL. Dynamics of Na+(Benzene) + Benzene Association and Ensuing Na+(Benzene)2* Dissociation. J Phys Chem A 2015; 119:7894-904. [DOI: 10.1021/acs.jpca.5b01922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amit K. Paul
- Department
of Chemistry and
Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Sujitha Kolakkandy
- Department
of Chemistry and
Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - William L. Hase
- Department
of Chemistry and
Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Pratihar S, Kohale SC, Bhakta DG, Laskin J, Hase WL. Dynamics of energy transfer and soft-landing in collisions of protonated dialanine with perfluorinated self-assembled monolayer surfaces. Phys Chem Chem Phys 2014; 16:23769-78. [PMID: 25274280 DOI: 10.1039/c4cp03535f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H(+), with a perfluorinated octanethiolate self-assembled monolayer (F-SAM) surface. The simulations are performed at collision energies Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0° (normal) and 45° (grazing). Excellent agreement with experiment (J. Am. Chem. Soc., 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H(+) internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H(+) vibration, but for Ei = 5.0 eV ∼20% of the energy transfer is to ala2-H(+) rotation. Energy transfer to ala2-H(+) rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H(+) (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on/in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H(+) is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B, 2014, 118, 5577-5588) shows that thermally accommodated ala2-H(+) ions have an binding energy with the F-SAM surface of at least ∼15 kcal mol(-1).
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA.
| | | | | | | | | |
Collapse
|
8
|
Pratihar S, Kohale SC, Vázquez SA, Hase WL. Intermolecular potential for binding of protonated peptide ions with perfluorinated hydrocarbon surfaces. J Phys Chem B 2014; 118:5577-88. [PMID: 24779856 DOI: 10.1021/jp410886s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An analytic potential energy function was developed to model both short-range and long-range interactions between protonated peptide ions and perfluorinated hydrocarbon chains. The potential function is defined as a sum of two-body potentials of the Buckingham form. The parameters of the two-body potentials were obtained by fits to intermolecular potential energy curves (IPECs) calculated for CF4, which represents the F and C atoms of a perfluoroalkane chain, interacting with small molecules chosen as representatives of the main functional groups and atoms present in protonated peptide ions: specifically, CH4, NH3, NH4(+), and HCOOH. The IPECs were calculated at the MP2/aug-cc-pVTZ level of theory, with basis set superposition error (BSSE) corrections. Good fits were obtained for an energy range extending up to about 400 kcal/mol. It is shown that the pair potentials derived from the NH3/CF4 and HCOOH/CF4 fits reproduce acceptably well the intermolecular interactions in HCONH2/CF4, which indicates that the parameters obtained for the amine and carbonyl atoms may be transferable to the corresponding atoms of the amide group. The derived potential energy function may be used in chemical dynamics simulations of collisions of peptide-H(+) ions with perfluorinated hydrocarbon surfaces.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | | | | | | |
Collapse
|
9
|
Dodda LS, Lourderaj U. Modeling the formaldehyde–graphene interaction using a formaldehyde–pyrene system. Phys Chem Chem Phys 2013; 15:17479-86. [DOI: 10.1039/c3cp52388h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Nogueira JJ, Sánchez-Coronilla A, Marques JM, Hase WL, Martínez-Núñez E, Vázquez SA. Intermolecular potentials for simulations of collisions of SiNCS+ and (CH3)2SiNCS+ ions with fluorinated self-assembled monolayers. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
|
12
|
Radadia AD, Stavis CJ, Carr R, Zeng H, King WP, Carlisle JA, Aksimentiev A, Hamers RJ, Bashir R. Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1040-1050. [PMID: 21949497 PMCID: PMC3177702 DOI: 10.1002/adfm.201002251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunoassays for detection of bacterial pathogens rely on the selectivity and stability of bio-recognition elements such as antibodies tethered to sensor surfaces. The search for novel surfaces that improve the stability of biomolecules and assay performance has been pursued for a long time. However, the anticipated improvements in stability have not been realized in practice under physiological conditions because the surface functionalization layers on commonly used substrates, silica and gold, are themselves unstable on time scales of days. In this paper, we show that covalent linking of antibodies to diamond surfaces leads to substantial improvements in biological activity of proteins as measured by the ability to selectively capture cells of the pathogenic bacterium Escherichia coli O157:H7 even after exposure to buffer solutions at 37 °C for extended periods of time, approaching 2 weeks. Our results from ELISA, XPS, fluorescence microscopy, and MD simulations suggest that by using highly stable surface chemistry and controlling the nanoscale organization of the antibodies on the surface, it is possible to achieve significant improvements in biological activity and stability. Our findings can be easily extended to functionalization of micro and nanodimensional sensors and structures of biomedical diagnostic and therapeutic interest.
Collapse
Affiliation(s)
- Adarsh D. Radadia
- Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| | - Courtney J. Stavis
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rogan Carr
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Hongjun Zeng
- Advanced Diamond Technologies, Inc, Romeoville, IL 60446, USA
| | - William P. King
- Department of Mechanical Science and Engineering, Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| | | | | | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Rashid Bashir
- Micro and Nanotechnology Laboratory, University of Illinois, 208 North Wright Street, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Park K, Deb B, Song K, Hase WL. Importance of shattering fragmentation in the surface-induced dissociation of protonated octaglycine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:939-948. [PMID: 19318279 DOI: 10.1016/j.jasms.2009.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 05/27/2023]
Abstract
A QM + MM direct chemical dynamics simulation was performed to study collisions of protonated octaglycine, gly(8)-H(+), with the diamond {111} surface at an initial collision energy E(i) of 100 eV and incident angle theta(i) of 0 degrees and 45 degrees. The semiempirical model AM1 was used for the gly(8)-H(+) intramolecular potential, so that its fragmentation could be studied. Shattering dominates gly(8)-H(+) fragmentation at theta(i) = 0 degrees, with 78% of the ions dissociating in this way. At theta(i) = 45 degrees shattering is much less important. For theta(i) = 0 degrees there are 304 different pathways, many related by their backbone cleavage patterns. For the theta(i) = 0 degrees fragmentations, 59% resulted from both a-x and b-y cleavages, while for theta(i) = 45 degrees 70% of the fragmentations occurred with only a-x cleavage. For theta(i) = 0 degrees, the average percentage energy transfers to the internal degrees of freedom of the ion and the surface, and the energy remaining in ion translation are 45%, 26%, and 29%. For 45 degrees these percentages are 26%, 12%, and 62%. The percentage energy-transfer to DeltaE(int) for theta(i) = 0 degrees is larger than that reported in previous experiments for collisions of des-Arg(1)-bradykinin with a diamond surface at the same theta(i). This difference is discussed in terms of differences between the model diamond surface used in the simulations and the diamond surface prepared for the experiments.
Collapse
Affiliation(s)
- Kyoyeon Park
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | |
Collapse
|