1
|
Maji A, Singh O, Sharma K, Kumari S, Ghosh K. Well Defined Phosphine Free Ni-Catalyzed Dehydrogenation of Secondary Alcohols for the Synthesis of Ketones and Ketazines. Chem Asian J 2024; 19:e202400818. [PMID: 39363755 DOI: 10.1002/asia.202400818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
In this work, we unveil a novel synthesis of bench stable Ni (II) complexes supported by tetradentate Schiff-base ligands and the complexes were devoid of any phosphine or phosphine-based ligand. These Ni-complexes were successfully applied for the dehydrogenation of secondary alcohols for ketone and ketazine syntheses. Secondary alcohols with different functional groups were well tolerated during catalytic cycle. Moreover, we successfully extended this protocol for the synthesis of biologically significant ketones and ketazines. On the basis of various control experiments, probable reaction pathway was proposed, and an acceptorless alcohol dehydrogenation mechanism was suggested.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ovender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Keshav Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Li P, Li S, Dai X, Gao S, Song Z, Jiang Q. Ring-Opening Polymerization of Cyclohexene Oxide and Cycloaddition with CO 2 Catalyzed by Amine Triphenolate Iron(III) Complexes. Molecules 2024; 29:2139. [PMID: 38731630 PMCID: PMC11085797 DOI: 10.3390/molecules29092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h-1) in the absence of a co-catalyst. In addition, complex C1 maintained the dimer in the presence of the reaction substrate CHO, catalyzing the ring-opening polymerization of CHO to PCHO through bimetallic synergy. Furthermore, a two-component system consisting of iron complexes and TBAB displayed the ability to catalyze the reaction of CHO with CO2, resulting in the formation of cis-cyclic carbonate with high selectivity. Complex C4 exhibited the highest catalytic activity, achieving 80% conversion of CHO at a CHO/C4/TBAB molar ratio of 2000/1/8 and a CO2 pressure of 3 MPa for 16 h at 100 °C, while maintaining >99% selectivity of cis-cyclic carbonates, which demonstrated good conversion and selectivity.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China; (P.L.); (S.L.); (X.D.)
| | - Sixuan Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China; (P.L.); (S.L.); (X.D.)
| | - Xin Dai
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China; (P.L.); (S.L.); (X.D.)
| | - Shifeng Gao
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China;
| | - Zhaozheng Song
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China; (P.L.); (S.L.); (X.D.)
| | - Qingzhe Jiang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China; (P.L.); (S.L.); (X.D.)
- School of International Trade and Economics, University of International Business and Economics, Beijing 100029, China
| |
Collapse
|
3
|
Ford A, Mullins ND, Balzarini J, Maguire AR. Synthesis and Evaluation of Prodrugs of α-Carboxy Nucleoside Phosphonates. J Org Chem 2022; 87:14793-14808. [PMID: 36283025 PMCID: PMC9639015 DOI: 10.1021/acs.joc.2c02135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A range of lipophilic prodrugs of α-carboxy nucleoside phosphonates, potent inhibitors of HIV-1 reverse transcriptase without requiring prior phosphorylation, were synthesized to evaluate their in vivo potency against HIV in cell culture. A series of prodrug derivatives bearing a free carboxylic acid where the phosphonate was masked with bispivaloyloxymethyl, diisopropyloxycarbonyloxymethyl, bisamidate, aryloxyphosphoramidate, hexadecyloxypropyl, CycloSal, and acycloxybenzyl moieties were synthesized, adapting existing methodologies for phosphonate protection to accommodate the adjacent carboxylic acid moiety. The prodrugs were assayed for anti-HIV activity in CEM cell cultures─the bispivaloyloxymethyl free acid monophosphonate prodrug exhibited some activity (inhibitory concentration-50 (IC50) 59 ± 17 μM), while the other prodrugs were inactive at 100 μM. A racemic bispivaloyloxymethyl methyl ester monophosphonate prodrug was also prepared to assess the suitability of the methyl ester as a carboxylic acid prodrug. This compound exhibited no activity against HIV in cellular assays.
Collapse
Affiliation(s)
- Alan Ford
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Nicholas D. Mullins
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Jan Balzarini
- Rega
Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Anita R. Maguire
- School
of Chemistry, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland,School
of Pharmacy, Analytical and Biological Chemistry Research Facility,
Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 K8AF, Ireland,
| |
Collapse
|
4
|
Physicochemical studies on bioactive Cr(III) coordination compounds with esters of hydrazine carboxylic acid as hetero donor ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Srivastva AN, Pahwa SC, Jain PC, Singh NP. Spectroscopic validation and biological screening of new iron(III) complexes with N, O donor ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Sietzen M, Batke S, Merz L, Wadepohl H, Ballmann J. Phospha Derivatives of Tris(2-aminoethyl)amine (tren) and Tris(3-aminopropyl)amine (trpn): Synthesis and Complexation Studies with Group 4 Metals. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Malte Sietzen
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Sonja Batke
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Lukas Merz
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer
Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Zhang M, Liang Z, Ling J, Ni X, Shen Z. Carbon bridged triphenolate lanthanide complexes: synthesis, characterization, DFT studies and catalytic activities for isoprene polymerization. Dalton Trans 2015; 44:11182-90. [DOI: 10.1039/c5dt01241d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanide complexes supported by carbon bridged triphenolate ligands were synthesized and theoretical calculations were carried out on a Lu complex.
Collapse
Affiliation(s)
- Min Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhenhua Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xufeng Ni
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
8
|
Wickramasinghe LD, Perera MM, Li L, Mao G, Zhou Z, Verani CN. Rectification in Nanoscale Devices Based on an Asymmetric Five-Coordinate Iron(III) Phenolate Complex. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Wickramasinghe LD, Perera MM, Li L, Mao G, Zhou Z, Verani CN. Rectification in Nanoscale Devices Based on an Asymmetric Five-Coordinate Iron(III) Phenolate Complex. Angew Chem Int Ed Engl 2013; 52:13346-50. [DOI: 10.1002/anie.201306765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/12/2022]
|
10
|
Feldscher B, Stammler A, Bögge H, Glaser T. From Triplesalen to Triplesalalen and Triplesalan - Strengthening the Aromatic Character of the Ligand Backbone in Extended Phloroglucinol Ligands by Prevention of Heteroradialene Formation. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Tong LH, Wong YL, Lee HK, Dilworth JR. The coordination chemistry of unsymmetric N-capped tripodal NO3 ligands with iron(III), oxo-vanadium(V) and dioxo-molybdenum(VI) metal centres. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2011.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Dean RK, Fowler CI, Hasan K, Kerman K, Kwong P, Trudel S, Leznoff DB, Kraatz HB, Dawe LN, Kozak CM. Magnetic, electrochemical and spectroscopic properties of iron(iii) amine–bis(phenolate) halide complexes. Dalton Trans 2012; 41:4806-16. [DOI: 10.1039/c2dt12242a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Allard MM, Sonk JA, Heeg MJ, McGarvey BR, Schlegel HB, Verani CN. Bioinspired Five-Coordinate Iron(III) Complexes for Stabilization of Phenoxyl Radicals. Angew Chem Int Ed Engl 2011; 51:3178-82. [DOI: 10.1002/anie.201103233] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 11/09/2011] [Indexed: 11/09/2022]
|
14
|
Allard MM, Sonk JA, Heeg MJ, McGarvey BR, Schlegel HB, Verani CN. Bioinspired Five-Coordinate Iron(III) Complexes for Stabilization of Phenoxyl Radicals. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Tong LH, Wong YL, Pascu SI, Dilworth JR. An unprecedented iron(III) complex supported by an asymmetric N-capped tripodal ligand incorporating the NO2S donor set. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2009.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wong YL, Tong LH, Dilworth JR, Ng DKP, Lee HK. New dioxo–molybdenum(vi) and –tungsten(vi) complexes with N-capped tripodal N2O2 tetradentate ligands: Synthesis, structures and catalytic activities towards olefin epoxidation. Dalton Trans 2010; 39:4602-11. [DOI: 10.1039/b926864b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Whitelaw EL, Jones MD, Mahon MF, Kociok-Kohn G. Novel Ti(iv) and Zr(iv) complexes and their application in the ring-opening polymerisation of cyclic esters. Dalton Trans 2009:9020-5. [DOI: 10.1039/b911545e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|