1
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
2
|
Lee JH, Song J, Hong S, Kim Y, Song M, Cho B, Wu T, Riley LW, Landegren U, Lee LP. Nanoplasmonic Rapid Antimicrobial-Resistance Point-of-Care Identification Device: RAPIDx. Adv Healthc Mater 2024:e2402044. [PMID: 39205550 DOI: 10.1002/adhm.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.
Collapse
Affiliation(s)
- Jong-Hwan Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - SoonGweon Hong
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yun Kim
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, South Korea
| | - Minsun Song
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Byungrae Cho
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Tiffany Wu
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ulf Landegren
- Departments of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE-751 08, Sweden
| | - Luke P Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
3
|
Le Quellec L, Aristov A, Gutiérrez Ramos S, Amselem G, Bos J, Baharoglu Z, Mazel D, Baroud CN. Measuring single-cell susceptibility to antibiotics within monoclonal bacterial populations. PLoS One 2024; 19:e0303630. [PMID: 39088440 PMCID: PMC11293721 DOI: 10.1371/journal.pone.0303630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/30/2024] [Indexed: 08/03/2024] Open
Abstract
The emergence of new resistant bacterial strains is a worldwide challenge. A resistant bacterial population can emerge from a single cell that acquires resistance or persistence. Hence, new ways of tackling the mechanism of antibiotic response, such as single cell studies are required. It is necessary to see what happens at the single cell level, in order to understand what happens at the population level. To date, linking the heterogeneity of single-cell susceptibility to the population-scale response to antibiotics remains challenging due to the trade-offs between the resolution and the field of view. Here we present a platform that measures the ability of individual E. coli cells to form small colonies at different ciprofloxacin concentrations, by using anchored microfluidic drops and an image and data analysis pipelines. The microfluidic results are benchmarked against classical microbiology measurements of antibiotic susceptibility, showing an agreement between the pooled microfluidic chip and replated bulk measurements. Further, the experimental likelihood of a single cell to form a colony is used to provide a probabilistic antibiotic susceptibility curve. In addition to the probabilistic viewpoint, the microfluidic format enables the characterization of morphological features over time for a large number of individual cells. This pipeline can be used to compare the response of different bacterial strains to antibiotics with different action mechanisms.
Collapse
Affiliation(s)
- Lena Le Quellec
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Andrey Aristov
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris, France
| | - Salomé Gutiérrez Ramos
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Gabriel Amselem
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Julia Bos
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity Unit, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity Unit, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity Unit, Paris, France
| | - Charles N. Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, Paris, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
4
|
Zia AB, Farrell J, Foulds IG. Automated dynamic inlet microfluidics system: 3D printer adaptation for cost-effective, low volume, on-demand multi-analyte droplet generator. LAB ON A CHIP 2024; 24:3015-3026. [PMID: 38745471 DOI: 10.1039/d4lc00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The paper demonstrates an adaptation of a 3D printer (Prusa Mini+) with novel modules to develop a droplet generation system that generates combinatorial droplets from a standard 96 well plate. The calibration methodology developed would allow any fused deposition modeling (FDM) printer to generate monodisperse droplets (coefficient of variance (CV%) < 5%) from well plates or vials of any geometry. The system maintains precision across various volumes while maintaining a C.V. range of 0.81% to 3.61%, with an increased precision for larger volumes. The cost of the system developed is 70% less than commercially available droplet generation packages. Successful droplet library storage is accomplished via 3D printed cartridge connectors. The implemented system has been calibrated for Tygon® and PTFE at different velocities and volumetric configurations.
Collapse
Affiliation(s)
- Abdul Basit Zia
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Justin Farrell
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Ian G Foulds
- School of Engineering, The University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
5
|
Chen L, Zhu M, Wang Z, Wang H, Cheng Y, Zhang Z, Qi X, Shao Y, Zhang X, Wang H. A capillary-based centrifugal indicator equipped with in situ pathogenic bacteria culture for fast antimicrobial susceptibility testing. Analyst 2024; 149:2420-2427. [PMID: 38488061 DOI: 10.1039/d3an02144k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antimicrobial resistance has become a major global health threat due to the misuse and overuse of antibiotics. Rapid, affordable, and high-efficiency antimicrobial susceptibility testing (AST) is among the effective means to solve this problem. Herein, we developed a capillary-based centrifugal indicator (CBCI) equipped with an in situ culture of pathogenic bacteria for fast AST. The bacterial incubation and growth were performed by macro-incubation, which seamlessly integrated the capillary indicator. Through simple centrifugation, all the bacterial cells were confined at the nanoliter-level capillary column. The packed capillary column height could linearly reflect the bacterial count, and the minimum inhibitory concentration (MIC) was determined based on the difference in the column height between the drug-added groups and the control group. The AST results could easily be determined by the naked eye or smartphone imaging. Thus, the CBCI realized the combination of macro-bacterial incubation and early micro assessment, which accelerated the phenotypic AST without complex microscopic counting or fluorescent labelling. The whole operation process was simple and easy to use. AST results could be determined for E. coli ATCC strains within 3.5 h, and the output results for clinical samples were consistent with the hospital reports. We expect this AST platform to become a useful tool in limiting antimicrobial resistance, especially in remote/resource-limited areas or in underdeveloped countries.
Collapse
Affiliation(s)
- Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Zhiyong Wang
- China Academy of Building Research, Beijing, 100013, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Hongwei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| |
Collapse
|
6
|
Shao F, Li H, Hsieh K, Zhang P, Li S, Wang TH. Automated and miniaturized screening of antibiotic combinations via robotic-printed combinatorial droplet platform. Acta Pharm Sin B 2024; 14:1801-1813. [PMID: 38572105 PMCID: PMC10985126 DOI: 10.1016/j.apsb.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 04/05/2024] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis in need of novel solutions. To this end, antibiotic combination therapies, which combine multiple antibiotics for treatment, have attracted significant attention as a potential approach for combating AMR. To facilitate advances in antibiotic combination therapies, most notably in investigating antibiotic interactions and identifying synergistic antibiotic combinations however, there remains a need for automated high-throughput platforms that can create and examine antibiotic combinations on-demand, at scale, and with minimal reagent consumption. To address these challenges, we have developed a Robotic-Printed Combinatorial Droplet (RoboDrop) platform by integrating a programmable droplet microfluidic device that generates antibiotic combinations in nanoliter droplets in automation, a robotic arm that arranges the droplets in an array, and a camera that images the array of thousands of droplets in parallel. We further implement a resazurin-based bacterial viability assay to accelerate our antibiotic combination testing. As a demonstration, we use RoboDrop to corroborate two pairs of antibiotics with known interactions and subsequently identify a new synergistic combination of cefsulodin, penicillin, and oxacillin against a model E. coli strain. We therefore envision RoboDrop becoming a useful tool to efficiently identify new synergistic antibiotic combinations toward combating AMR.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Ardila CM, Jiménez-Arbeláez GA, Vivares-Builes AM. A Systematic Review of In Vitro Studies Using Microchip Platforms for Identifying Periodontopathogens from the Red Complex. Dent J (Basel) 2023; 11:245. [PMID: 37999009 PMCID: PMC10670886 DOI: 10.3390/dj11110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, collectively recognized as periodontopathogens within the red complex, have been extensively studied in clinical samples collected from individuals with periodontitis. A lab-on-a-chip (LOC) is a miniature mechanism that integrates various laboratory operations onto a single microchip or a small-scale platform. This systematic review evaluates the application of LOC technology in identifying microorganisms from the red complex. This study adhered to PRISMA recommendations, and the review process encompassed several databases. In the electronic search, a total of 58 reports were found, and ultimately, 10 studies were considered relevant for inclusion. All these studies described effective, rapid, and reliable LOC systems for detecting and amplifying P. gingivalis, T. forsythia, and T. denticola. Compared to traditional methods, the LOC approach demonstrated minimal reagent requirements. Additionally, the results indicated that the amplification process took approximately 2 to 8 min, while detection could be completed in as little as 2 min and 40 s, resulting in a total experimental duration of around 11 min. Integrating miniaturization, speed, accuracy, and automation within microchip platforms makes them promising tools for detecting and amplifying microorganisms associated with the red complex in periodontal diseases.
Collapse
Affiliation(s)
- Carlos M. Ardila
- Basic Studies Department, School of Dentistry, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Gustavo A. Jiménez-Arbeláez
- School of Dentistry, Institución Universitaria Visión de Las Américas, Medellín 050031, Colombia; (G.A.J.-A.); (A.M.V.-B.)
| | - Annie Marcela Vivares-Builes
- School of Dentistry, Institución Universitaria Visión de Las Américas, Medellín 050031, Colombia; (G.A.J.-A.); (A.M.V.-B.)
| |
Collapse
|
8
|
Zhu M, Xu T, Cheng Y, Ma B, Xu J, Diao Z, Wu F, Dai J, Han X, Zhu P, Pang C, Li J, Wang H, Xu R, Li X. Integrated Microfluidic Chip for Rapid Antimicrobial Susceptibility Testing Directly from Positive Blood Cultures. Anal Chem 2023; 95:14375-14383. [PMID: 37710979 DOI: 10.1021/acs.analchem.3c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Rapid and accurate antimicrobial prescriptions are critical for bloodstream infection (BSI) patients, as they can guide drug use and decrease mortality significantly. The traditional antimicrobial susceptibility testing (AST) for BSI is time-consuming and tedious, taking 2-3 days. Avoiding lengthy monoclonal cultures and shortening the drug sensitivity incubation time are keys to accelerating the AST. Here, we introduced a bacteria separation integrated AST (BSI-AST) chip, which could extract bacteria directly from positive blood cultures (PBCs) within 10 min and quickly give susceptibility information within 3 h. The integrated chip includes a bacteria separation chamber, multiple AST chambers, and connection channels. The separator gel was first preloaded into the bacteria separation chamber, enabling the swift separation of bacteria cells from PBCs through on-chip centrifugation. Then, the bacteria suspension was distributed in the AST chambers with preloaded antibiotics through a quick vacuum-assisted aliquoting strategy. Through centrifuge-assisted on-chip enrichment, detectable growth of the phenotype under different antibiotics could be easily observed in the taper tips of AST chambers within a few hours. As a proof of concept, direct AST from artificial PBCs with Escherichia coli against 18 antibiotics was performed on the BSI-AST chip, and the whole process from bacteria extraction to AST result output was less than 3.5 h. Moreover, the integrated chip was successfully applied to the diagnosis of clinical PBCs, showing 93.3% categorical agreement with clinical standard methods. The reliable and fast pathogen characterization of the integrated chip suggested its great potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Meijia Zhu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), Qingdao, Shandong 266237, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Cheng
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), Qingdao, Shandong 266237, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jing Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiao Han
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250024, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Qingdao Single Cell Biotechnology Company Limited, Qingdao, Shandong 266000, China
| | - Chao Pang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Hongwei Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Ranran Xu
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), Qingdao, Shandong 266237, China
| | - Xiaotong Li
- School of Environmental Science and Engineering, Institute of Eco-Environmental Forensics, Shandong University (Qingdao), Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Ardila CM, Zuluaga-Gómez M, Vivares-Builes AM. Applications of Lab on a Chip in Antimicrobial Susceptibility of Staphylococcus aureus: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1719. [PMID: 37893437 PMCID: PMC10608121 DOI: 10.3390/medicina59101719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Staphylococcus aureus is a prevalent bacterium capable of inducing various infections, including skin and soft tissue infections, bloodstream infections, pneumonia, and surgical site infections. The emergence of antimicrobial resistance in S. aureus, particularly methicillin-resistant S. aureus, has raised substantial concerns within global healthcare settings. Prior to antibiotic prescription, the ideal approach is antimicrobial susceptibility testing (AST); however, this is frequently perceived as excessively complex and time-intensive. Lab-on-a-chip (LOC) technology holds promise in addressing these challenges and advancing fundamental microbiological research while also aiding in the development of therapeutic strategies. This systematic review aims to evaluate the potential utility of LOC for AST of S. aureus. Materials and Methods: This study adhered to the PRISMA guidelines. Various databases, including SCOPUS, PubMed/MEDLINE, SCIELO, and LILACS, in addition to gray literature sources, were employed in the review process. Results: Sixteen studies were included in this systematic review. All these studies detailed the effectiveness, rapidity, and predictability of LOC systems for assessing S. aureus susceptibility to various antibiotics. When comparing the LOC approach to traditional manual methods, it was evident that LOC requires a minimal quantity of reagents. Furthermore, most studies reported that the entire LOC procedure took 10 min to 7 h, with results being equally accurate as those obtained through traditional AST protocols. Conclusions: The potential application of LOC for AST of S. aureus is emphasized by its ability to provide rapid access to minimum inhibitory concentration data, which can substantially aid in selecting the most suitable antibiotics and dosages for treating challenging infections caused by this microorganism. Moreover, the rapid AST facilitated by LOC holds promise for enhancing the appropriateness and efficacy of therapy in clinical settings.
Collapse
Affiliation(s)
- Carlos M. Ardila
- Basic Studies Department, School of Dentistry, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Mateo Zuluaga-Gómez
- Emergency Department, Universidad Pontificia Bolivariana, Medellín 050010, Colombia;
- Hospital San Vicente Fundación, Rionegro 054047, Colombia
| | | |
Collapse
|
10
|
Guan Y, Zhang H, Yan Z, Wei X, Zhang Z, Chen X. Surface Modification of Cyclic-Olefin-Copolymer (COC)-Based Microchannels for the Large-Scale Industrial Production of Droplet Microfluidic Devices. Bioengineering (Basel) 2023; 10:763. [PMID: 37508790 PMCID: PMC10376149 DOI: 10.3390/bioengineering10070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The copolymers of cycloolefin (COC), a type of thermoplastic material, have been widely used for the large-scale industrial fabrication of droplet microfluidic devices, which is often performed using hot-embossing or injection-molding techniques. The generation of droplets and the uniformity of droplet sizes are significantly affected by the surface wettability of COC during fabrication and the pressure stability of the employed fluid pump during operation. In order to alleviate the effects of undesirable surface wettability and pressure variation on the generation of droplets in COC-based devices, a simple surface modification procedure was applied to hydrophobically modify the surfaces of COC-based microchannels for large-scale industrial production. The surface modification procedure consisted of an oxygen plasma treatment of the polymer surface followed by a solution-phase reaction in fluorocarbon solvent. The experimental results demonstrate that following the proposed surface modification, the COC droplet microfluidic devices could stably generate microvolume water droplets with a small coefficient of variation, even if the pressure of the dispersed phase (water) fluctuated. The durability test results regarding the modified surfaces show that the hydrophobicity of the modified COC surfaces could be sustained for up to four months, deteriorating with time thereafter. Our study can provide a potential solution useful in and guidance for the large-scale industrial production of droplet microfluidic devices for various applications, including polymerase chain reaction and single-cell analysis.
Collapse
Affiliation(s)
- Yefeng Guan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - Huiru Zhang
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
- Guangdong Foshan Lianchuang Graduate of Engineering, Foshan 528300, China
| | - Zhibin Yan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xue Wei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhuo Zhang
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
| | - Xuelian Chen
- Guangdong Shunde Innovative Design Institute, Foshan 528300, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
11
|
Needs SH, Pivetal J, Hayward J, Kidd SP, Lam H, Diep T, Gill K, Woodward M, Reis NM, Edwards AD. Moving microcapillary antibiotic susceptibility testing (mcAST) towards the clinic: unravelling kinetics of detection of uropathogenic E. coli, mass-manufacturing and usability for detection of urinary tract infections in human urine. SENSORS & DIAGNOSTICS 2023; 2:736-750. [PMID: 37216011 PMCID: PMC10197089 DOI: 10.1039/d2sd00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.
Collapse
Affiliation(s)
- Sarah H Needs
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jeremy Pivetal
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Jessica Hayward
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Stephen P Kidd
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - HoYin Lam
- Hampshire Hospitals NHS Foundation Trust Basingstoke and North Hampshire Hospital Basingstoke RG24 9NA UK
| | - Tai Diep
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Kiran Gill
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
| | - Martin Woodward
- Department of Food and Nutrition Sciences, University of Reading Whiteknights Campus Reading RG6 6DX UK
| | - Nuno M Reis
- Department of Chemical Engineering and Centre for Biosensors, Biodevices and Bioelectronics (C3Bio), University of Bath Claverton Down Bath BA2 7AY UK +44(0)1225 383 369
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| | - Alexander D Edwards
- Reading School of Pharmacy, University of Reading Whiteknights Campus Reading RG6 6AD UK +44(0)7906014116 +44(0)118 378 4253
- Capillary Film Technology (CFT) Daux Road Billingshurst RH14 9SJ UK
| |
Collapse
|
12
|
Wu W, Cai G, Liu Y, Suo Y, Zhang B, Jin W, Yu Y, Mu Y. Direct single-cell antimicrobial susceptibility testing of Escherichia coli in urine using a ready-to-use 3D microwell array chip. LAB ON A CHIP 2023; 23:2399-2410. [PMID: 36806255 DOI: 10.1039/d2lc01095j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Empirical antibiotic therapies are prescribed for treating uncomplicated urinary tract infections (UTIs) due to the long turnaround time of conventional antimicrobial susceptibility testing (AST), leading to the prevalence of multi-drug resistant pathogens. We present a ready-to-use 3D microwell array chip to directly conduct comprehensive AST of pathogenic agents in urine at the single-cell level. The developed device features a highly integrated 3D microwell array, offering a dynamic range from 102 to 107 CFU mL-1, and a capillary valve-based flow distributor for flow equidistribution in dispensing channels and uniform sample distribution. The chip with pre-loaded reagents and negative pressure inside only requires the user to initiate AST by loading samples (∼3 s) and can work independently. We demonstrate an accessible sample-to-result workflow, including syringe filter-based bacteria separation and rapid single-cell AST on chip, which enables us to bypass the time-consuming bacteria isolation and pre-culture, speeding up the AST in ∼3 h from 2 days of conventional methods. Moreover, the bacterial concentration and AST with minimum inhibitory concentrations can be assessed simultaneously to provide comprehensive information on infections. With further development for multiple antibiotic conditions, the Dsc-AST assay could contribute to timely prescription of targeted drugs for better patient outcomes and mitigation of the threat of drug-resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
McCully AL, Loop Yao M, Brower KK, Fordyce PM, Spormann AM. Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes. ISME COMMUNICATIONS 2023; 3:47. [PMID: 37160952 PMCID: PMC10169782 DOI: 10.1038/s43705-023-00241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Our understanding of in situ microbial physiology is primarily based on physiological characterization of fast-growing and readily-isolatable microbes. Microbial enrichments to obtain novel isolates with slower growth rates or physiologies adapted to low nutrient environments are plagued by intrinsic biases for fastest-growing species when using standard laboratory isolation protocols. New cultivation tools to minimize these biases and enrich for less well-studied taxa are needed. In this study, we developed a high-throughput bacterial enrichment platform based on single cell encapsulation and growth within double emulsions (GrowMiDE). We showed that GrowMiDE can cultivate many different microorganisms and enrich for underrepresented taxa that are never observed in traditional batch enrichments. For example, preventing dominance of the enrichment by fast-growing microbes due to nutrient privatization within the double emulsion droplets allowed cultivation of slower-growing Negativicutes and Methanobacteria from stool samples in rich media enrichment cultures. In competition experiments between growth rate and growth yield specialist strains, GrowMiDE enrichments prevented competition for shared nutrient pools and enriched for slower-growing but more efficient strains. Finally, we demonstrated the compatibility of GrowMiDE with commercial fluorescence-activated cell sorting (FACS) to obtain isolates from GrowMiDE enrichments. Together, GrowMiDE + DE-FACS is a promising new high-throughput enrichment platform that can be easily applied to diverse microbial enrichments or screens.
Collapse
Affiliation(s)
- Alexandra L McCully
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - McKenna Loop Yao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
李 政, 彭 显. [Application of Droplet-Based Microfluidics in Microbial Research]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:673-678. [PMID: 37248604 PMCID: PMC10475413 DOI: 10.12182/20230560303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Droplet-based microfluidics is a technology that generates and manipulates highly uniform droplets, ranging from picoliter to nanoliter droplets, in microchannels under precise control. In biological research, each droplet can be used to encapsulate a small group of cells or even a single cell, and then serve as an individual container for biochemical reaction, which is well suited for high-throughput and high-resolution biochemical analysis. In the field of microbial research, from cultivation and identification of microbes to the investigation of the spatiotemporal dynamics of microbial communities, from precise quantitation of microbiota to systematic study of microbial interactions, and from the isolation of rare and unculturable microbes to the development of genetically engineered strains, droplet microfluidic technology has played an important promotional role in all these aspects. Droplet microfluidics shows potential for becoming a basic tool for exploring single-cell microbes in microbiological research. In this review, we gave a brief overview of the technical basis of droplet microfluidics. Then, we presented its latest applications in microbial research and had some discussions, aiming to provide a reference for relevant research on microorganisms.
Collapse
Affiliation(s)
- 政毅 李
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 显 彭
- 口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Li C, McCrone S, Warrick JW, Andes DR, Hite Z, Volk CF, Rose WE, Beebe DJ. Under-oil open microfluidic systems for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2023; 23:2005-2015. [PMID: 36883560 PMCID: PMC10581760 DOI: 10.1039/d3lc00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial susceptibility testing (AST) remains the cornerstone of effective antimicrobial selection and optimization in patients. Despite recent advances in rapid pathogen identification and resistance marker detection with molecular diagnostics (e.g., qPCR, MALDI-TOF MS), phenotypic (i.e., microbial culture-based) AST methods - the gold standard in hospitals/clinics - remain relatively unchanged over the last few decades. Microfluidics-based phenotypic AST has been growing fast in recent years, aiming for rapid (i.e., turnaround time <8 h), high-throughput, and automated species identification, resistance detection, and antibiotics screening. In this pilot study, we describe the application of a multi-liquid-phase open microfluidic system, named under-oil open microfluidic systems (UOMS), to achieve a rapid phenotypic AST. UOMS provides an open microfluidics-based solution for rapid phenotypic AST (UOMS-AST) by implementing and recording a pathogen's antimicrobial activity in micro-volume testing units under an oil overlay. UOMS-AST allows free physical access (e.g., by standard pipetting) to the system and label-free, single-cell resolution optical access. UOMS-AST can accurately and rapidly determine antimicrobial activities [including susceptibility/resistance breakpoint and minimum inhibitory concentration (MIC)] from nominal sample/bacterial cells in a system aligned with clinical laboratory standards where open systems and optical microscopy are predominantly adopted. Further, we combine UOMS-AST with a cloud lab data analytic technique for real-time image analysis and report generation to provide a rapid (<4 h) sample-to-report turnaround time, shedding light on its utility as a versatile (e.g., low-resource setting and manual laboratory operation, or high-throughput automated system) phenotypic AST platform for hospital/clinic use.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue McCrone
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Hite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cecilia F. Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Akuoko Y, Nagliati HF, Millward CJ, Woolley AT. Improving droplet microfluidic systems for studying single bacteria growth. Anal Bioanal Chem 2023; 415:695-701. [PMID: 36469054 PMCID: PMC10501485 DOI: 10.1007/s00216-022-04459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Antimicrobial resistance remains a global threat with ~ 5 million deaths in 2019 alone and 10 million deaths projected every year by 2050. Current tools employed in the analysis of bacteria can be time inefficient, leading to delayed diagnosis and treatment. In this work, we develop a microfluidic setup capable of bacteria incubation and detection of growth in ~ 2 h. We fabricated polydimethylsiloxane (PDMS) microchips via soft lithography, enclosed microchannels by plasma bonding to glass, and utilized PDMS blocks for simplified connection of devices to a flow system. We generated uniform droplets enclosing zero, one or two bacteria within our devices, and incubated droplet-encapsulated bacteria with 100 × lower concentrations of a fluorescence probe of bacterial growth compared to prior work. We assessed bacterial growth via laser induced fluorescence after room temperature incubation for 2 h and obtained a range of signals corresponding to droplets with or without bacteria. Our devices allow for online droplet incubation, monitoring, detection, and tracking. Developing microfluidic chips for single bacteria studies will improve the analysis and treatment of antimicrobial resistance.
Collapse
Affiliation(s)
- Yesman Akuoko
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Heitor F Nagliati
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Calton J Millward
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
17
|
Hwang S, Choi J. Rapid antimicrobial susceptibility testing for low bacterial concentrations integrating a centrifuge based bacterial cell concentrator. LAB ON A CHIP 2023; 23:229-238. [PMID: 36484274 DOI: 10.1039/d2lc00974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance threatens human health worldwide. Patients infected with antibiotic-resistant bacteria require appropriate antibiotic prescriptions based on a rapid antibiotic susceptibility test (AST). Various rapid AST methods have been developed to replace the conventional AST method, which requires a long testing time. However, in most cases, these methods require a high density of bacterial samples, which leads to an additional incubation or concentration process. In this study, we introduce a rapid AST platform that allows the use of low-density bacterial samples by concentrating bacterial cells and performing AST on a single microfluidic chip. In addition, the outlet-free loading process enables the platform to load the sample and concentrate bacteria into a small field of view for single-cell detection. Using this method, rapid AST determined antibiotic resistance in three hours from a standard strain of 103 colony-forming unit (CFU) per ml bacterial concentration. This technique can be used for the cell-based drug testing of various low-concentration bacterial samples.
Collapse
Affiliation(s)
- Sunjae Hwang
- Department of Mechanical Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Jungil Choi
- Department of Mechanical Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
18
|
Wang Y, Cai D, Ouyang X, He H, Liu Y, Zou J, Chen Z, Wu B, Wu H, Liu D. Cascade filtration and droplet digital detection integrated microfluidic assay enables isolating culture-free phenotypic identification of carbapenem-resistant organisms. Biosens Bioelectron 2023; 220:114863. [DOI: 10.1016/j.bios.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
19
|
Jiang Z, Shi H, Tang X, Qin J. Recent advances in droplet microfluidics for single-cell analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Wu W, Zhao Q, Cai G, Zhang B, Suo Y, Liu Y, Jin W, Mu Y. All-In-One Escherichia coli Viability Assay for Multi-dimensional Detection of Uncomplicated Urinary Tract Infections. Anal Chem 2022; 94:17853-17860. [PMID: 36524619 DOI: 10.1021/acs.analchem.2c03604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The urinary tract infections by antibiotic-resistant bacteria have been a serious public health problem and increase the healthcare costs. The conventional technologies of diagnosis and antimicrobial susceptibility testing (AST) relying on multiple culture-based assays are time-consuming and labor-intensive and thus compel the empirical antimicrobial therapies to be prescribed, fueling the prevalence of antimicrobial resistance. Herein, we propose an all-in-one Escherichia coli viability assay in an enclosed 3D microwell array chip, termed digital β-d-glucuronidase (GUS)-AST assay. It employs GUS, a specific metabolism-related enzyme, to convert the presence of E. coli into bright fluorescence. The random distribution of single bacteria in microwell array enables to quantify the E. coli concentrations by counting the positive microwells. We incorporate the most probable number with digital quantification to lower the limit of detection and expand the dynamic range to 7 orders. The digital GUS-AST assay is able to indicate the potency of antibiotics and determine the minimum inhibitory concentrations. A streamlined procedure of urine removal, bacterial separation, and digital GUS-AST is established to perform the direct analysis of bacteria population in urine. The sample-to-result workflow can be finished in 4.5 h with a limit of detection of 39 CFU/mL. With further development for additional pathogens and multiple antibiotic conditions, the digital GUS-AST assay could help physicians to prescribe timely targeted therapies for better patient outcomes and the minimum emergence of resistant bacteria.
Collapse
Affiliation(s)
- Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Qianbin Zhao
- Center of Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, Hebei University of Technology, Tianjin 300131, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Boran Zhang
- Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yuanjie Suo
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| | - Yang Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 102401, China
| | - Wei Jin
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.,Huzhou Institute of Zhejiang University, Huzhou 313002, China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Duran C, Zhang S, Yang C, Falco ML, Cravo-Laureau C, Suzuki-Minakuchi C, Nojiri H, Duran R, Sassa F. Low-cost gel-filled microwell array device for screening marine microbial consortium. Front Microbiol 2022; 13:1031439. [PMID: 36590440 PMCID: PMC9800614 DOI: 10.3389/fmicb.2022.1031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In order to exploit the microbes present in the environment for their beneficial resources, effective selection and isolation of microbes from environmental samples is essential. In this study, we fabricated a gel-filled microwell array device using resin for microbial culture. The device has an integrated sealing mechanism that enables high-density isolation based on the culture of microorganisms; the device is easily manageable, facilitating observation using bright-field microscopy. This low-cost device made from polymethyl methacrylate (PMMA)/polyethylene terephthalate (PET) has 900 microwells (600 μm × 600 μm × 700 μm) filled with a microbial culture gel medium in glass slide-sized plates. It also has grooves for maintaining the moisture content in the micro-gel. The partition wall between the wells has a highly hydrophobic coating to inhibit microbial migration to neighboring wells and to prevent exchange of liquid substances. After being hermetically sealed, the device can maintain moisture in the agarose gels for 7 days. In the bacterial culture experiment using this device, environmental bacteria were isolated and cultured in individual wells after 3 days. Moreover, the isolated bacteria were then picked up from wells and re-cultured. This device is effective for the first screening of microorganisms from marine environmental samples.
Collapse
Affiliation(s)
- Clelia Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shiyi Zhang
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Chongyang Yang
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maria Lorena Falco
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| | - Fumihiro Sassa
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan,*Correspondence: Robert Duran, ; Fumihiro Sassa,
| |
Collapse
|
22
|
Pacocha N, Zapotoczna M, Makuch K, Bogusławski J, Garstecki P. You will know by its tail: a method for quantification of heterogeneity of bacterial populations using single-cell MIC profiling. LAB ON A CHIP 2022; 22:4317-4326. [PMID: 36222371 DOI: 10.1039/d2lc00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Severe non-healing infections are often caused by multiple pathogens or by genetic variants of the same pathogen exhibiting different levels of antibiotic resistance. For example, polymicrobial diabetic foot infections double the risk of amputation compared to monomicrobial infections. Although these infections lead to increased morbidity and mortality, standard antimicrobial susceptibility methods are designed for homogenous samples and are impaired in quantifying heteroresistance. Here, we propose a droplet-based label-free method for quantifying the antibiotic response of the entire population at the single-cell level. We used Pseudomonas aeruginosa and Staphylococcus aureus samples to confirm that the shape of the profile informs about the coexistence of diverse bacterial subpopulations, their sizes, and antibiotic heteroresistance. These profiles could therefore indicate the outcome of antibiotic treatment in terms of the size of remaining subpopulations. Moreover, we studied phenotypic variants of a S. aureus strain to confirm that the profile can be used to identify tolerant subpopulations, such as small colony variants, associated with increased risks for the development of persisting infections. Therefore, the profile is a versatile instrument for quantifying the size of each bacterial subpopulation within a specimen as well as their individual and joined heteroresistance.
Collapse
Affiliation(s)
- Natalia Pacocha
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Marta Zapotoczna
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Makuch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Jakub Bogusławski
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Laser & Fiber Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
23
|
Li X, Liu X, Yu Z, Luo Y, Hu Q, Xu Z, Dai J, Wu N, Shen F. Combinatorial screening SlipChip for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2022; 22:3952-3960. [PMID: 36106408 DOI: 10.1039/d2lc00661h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) by bacteria is a serious global threat, and a rapid, high-throughput, and easy-to-use phenotypic antimicrobial susceptibility testing (AST) method is essential for making timely treatment decisions and controlling the spread of antibiotic resistant micro-organisms. Traditional culture-based methods are time-consuming, and their capability to screen against a large number of different conditions is limited; meanwhile genotypic based methods, including sequencing and PCR based methods, are constrained by rarely identified resistance genes and complicated resistance mechanisms. Here, a combinatorial-screening SlipChip (cs-SlipChip) containing 192 nanoliter-sized compartments is developed which can perform high-throughput phenotypic AST within three hours by monitoring the bacterial growth within nanoliter-sized droplets with bright-field imaging and analyzing the changes in bacterial number and morphology. The minimum inhibitory concentration (MIC) of Escherichia coli ATCC 25922 against four antibiotics (ampicillin, ciprofloxacin, ceftazidime, and nitrofurantoin) can be measured in one chip within 3 hours. Furthermore, five antibiotic-resistant E. coli strains were isolated from patients diagnosed with urinary tract infections (UTIs), and an individual isolate was tested using four antibiotics and eleven antibiotic combinations simultaneously with three different concentrations of each. The results from the cs-SlipChip agree with those of a VITEK 2 automated system. This cs-SlipChip provides a practical high-throughput and rapid phenotypic method for AST and can also be used to screen different chemicals and antibiotic combinations for the treatment of multiple antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Qixin Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Zhenye Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Jia Dai
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- CreatiPhage Biotechnology Co., Ltd, Shanghai, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
24
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
25
|
Huang X, Zhang Z, Chen L, Lin Y, Zeng R, Xu J, Chen S, Zhang J, Cai H, Zhou H, Sun P. Multifunctional Au nano-bridged nanogap probes as ICP-MS/SERS dual-signal tags and signal amplifiers for bacteria discriminating, quantitative detecting and photothermal bactericidal activity. Biosens Bioelectron 2022; 212:114414. [PMID: 35687957 DOI: 10.1016/j.bios.2022.114414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Ultra-sensitive detection of pathogenic bacteria is of great significance in the early stage of bacterial infections and treatment. In this work, we report a novel strategy using multifunctional Au nano-bridged nanogap nanoparticles (Au NNPs)-based sandwich nanocomposites, that made of Concanavalin A-conjugated Fe3O4@SiO2 NPs (ConA-Fe3O4@SiO2 NPs)/bacteria/aptamer-modified Au NNPs (apt-Au NNPs), for bacteria discrimination and quantitative detection by surface-enhanced Raman scattering (SERS) and inductively coupled plasma mass spectrometry (ICP-MS), and subsequently photothermal antibacterial assay. The sandwich nanocomposite consists of ConA-Fe3O4@SiO2 NPs to magnetically enrich and photothermal killing bacteria, and dual-signal tags of apt-Au NNPs for both SERS sensing and ICP-MS quantification. This strategy can specifically distinguish different kinds of pathogenic bacteria, and provided a good linear relationship of Staphylococcus aureus (S. aureus) in the range from 50 to 104 CFU/mL with a detection limit of 11 CFU/mL, as well as realized ultralow amounts of bacterial detection in serum sample with high accuracy. Based on the quantitative detection, high antibacterial efficiency was monitored by ICP-MS. Overall, the established method combines bacteria discrimination, quantitative detection, and photothermal elimination with a simple and rapid process, which provides a novel way for the early diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Xueqin Huang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhubao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Lingzhi Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Yongjian Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China
| | - Runmin Zeng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shanze Chen
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Jianglin Zhang
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, PR China.
| | - Haibo Zhou
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Pinghua Sun
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
26
|
Cao J, Russo DA, Xie T, Groß GA, Zedler JAZ. A droplet-based microfluidic platform enables high-throughput combinatorial optimization of cyanobacterial cultivation. Sci Rep 2022; 12:15536. [PMID: 36109626 PMCID: PMC9477827 DOI: 10.1038/s41598-022-19773-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidic platform capable of one- (1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant, cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. This was followed by a highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt concentrations. The 1D screening results suggested that nitrate and/or phosphate may be limiting nutrients in standard cultivation media. Finally, we use 2D screening to determine the optimal N:P ratio of BG-11. Application of the improved medium composition in a high-density cultivation setup led to an increase in biomass yield of up to 15.7%. This study demonstrates that droplet-based microfluidics can decrease the volume required for cyanobacterial cultivation and screening up to a thousand times while significantly increasing the multiplexing capacity. Going forward, microfluidics have the potential to play a significant role in the industrial exploitation of cyanobacteria.
Collapse
|
27
|
Selective single-bacteria extraction based on capture and release of microemulsion droplets. Sci Rep 2022; 12:15461. [PMID: 36104374 PMCID: PMC9474873 DOI: 10.1038/s41598-022-19844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Human host-associated microbial communities in body sites can reflect health status based on the population distribution and specific microbial properties in the heterogeneous community. Bacteria identification at the single-cell level provides a reliable biomarker and pathological information for clinical diagnosis. Nevertheless, biosamples obtained from some body sites cannot offer sufficient sample volume and number of target cells as required by most of the existing single-cell isolation methods such as flow cytometry. Herein we report a novel integrated microfluidic system, which consists of a microemulsion module for single-bacteria encapsulation and a sequential microdroplet capture and release module for selectively extracting only the single-bacteria encapsulated in microdroplets. We optimize the system for a success rate of the single-cell extraction to be > 38%. We further verify applicability of the system with prepared cell mixtures (Methylorubrum extorquens AM1 and Methylomicrobium album BG8) and biosamples collected from human skin, to quantify the population distribution of multiple key species in a heterogeneous microbial community. Results indicate perfect viability of the single-cell extracts and compatibility with downstream analyses such as PCR. Together, this research demonstrates that the reported single-bacteria extraction system can be applied in microbiome and pathology research and clinical diagnosis as a clinical or point-of-care device.
Collapse
|
28
|
Using gel microdroplets to develop a simple high-throughput screening platform for oleaginous microorganisms. J Biotechnol 2022; 358:46-54. [PMID: 36041515 DOI: 10.1016/j.jbiotec.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is expected to be a new lipid source since this microorganism is capable of accumulating more than 85% lipid per dry cell weight. For effective utilization of oleaginous yeast, mutants with improved lipid production compared to the wild-type have been screened by methods such as single-cell sorting and Percoll density gradient centrifugation. Because these methods need to reculture all mutated oleaginous yeasts together in a flask, it is difficult to evaluate the growth of each individual mutant. Thus, screening for the slow-growing mutants with high-throughput has never been performed by conventional methods. In this study, we developed a high-throughput method using gel microdroplets (GMD). With this method, the growth and lipid production of L. starkeyi can be evaluated simultaneously. L. starkeyi grew in GMD and the size of these microcolonies was evaluated by scattered light. Finally, a mutant with a 10-fold delay in growth compared to the wild-type was obtained. Analysis of genetic information in this mutant could reveal valuable information about critical genes involved in the growth of these microorganisms, which could then be utilized further.
Collapse
|
29
|
Yu Y, Wen H, Li S, Cao H, Li X, Ma Z, She X, Zhou L, Huang S. Emerging microfluidic technologies for microbiome research. Front Microbiol 2022; 13:906979. [PMID: 36051769 PMCID: PMC9424851 DOI: 10.3389/fmicb.2022.906979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of the microbiome is increasingly prominent. For example, the human microbiome has been proven to be strongly associated with health conditions, while the environmental microbiome is recognized to have a profound influence on agriculture and even the global climate. Furthermore, the microbiome can serve as a fascinating reservoir of genes that encode tremendously valuable compounds for industrial and medical applications. In the past decades, various technologies have been developed to better understand and exploit the microbiome. In particular, microfluidics has demonstrated its strength and prominence in the microbiome research. By taking advantage of microfluidic technologies, inherited shortcomings of traditional methods such as low throughput, labor-consuming, and high-cost are being compensated or bypassed. In this review, we will summarize a broad spectrum of microfluidic technologies that have addressed various needs in the field of microbiome research, as well as the achievements that were enabled by the microfluidics (or technological advances). Finally, how microfluidics overcomes the limitations of conventional methods by technology integration will also be discussed.
Collapse
Affiliation(s)
- Yue Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wen
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sihong Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haojie Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuefei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyi She
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqiang Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Droplet-based methods for tackling antimicrobial resistance. Curr Opin Biotechnol 2022; 76:102755. [PMID: 35841864 DOI: 10.1016/j.copbio.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Application of droplet-based methods enables (i) faster detection, (ii) increased sensitivity, (iii) characterization of the level of heterogeneity in response to antibiotics by bacterial populations, and (iv) expanded screening of the effectiveness of antibiotic combinations. Hereby, we discuss the key steps and parameters of droplet-based experiments to investigate antimicrobial resistance. We also review recent findings accomplished with these methods and highlight their advantages and capacity to yield new insights into the problem of antimicrobial resistance.
Collapse
|
31
|
Cao J, Chande C, Köhler JM. Microtoxicology by microfluidic instrumentation: a review. LAB ON A CHIP 2022; 22:2600-2623. [PMID: 35678285 DOI: 10.1039/d2lc00268j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.
Collapse
Affiliation(s)
- Jialan Cao
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| | - Charmi Chande
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - J Michael Köhler
- Techn. Univ. Ilmenau, Dept. Phys. Chem. and Microreaction Technology, Institute for Micro- und Nanotechnologies/Institute for Chemistry and Biotechnology, Ilmenau, Germany.
| |
Collapse
|
32
|
Liu X, Li X, Wu N, Luo Y, Zhang J, Yu Z, Shen F. Formation and Parallel Manipulation of Gradient Droplets on a Self-Partitioning SlipChip for Phenotypic Antimicrobial Susceptibility Testing. ACS Sens 2022; 7:1977-1984. [PMID: 35815869 DOI: 10.1021/acssensors.2c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flexible, robust, and user-friendly screening systems with a large dynamic range are highly desired in scientific research, industrial development, and clinical diagnostics. Droplet-based microfluidic systems with gradient concentrations of chemicals have been demonstrated as promising tools to provide confined microenvironments for screening tests with small reaction volumes. However, the generation and manipulation of gradient droplets, such as droplet merging, generally require sophisticated fluidic manipulation systems, potentially limiting their application in decentralized settings. We present a gradient-droplet SlipChip (gd-SlipChip) microfluidic device that enables instrument-free gradient droplet formation and parallel manipulation. The device can establish a gradient profile by free interfacial diffusion in a continuous fluidic channel. With a simple slipping step, gradient droplets can be generated by a surface tension-driven self-partitioning process. Additional reagents can be introduced in parallel to these gradient droplets with further slipping operations to initiate screening tests of the droplets over a large concentration range. To profile the concentration in the gradient droplets, we establish a numerical simulation model and verify it with hydrogen chloride (HCl) diffusion, as tested with a dual-color pH indicator (methyl orange and aniline blue). As a proof of concept, we tested this system with a gradient concentration of nitrofurantoin for the phenotypic antimicrobial susceptibility testing (AST) of Escherichia coli. The results of our gd-SlipChip-based AST on both reference and clinical strains of E. coli can be indicated by the bacterial growth profile within 3 h and are consistent with the clinical culture-based AST.
Collapse
Affiliation(s)
- Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
33
|
Henkel T, Mayer G, Hampl J, Cao J, Ehrhardt L, Schober A, Groß GA. From Microtiter Plates to Droplets—There and Back Again. MICROMACHINES 2022; 13:mi13071022. [PMID: 35888839 PMCID: PMC9316479 DOI: 10.3390/mi13071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
Droplet-based microfluidic screening techniques can benefit from interfacing established microtiter plate-based screening and sample management workflows. Interfacing tools are required both for loading preconfigured microtiter-plate (MTP)-based sample collections into droplets and for dispensing the used droplets samples back into MTPs for subsequent storage or further processing. Here, we present a collection of Digital Microfluidic Pipetting Tips (DMPTs) with integrated facilities for droplet generation and manipulation together with a robotic system for its operation. This combination serves as a bidirectional sampling interface for sample transfer from wells into droplets (w2d) and vice versa droplets into wells (d2w). The DMPT were designed to fit into 96-deep-well MTPs and prepared from glass by means of microsystems technology. The aspirated samples are converted into the channel-confined droplets’ sequences separated by an immiscible carrier medium. To comply with the demands of dose-response assays, up to three additional assay compound solutions can be added to the sample droplets. To enable different procedural assay protocols, four different DMPT variants were made. In this way, droplet series with gradually changing composition can be generated for, e.g., 2D screening purposes. The developed DMPT and their common fluidic connector are described here. To handle the opposite transfer d2w, a robotic transfer system was set up and is described briefly.
Collapse
Affiliation(s)
- Thomas Henkel
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.H.); (G.M.)
| | - Günter Mayer
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.H.); (G.M.)
| | - Jörg Hampl
- Department of Nano-Biosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof.-Schmidt-Str. 26, 98693 Ilmenau, Germany; (J.H.); (A.S.)
| | - Jialan Cao
- Department of Physical Chemistry and Microreaction Technologies, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof.-Schmidt-Str. 26, 98693 Ilmenau, Germany; (J.C.); (L.E.)
| | - Linda Ehrhardt
- Department of Physical Chemistry and Microreaction Technologies, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof.-Schmidt-Str. 26, 98693 Ilmenau, Germany; (J.C.); (L.E.)
| | - Andreas Schober
- Department of Nano-Biosystem Technology, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof.-Schmidt-Str. 26, 98693 Ilmenau, Germany; (J.H.); (A.S.)
| | - Gregor Alexander Groß
- Department of Physical Chemistry and Microreaction Technologies, Institute of Chemistry and Biotechnology, Technical University Ilmenau, Prof.-Schmidt-Str. 26, 98693 Ilmenau, Germany; (J.C.); (L.E.)
- Correspondence: ; Tel.: +49-3677-69-3716
| |
Collapse
|
34
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Calhoun SGK, Brower KK, Suja VC, Kim G, Wang N, McCully AL, Kusumaatmaja H, Fuller GG, Fordyce PM. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability. LAB ON A CHIP 2022; 22:2315-2330. [PMID: 35593127 PMCID: PMC9195911 DOI: 10.1039/d2lc00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Double emulsion droplets (DEs) are water/oil/water droplets that can be sorted via fluorescence-activated cell sorting (FACS), allowing for new opportunities in high-throughput cellular analysis, enzymatic screening, and synthetic biology. These applications require stable, uniform droplets with predictable microreactor volumes. However, predicting DE droplet size, shell thickness, and stability as a function of flow rate has remained challenging for monodisperse single core droplets and those containing biologically-relevant buffers, which influence bulk and interfacial properties. As a result, developing novel DE-based bioassays has typically required extensive initial optimization of flow rates to find conditions that produce stable droplets of the desired size and shell thickness. To address this challenge, we conducted systematic size parameterization quantifying how differences in flow rates and buffer properties (viscosity and interfacial tension at water/oil interfaces) alter droplet size and stability, across 6 inner aqueous buffers used across applications such as cellular lysis, microbial growth, and drug delivery, quantifying the size and shell thickness of >22 000 droplets overall. We restricted our study to stable single core droplets generated in a 2-step dripping-dripping formation regime in a straightforward PDMS device. Using data from 138 unique conditions (flow rates and buffer composition), we also demonstrated that a recent physically-derived size law of Wang et al. can accurately predict double emulsion shell thickness for >95% of observations. Finally, we validated the utility of this size law by using it to accurately predict droplet sizes for a novel bioassay that requires encapsulating growth media for bacteria in droplets. This work has the potential to enable new screening-based biological applications by simplifying novel DE bioassay development.
Collapse
Affiliation(s)
- Suzanne G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Vineeth Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Engineering and Applied Sciences, Harvard University, MA - 01234, USA
| | - Gaeun Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Ningning Wang
- School of Energy & Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexandra L McCully
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| |
Collapse
|
36
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
37
|
Interfacing microfluidics with information-rich detection systems for cells, bioparticles, and molecules. Anal Bioanal Chem 2022; 414:4575-4589. [PMID: 35389095 PMCID: PMC8987515 DOI: 10.1007/s00216-022-04043-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
The development of elegant and numerous microfluidic manipulations has enabled significant advances in the processing of small volume samples and the detection of minute amounts of biomaterials. Effective isolation of single cells in a defined volume as well as manipulations of complex bioparticle or biomolecule mixtures allows for the utilization of information-rich detection methods including mass spectrometry, electron microscopy imaging, and amplification/sequencing. The art and science of translating biosamples from microfluidic platforms to highly advanced, information-rich detection system is the focus of this review, where we term the translation between the microfluidics elements to the external world “off-chipping.” When presented with the challenge of presenting sub-nanoliter volumes of manipulated sample to a detection scheme, several delivery techniques have been developed for effective analysis. These techniques include spraying (electrospray, nano-electrospray, pneumatic), meniscus-defined volumes (droplets, plugs), constrained volumes (narrow channels, containers), and phase changes (deposition, freezing). Each technique has been proven effective in delivering highly defined samples from microfluidic systems to the detection elements. This review organizes and presents selective publications that illustrate the advancements of these delivery techniques with respect to the type of sample analyzed, while introducing each strategy and providing historical perspective. The publications highlighted in this review were chosen due to their significance and relevance in the development of their respective off-chip technique.
Collapse
|
38
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
39
|
Gao J, Guo J, Chen J, Ding C, Wang J, Huang Q, Jian Y, Zhao X, Li M, Gao Y, Yang C, Wang W. d-Amino Acid-Based Metabolic Labeling Enables a Fast Antibiotic Susceptibility Test of Both Isolated Bacteria and Bronchoalveolar Lavage Fluid. Adv Healthc Mater 2022; 11:e2101736. [PMID: 34898025 DOI: 10.1002/adhm.202101736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Indexed: 11/07/2022]
Abstract
The threat of multidrug-resistant bacteria has escalated rapidly, increasing the demand for accurate antibiotic susceptibility tests (ASTs). Traditional bacterial growth yield-based ASTs often take overnight to report, delaying the timely guidance of antibiotic use. Here, a fluorescent d-amino acid (FDAA) labeling-based AST (FaAST) is reported, which can quickly provide accurate minimum inhibitory concentrations (MICs). The FDAA-labeling signals that reflect the bacterial metabolic status underlie the flow cytometry-based strategy for MIC determination. Resistant bacteria show a reluctant decline in FDAA-labeling (inhibited metabolism) after treatment with the corresponding antibiotics, whereas susceptible bacteria demonstrate quick responses to low doses of drugs. The MICs are determined based on the changing trends in labeling. After testing 23 clinical isolates and laboratory strains of the most critical drug-resistant bacteria against a panel of representative antibiotics, FaAST shows a high susceptibility category with an accuracy of 98.13%. Moreover, FaAST can also make quick and accurate diagnosis against bronchoalveolar lavage fluids collected from hospital-acquired pneumonia patients, saving 2-4 days in guiding antibiotic use for this life-threatening infection. Thus, the speed, accuracy, and broad applicability of FaAST will be valuable in informing antibiotic decisions when treating critical infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Junnan Guo
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Jianxiao Chen
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Chenling Ding
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Jiemin Wang
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Qian Huang
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Ying Jian
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Xianyuan Zhao
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Min Li
- Department of Laboratory Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Yuan Gao
- Department of Critical Care Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Chaoyong Yang
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Wang
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| |
Collapse
|
40
|
Postek W, Garstecki P. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Acc Chem Res 2022; 55:605-615. [PMID: 35119826 PMCID: PMC8892833 DOI: 10.1021/acs.accounts.1c00729] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic-resistant bacteria are an increasing concern both in everyday life and specialized environments such as healthcare. As the rate of antibiotic-resistant infections rises, so do complications to health and the risk of disability and death. Urgent action is required regarding the discovery of new antibiotics and rapid diagnosis of the resistance profile of an infectious pathogen as well as a better understanding of population and single-cell distribution of the resistance level. High-throughput screening is the major affordance of droplet microfluidics. Droplet screens can be exploited both to look for combinations of drugs that could stop an infection of multidrug-resistant bacteria and to search for the source of resistance via directed-evolution experiments or the analysis of various responses to a drug by genetically identical bacteria. In droplet techniques that have been used in this way for over a decade, aqueous droplets containing antibiotics and bacteria are manipulated both within and outside of the microfluidic devices. The diagnostics problem was approached by producing a series of microfluidic systems with integrated dilution modules for automated preparation of antibiotic concentration gradients, achieving the speed that allowed for high-throughput combinatorial assays. We developed a method for automated emulsification of a series of samples that facilitated measuring the resistance levels of thousands of individual cells encapsulated in droplets and quantifying the inoculum effect, the dependence of resistance level on bacterial cell count. Screening of single cells encapsulated in droplets with varying antibiotic contents has revealed a distribution of resistance levels within populations of clonally identical cells. To be able to screen bacteria from clinical samples, a study of fluorescent dyes in droplets determined that a derivative of a popular viability marker is more suitable for droplet assays. We have developed a detection system that analyzes the growth or death state of bacteria with antibiotics for thousands of droplets per second by measuring the scattering of light hitting the droplets without labeling the cells or droplets. The droplet-based microchemostats enabled long-term evolution of resistance experiments, which will be integrated with high-throughput single-cell assays to better understand the mechanism of resistance acquisition and loss. These techniques underlie automated combinatorial screens of antibiotic resistance in single cells from clinical samples. We hope that this Account will inspire new droplet-based research on the antibiotic susceptibility of bacteria.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
41
|
Zeng W, Chen P, Li S, Sha Q, Li P, Zeng X, Feng X, Du W, Liu BF. Hand-powered vacuum-driven microfluidic gradient generator for high-throughput antimicrobial susceptibility testing. Biosens Bioelectron 2022; 205:114100. [PMID: 35219023 DOI: 10.1016/j.bios.2022.114100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
The growth of bacterial resistance to antimicrobials is a serious problem attracting much attention nowadays. To prevent the misuse and abuse of antimicrobials, it is important to carry out antibiotic susceptibility testing (AST) before clinical use. However, conventional AST methods are relatively laborious and time-consuming (18-24 h). Here, we present a hand-powered vacuum-driven microfluidic (HVM) device, in which a syringe is used as the only vacuum source for rapid generating concentration gradient of antibiotics in different chambers. The HVM device can be preassembled with various amounts of antibiotics, lyophilized, and stored for ready-to-use. Bacterial samples can be loaded into the HVM device through a simple suction step. With the assistance of Alamar Blue, the AST assay and the minimum inhibitory concentration (MIC) of different antibiotics can be investigated by comparing the growth results of bacteria in different culture chambers. In addition, a parallel HVM device was proposed, in which eight AST assays can be performed simultaneously. The results of MIC of three commonly used antibiotics against E. coli K-12 in our HVM device were consistent with those obtained by traditional method while the detection time was shortened to less than 8 h. We believe that our platform is high-throughput, cost-efficient, easy to use, and suitable for POCT applications.
Collapse
Affiliation(s)
- Wenyi Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyue Sha
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
42
|
Tian T, Yi J, Liu Y, Li B, Liu Y, Qiao L, Zhang K, Liu B. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens Bioelectron 2022; 197:113778. [PMID: 34798500 DOI: 10.1016/j.bios.2021.113778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The rapid and accurate bacterial testing is a critical step for the management of infectious diseases, but challenges remain largely due to a lack of advanced sensing tools. Here we report the development of highly plasmon-active, biofunctional nanoparticle arrays for simultaneous capture, identification, and differentiation of bacteria by surface-enhanced Raman scattering (SERS). The nanoarrays were facilely prepared through an electrostatic mechanism-controlled self-assembly of metallic nanoparticles at liquid-liquid interfaces, and exhibited high SERS sensitivity beyond femtomole, good reproducibility (relative standard deviation of 2.7%) and stability. Modification of the nanoarrays with concanavalin A allowed to effective capture of both Gram-positive and Gram-negative bacteria (bacterial-capture efficiency maintained beyond 50%) at bacterial concentrations ranging from 50 to 2000 CFU mL-1, as determined by the plate-counting method. Moreover, single-cell Raman fingerprinting and discrimination of eight different bacteria species with high signal-to-noise ratio, excellent spectral reproducibility, and a total assay time of 1.5 h was achieved under fairly mild conditions (24 μW, acquisition time: 1 s). Collectively, we believe that our biofunctionalized, SERS-based self-assembled nanoarrays have great potential to help in rapid and label-free bacterial diagnosis and phenotyping study.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yujie Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Kun Zhang
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Baohong Liu
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
43
|
Li H, Zhang P, Hsieh K, Wang TH. Combinatorial nanodroplet platform for screening antibiotic combinations. LAB ON A CHIP 2022; 22:621-631. [PMID: 35015012 PMCID: PMC9035339 DOI: 10.1039/d1lc00865j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Davidson SL, Niepa THR. Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Front Microbiol 2022; 12:745835. [PMID: 35154021 PMCID: PMC8831547 DOI: 10.3389/fmicb.2021.745835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
With recent advances in microfabrication technologies, the miniaturization of traditional culturing techniques has provided ideal methods for interrogating microbial communities in a confined and finely controlled environment. Micro-technologies offer high-throughput screening and analysis, reduced experimental time and resources, and have low footprint. More importantly, they provide access to culturing microbes in situ in their natural environments and similarly, offer optical access to real-time dynamics under a microscope. Utilizing micro-technologies for the discovery, isolation and cultivation of "unculturable" species will propel many fields forward; drug discovery, point-of-care diagnostics, and fundamental studies in microbial community behaviors rely on the exploration of novel metabolic pathways. However, micro-technologies are still largely proof-of-concept, and scalability and commercialization of micro-technologies will require increased accessibility to expensive equipment and resources, as well as simpler designs for usability. Here, we discuss three different miniaturized culturing practices; including microarrays, micromachined devices, and microfluidics; advancements to the field, and perceived challenges.
Collapse
Affiliation(s)
- Shanna-Leigh Davidson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tagbo H. R. Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Zhao P, Wang J, Chen C, Wang J, Liu G, Nandakumar K, Li Y, Wang L. Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. MICROMACHINES 2022; 13:200. [PMID: 35208324 PMCID: PMC8877367 DOI: 10.3390/mi13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
Microfluidic technology has been highly useful in nanovolume sample preparation, separation, synthesis, purification, detection and assay, which are advantageous in drug development. This review highlights the recent developments and trends in microfluidic applications in two areas of drug development. First, we focus on how microfluidics has been developed as a facile tool for the fabrication of drug carriers including microparticles and nanoparticles. Second, we discuss how microfluidic chips could be used as an independent platform or integrated with other technologies in drug toxicity screening. Challenges and future perspectives of microfluidic applications in drug development have also been provided considering the present technological limitations.
Collapse
Affiliation(s)
- Pei Zhao
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianchun Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chengmin Chen
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianmei Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Guangxia Liu
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Krishnaswamy Nandakumar
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yan Li
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Liqiu Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
46
|
Hsieh K, Mach KE, Zhang P, Liao JC, Wang TH. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics. Acc Chem Res 2022; 55:123-133. [PMID: 34898173 PMCID: PMC10023138 DOI: 10.1021/acs.accounts.1c00462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance is a global threat that if left unchecked could lead to 10 million annual mortalities by 2050. One factor contributing to the rise of multi-drug-resistant (MDR) pathogens is the reliance on traditional culture-based pathogen identification (ID) and antimicrobial susceptibility testing (AST) that typically takes several days. This delay of objective pathogen ID and AST information to inform clinical decision making results in clinicians treating patients empirically often using first-line, broad-spectrum antibiotics, contributing to the misuse/overuse of antibiotics. To combat the rise in MDR pathogens, there is a critical demand for rapid ID and AST technologies. Among the advances in ID and AST technologies in the past decade, single-cell diagnostic technologies powered by droplet microfluidics offer great promise due to their potential for high-sensitivity detection and rapid turnaround time. Our laboratory has been at the forefront of developing such technologies and applying them to diagnosing urinary tract infections (UTIs), one of the most common infections and a frequent reason for the prescription of antimicrobials. For pathogen ID, we first demonstrated the highly sensitive, amplification-free detection of single bacterial cells by confining them in picoliter-scale droplets and detection with fluorogenic peptide nucleic acid (PNA) probes that target their 16S rRNA (rRNA), a well-characterized marker for phylogenic classification. We subsequently improved the PNA probe design and enhanced detection sensitivity. For single-cell AST, we first employed a growth indicator dye and engineered an integrated device that allows us to detect growth from single bacterial cells under antibiotic exposure within 1 h, equivalent to two to three bacterial replications. To expand beyond testing a single antibiotic condition per device, a common limitation for droplet microfluidics, we developed an integrated programmable droplet microfluidic device for scalable single-cell AST. Using the scalable single-cell AST platform, we demonstrated the generation of up to 32 droplet groups in a single device with custom antibiotic titers and the capacity to scale up single-cell AST, and providing reliable pathogen categories beyond a binary call embodies a critical advance. Finally, we developed an integrated ID and AST platform. To this end, we developed a PNA probe panel that can identify nearly 90% of uropathogens and showed the quantitative detection of 16S rRNA from single bacterial cells in droplet-enabled AST after as little as 10 min of antibiotic exposure. This platform achieved both ID and AST from minimally processed urine samples in 30 min, representing one of the fastest turnaround times to date. In addition to tracing the development of our technologies, we compare them with contemporary research advances and offer our perspectives for future development, with the vision that single-cell ID and AST technologies powered by droplet microfluidics can indeed become a useful diagnostic tool for combating antimicrobial resistance.
Collapse
Affiliation(s)
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | |
Collapse
|
47
|
Suo Y, Yin W, Wu W, Cao W, Zhu Q, Mu Y. A large-scale pico-droplet array for viable bacteria digital counting and dynamic tracking based on a thermosetting oil. Analyst 2022; 147:3305-3314. [DOI: 10.1039/d2an00680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and rapid method was developed for real-time monitoring and digital counting of bacterial growth, and it can provide dynamic information at high resolution in the process.
Collapse
Affiliation(s)
- Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Weihong Yin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, PR China
| | - Wenshuai Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, PR China
| | - Wenjian Cao
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Qiangyuan Zhu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| |
Collapse
|
48
|
Zhang P, Kaushik AM, Hsieh K, Li S, Lewis S, Mach KE, Liao JC, Carroll KC, Wang TH. A Cascaded Droplet Microfluidic Platform Enables High-Throughput Single Cell Antibiotic Susceptibility Testing at Scale. SMALL METHODS 2022; 6:e2101254. [PMID: 35041266 DOI: 10.1002/smtd.202101254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 06/14/2023]
Abstract
The global threat of antibiotic resistance underscores critical but unmet needs for rapid antibiotic susceptibility testing (AST) technologies. To this end, droplet microfluidic-based single-cell AST offers promise by achieving unprecedented rapidity, but its potential for clinical use is marred by the capacity of testing one to few antibiotic conditions per device, which falls short from the required scale in clinically relevant scenarios. To lift the scalability constraint in rapid single-cell AST technologies, a new cascaded droplet microfluidic platform that can streamline bacteria/antibiotic mixing, single-cell encapsulation within picoliter droplets, incubation, and detection in a continuous, assembly-line-like workflow is developed. The scalability of the platform is demonstrated by generating 32 groups of ≈10 000 droplets with custom antibiotic conditions within a single device, from which a new statistics-based method is used to analyze the single cell data and produce clinically useful antibiograms with minimum inhibitory concentrations in ≈90 min for the first antibiotic, plus 2 min for each subsequent antibiotic condition. Potential clinical utility of this platform is demonstrated by testing three clinical isolates and eight urine specimens against four frequently used antibiotics, and 100% and 93.8% categorical agreements are achieved compared to laboratory-based results that became available after 48 h.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shawna Lewis
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
49
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
50
|
Sklavounos AA, Nemr CR, Kelley SO, Wheeler AR. Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:4208-4222. [PMID: 34549763 DOI: 10.1039/d1lc00609f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the prevalence of bacterial infections and increasing levels of antibiotic resistance comes the need for rapid and accurate methods for bacterial classification (BC) and antibiotic susceptibility testing (AST). Here we demonstrate the use of the fluid handling technique digital microfluidics (DMF) for automated and simultaneous BC and AST using growth metabolic markers. Custom instrumentation was developed for this application including an integrated heating module and a machine-learning-enabled low-cost colour camera for real-time absorbance and fluorescent sample monitoring on multipurpose devices. Antibiotic dilutions along with sample handling, mixing and incubation at 37 °C were all pre-programmed and processed automatically. By monitoring the metabolism of resazurin, resorufin beta-D-glucuronide and resorufin beta-D-galactopyranoside to resorufin, BC and AST were achieved in under 18 h. AST was validated in two uropathogenic E. coli strains with antibiotics ciprofloxacin and nitrofurantoin. BC was performed independently and simultaneously with ciprofloxacin AST for E. coli, K. pneumoniae, P. mirabilis and S. aureus. Finally, a proof-of-concept multiplexed system for breakpoint testing of two antibiotics, as well as E. coli and coliform classification was investigated with a multidrug-resistant E. coli strain. All bacteria were correctly identified, while AST and breakpoint test results were in essential and category agreement with reference methods. These results show the versatility and accuracy of this all-in-one microfluidic system for analysis of bacterial growth and phenotype.
Collapse
Affiliation(s)
- Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Carine R Nemr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|