1
|
Mo Y, Zhou H, Xu J, Chen X, Li L, Zhang S. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities. Analyst 2023; 148:4939-4953. [PMID: 37721109 DOI: 10.1039/d3an01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are powerful tools for tracking analytes and cellular events with high spatial and temporal resolution in living cells and organisms. Compared with intensiometric readout and ratiometric readout, fluorescence lifetime readout provides absolute measurements, independent of the biosensor expression level and instruments. Thus, genetically encoded fluorescence lifetime biosensors play a vital role in facilitating accurate quantitative assessments within intricate biological systems. In this review, we first provide a concise description of the categorization and working mechanism of genetically encoded fluorescence lifetime biosensors. Subsequently, we elaborate on the combination of the fluorescence lifetime imaging technique and lifetime analysis methods with fluorescence lifetime biosensors, followed by their application in monitoring the dynamics of environment parameters, analytes and cellular events. Finally, we discuss worthwhile considerations for the design, optimization and development of fluorescence lifetime-based biosensors from three representative cases.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Lei Li
- School of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Institute of Physics at NYU Shanghai, No. 3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
2
|
Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. PLANT MOLECULAR BIOLOGY 2017; 95:399-409. [PMID: 28918565 PMCID: PMC5688203 DOI: 10.1007/s11103-017-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/12/2017] [Indexed: 05/20/2023]
Abstract
This work adds a new player, HER2, downstream of the perception of E-2-hexenal, a green leaf volatile, and shows that E-2-hexenal specifically changes the redox status of the mitochondria. It is widely accepted that plants produce and respond to green leaf volatiles (GLVs), but the molecular components involved in transducing their perception are largely unknown. The GLV E-2-hexenal inhibits root elongation in seedlings and, using this phenotype, we isolated E-2-hexenal response (her) Arabidopsis thaliana mutants. Using map-based cloning we positioned the her2 mutation to the At5g63620 locus, resulting in a phenylalanine instead of serine on position 223. Knockdown and overexpression lines of HER2 confirmed the role of HER2, which encodes an oxidoreductase, in the responsiveness to E-2-hexenal. Since E-2-hexenal is a reactive electrophile species, which are known to influence the redox status of cells, we utilized redox sensitive GFP2 (roGFP2) to determine the redox status of E-2-hexenal-treated root cells. Since the signal peptide of HER2 directed mCherry to the mitochondria, we targeted the expression of roGFP2 to this organelle besides the cytosol. E-2-hexenal specifically induced a change in the redox status in the mitochondria. We did not see a difference in the redox status in her2 compared to wild-type Arabidopsis. Still, the mitochondrial redox status did not change with Z-3-hexenol, another abundant GLV. These results indicate that HER2 is involved in transducing the perception of E-2-hexenal, which changes the redox status of the mitochondria.
Collapse
Affiliation(s)
- Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Department of Molecular Cytology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel de Vries
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Rieger B, Shalaeva DN, Söhnel AC, Kohl W, Duwe P, Mulkidjanian AY, Busch KB. Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells. Sci Rep 2017; 7:46055. [PMID: 28383048 PMCID: PMC5382582 DOI: 10.1038/srep46055] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/10/2017] [Indexed: 02/02/2023] Open
Abstract
The assembly of respiratory complexes into macromolecular supercomplexes is currently a hot topic, especially in the context of newly available structural details. However, most work to date has been done with purified detergent-solubilized material and in situ confirmation is absent. We here set out to enable the recording of respiratory supercomplex formation in living cells. Fluorescent sensor proteins were placed at specific positions at cytochrome c oxidase suspected to either be at the surface of a CI1CIII2CIV1 supercomplex or buried within this supercomplex. In contrast to other loci, sensors at subunits CoxVIIIa and CoxVIIc reported a dense protein environment, as detected by significantly shortened fluorescence lifetimes. According to 3D modelling CoxVIIIa and CoxVIIc are buried in the CI1CIII2CIV1 supercomplex. Suppression of supercomplex scaffold proteins HIGD2A and CoxVIIa2l was accompanied by an increase in the lifetime of the CoxVIIIa-sensor in line with release of CIV from supercomplexes. Strikingly, our data provide strong evidence for defined stable supercomplex configuration in situ.
Collapse
Affiliation(s)
- Bettina Rieger
- Institute of Molecular Cell Biology, School of Biology, University of Münster, D-48149 Münster, Germany.,Mitochondrial Dynamics Group, School of Biology, University of Osnabrueck, D-49076 Osnabrueck, Germany
| | - Daria N Shalaeva
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | - Anna-Carina Söhnel
- Institute of Molecular Cell Biology, School of Biology, University of Münster, D-48149 Münster, Germany.,Mitochondrial Dynamics Group, School of Biology, University of Osnabrueck, D-49076 Osnabrueck, Germany
| | - Wladislaw Kohl
- Mitochondrial Dynamics Group, School of Biology, University of Osnabrueck, D-49076 Osnabrueck, Germany
| | - Patrick Duwe
- Institute of Molecular Cell Biology, School of Biology, University of Münster, D-48149 Münster, Germany
| | - Armen Y Mulkidjanian
- School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany.,School of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Karin B Busch
- Institute of Molecular Cell Biology, School of Biology, University of Münster, D-48149 Münster, Germany.,Mitochondrial Dynamics Group, School of Biology, University of Osnabrueck, D-49076 Osnabrueck, Germany
| |
Collapse
|
4
|
Awasthi K, Moriya D, Nakabayashi T, Li L, Ohta N. Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:256-265. [DOI: 10.1016/j.jphotobiol.2016.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 02/04/2023]
|
5
|
Nakabayashi T, Ohta N. Sensing of intracellular environments by fluorescence lifetime imaging of exogenous fluorophores. ANAL SCI 2016; 31:275-85. [PMID: 25864670 DOI: 10.2116/analsci.31.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluorescence lifetime imaging (FLIM) has been recognized as a powerful microscopy technique to examine environments in living systems. The fluorescence lifetime does not depend on the photobleaching and optical conditions, which allows us to obtain quantitative information on intracellular environments by analyzing the fluorescence lifetime. A variety of exogenous fluorophores have been applied in FLIM measurements to examine cellular processes. Information on the correlation between the fluorescence lifetime and the physiological parameters is essential to elucidate the cellular environments from the fluorescence lifetime measurements of exogenous fluorophores. In this review, exogenous fluorophores used for lifetime-based sensing are summarized, with the expectation that it becomes a basis for selecting the fluorophore used to investigate the intracellular environment with FLIM. Experimental results of the intracellular sensing of pH, metal ions, oxygen, viscosity, and other physiological parameters on the basis of the FLIM measurements are described along with a brief explanation of the mechanism of the change in the fluorescence lifetime.
Collapse
|
6
|
|
7
|
Holt BD, Dahl KN, Islam MF. Differential sub-cellular processing of single-wall carbon nanotubes via interfacial modifications. J Mater Chem B 2015; 3:6274-6284. [DOI: 10.1039/c5tb00705d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-space and fluorescence lifetime imaging reveal that non-covalently attached dispersing agents influence sub-cellular trafficking and localization of carbon nanotubes.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Materials Science and Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Kris Noel Dahl
- Department of Biomedical Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
- Department of Chemical Engineering
| | - Mohammad F. Islam
- Department of Materials Science and Engineering
- Carnegie Mellon University
- Pittsburgh
- USA
| |
Collapse
|
8
|
Gohar AV, Cao R, Jenkins P, Li W, Houston JP, Houston KD. Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry. BIOMEDICAL OPTICS EXPRESS 2013; 4:1390-400. [PMID: 24010001 PMCID: PMC3756581 DOI: 10.1364/boe.4.001390] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 05/23/2023]
Abstract
Intracellular protein transport and localization to subcellular regions are processes necessary for normal protein function. Fluorescent proteins can be fused to proteins of interest to track movement and determine localization within a cell. Currently, fluorescence microscopy combined with image processing is most often used to study protein movement and subcellular localization. In this contribution we evaluate a high-throughput time-resolved flow cytometry approach to correlate intracellular localization of human LC3 protein with the fluorescence lifetime of enhanced green fluorescent protein (EGFP). Subcellular LC3 localization to autophagosomes is a marker of the cellular process called autophagy. In breast cancer cells expressing native EGFP and EGFP-LC3 fusion proteins, we measured the fluorescence intensity and lifetime of (i) diffuse EGFP (ii) punctate EGFP-LC3 and (iii) diffuse EGFP-ΔLC3 after amino acid starvation to induce autophagy-dependent LC3 localization. We verify EGFP-LC3 localization with low-throughput confocal microscopy and compare to fluorescence intensity measured by standard flow cytometry. Our results demonstrate that time-resolved flow cytometry can be correlated to subcellular localization of EGFP fusion proteins by measuring changes in fluorescence lifetime.
Collapse
Affiliation(s)
- Ali Vaziri Gohar
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruofan Cao
- Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Patrick Jenkins
- Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Wenyan Li
- Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jessica P. Houston
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
- Department of Chemical Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kevin D. Houston
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Islam MS, Honma M, Nakabayashi T, Kinjo M, Ohta N. pH dependence of the fluorescence lifetime of FAD in solution and in cells. Int J Mol Sci 2013; 14:1952-63. [PMID: 23334475 PMCID: PMC3565358 DOI: 10.3390/ijms14011952] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/27/2012] [Accepted: 01/09/2013] [Indexed: 11/25/2022] Open
Abstract
We have studied physiological parameters in a living cell using fluorescence lifetime imaging of endogenous chromophores. In this study, pH dependence of the fluorescence lifetime of flavin adenine dinucleotide (FAD), that is a significant cofactor exhibiting autofluorescence, has been investigated in buffer solution and in cells. The fluorescence lifetime of FAD remained unchanged with pH 5 to 9 in solution. However, the fluorescence lifetime in HeLa cells was found to decrease with increasing intracellular pH, suggesting that pH in a single cell can be estimated from the fluorescence lifetime imaging of FAD without adding exogenous fluorescent probes.
Collapse
Affiliation(s)
- Md. Serajul Islam
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mails: (M.S.I.); (M.H.)
| | - Masato Honma
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mails: (M.S.I.); (M.H.)
| | - Takakazu Nakabayashi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mails: (M.S.I.); (M.H.)
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0020, Japan
- Authors to whom correspondence should be addressed; E-Mails: (T.N.); (N.O.); Tel.: +81-11-706-9407 (T.N.); +81-11-706-9410 (N.O.)
| | - Masataka Kinjo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan; E-Mail:
| | - Nobuhiro Ohta
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mails: (M.S.I.); (M.H.)
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0020, Japan
- Authors to whom correspondence should be addressed; E-Mails: (T.N.); (N.O.); Tel.: +81-11-706-9407 (T.N.); +81-11-706-9410 (N.O.)
| |
Collapse
|
10
|
Awasthi K, Nakabayashi T, Ohta N. Application of nanosecond pulsed electric fields into HeLa cells expressing enhanced green fluorescent protein and fluorescence lifetime microscopy. J Phys Chem B 2012; 116:11159-65. [PMID: 22897139 DOI: 10.1021/jp306550v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An electrode microchamber has been constructed for applying nanosecond pulsed strong electric fields to living cells, and fluorescence lifetime microscopy (FLIM) has been used to investigate the effects of external electric fields on dynamics and function of HeLa cells expressing enhanced green fluorescent protein (EGFP). Both morphological change in cells and reduction of the fluorescence lifetime of EGFP have been observed after application of electric fields having a pulsed width of 50 ns and a strength of 4 MV m(-1), indicating that apoptosis, which is a programmed cell death, was induced by nanosecond pulsed electric fields and that fluorescence lifetime of EGFP decreased along with the induction of apoptosis. The reduction of the fluorescence lifetime occurred before the morphological change, indicating that FLIM provides a sensitive and noninvasive detection of the progress of apoptosis induced by application of nanosecond pulsed electric fields.
Collapse
Affiliation(s)
- Kamlesh Awasthi
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0020, Japan
| | | | | |
Collapse
|
11
|
Ogikubo S, Nakabayashi T, Adachi T, Islam MS, Yoshizawa T, Kinjo M, Ohta N. Intracellular pH sensing using autofluorescence lifetime microscopy. J Phys Chem B 2011; 115:10385-90. [PMID: 21776989 DOI: 10.1021/jp2058904] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence lifetime images of reduced nicotinamide adenine dinucleotide (NADH) that is a key cofactor in cellular metabolism were obtained in a cell at various values of intracellular pH. The average fluorescence lifetime of NADH is found to become shorter monotonically with increasing pH, indicating that pH in a single cell can be determined by fluorescence lifetime imaging of NADH without adding exogenous fluorescent probes. The magnitude of the pH-induced lifetime change is higher in cells than that in buffer solution. The fluorescence lifetime of NADH is not uniform inside a cell; the fluorescence lifetime of nuclear NADH is shorter than that of mitochondrial NADH at each pH, and the magnitude of the pH-induced change is larger in nuclei than in other areas. The local electric field effect on the fluorescence lifetime is discussed since this effect may be one of the strong possibilities for the nonuniformity of the autofluorescence lifetime of NADH in cells.
Collapse
Affiliation(s)
- Shinya Ogikubo
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Walther KA, Papke B, Sinn MB, Michel K, Kinkhabwala A. Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. MOLECULAR BIOSYSTEMS 2011; 7:322-36. [PMID: 21221430 DOI: 10.1039/c0mb00132e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise quantification of endogenous protein-protein interactions across live cells would be a major boon to biology. Such precise measurement is theoretically possible with fluorescence lifetime imaging microscopy (FLIM) but requires first properly addressing multiple biological, instrumental, statistical, and photophysical challenges. We present a detailed investigation of the last three FLIM-specific challenges. Using an efficient, highly accurate analysis code for time-domain FLIM data that accounts for all significant instrumental artifacts (in part, through use of a parametrized model for the instrument response function) and is rigorously based on both conventional statistics (full lifetime histogram fitting by χ(2) minimization) and novel statistics (single pixel fitting of lifetime populations using "maximum fidelity"), we address multiple photophysical challenges, including the proper side-by-side statistical comparison of fluorophore monoexponentiality, the precise assessment of fluorophore lifetimes and lifetime photostability, and the determination of acceptor dark state fractions. Finally, we demonstrate the feasibility of precise measurement of the interacting fraction of a protein across live cells with FLIM.
Collapse
Affiliation(s)
- Kirstin A Walther
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | | | |
Collapse
|
13
|
Nakabayashi T, Islam MS, Ohta N. Fluorescence decay dynamics of flavin adenine dinucleotide in a mixture of alcohol and water in the femtosecond and nanosecond time range. J Phys Chem B 2010; 114:15254-60. [PMID: 20964373 DOI: 10.1021/jp1063066] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescence decays of flavin adenine dinucleotide (FAD) that is a typical autofluorescent species in cells and tissues have been measured in a mixture of alcohol and water in the femtosecond and nanosecond time range. The fluorescence lifetimes of both the stacked conformation between the isoalloxazine and adenine moieties in close proximity and the extended open conformation in water are affected by the addition of alcohol. The nanosecond fluorescence lifetime of the open conformation increases with decreasing dielectric constant of the medium, contributing to the enhancement of the fluorescence intensity of FAD in less dielectric media. The fluorescence lifetime of the open conformation is also affected by medium viscosity, suggesting that the photoexcited open conformation is quenched by the dynamic interaction between the two aromatic rings. The fluorescence component decaying in tens of picoseconds is attributed to the stacked conformation that shows the efficient fluorescence quenching due to the intramolecular electron transfer. The picosecond fluorescence lifetime of the stacked conformation increases with decreasing dielectric constant, suggesting the shift of the distribution of the stacked conformation to a longer intramolecular distance between the two aromatic rings in less dielectric media. The pre-exponential factor of the picosecond decaying component relative to that of the nanosecond one decreases with the increase of the alcohol concentration in the femtosecond time-resolved fluorescence, which demonstrates the increase in the population of the open conformation with the reduction of the dielectric constant. The possibility to evaluate the polar environment in a cell by the fluorescence lifetime of FAD is discussed based on the results obtained.
Collapse
Affiliation(s)
- Takakazu Nakabayashi
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0020, Japan.
| | | | | |
Collapse
|
14
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
15
|
Ito T, Oshita S, Nakabayashi T, Sun F, Kinjo M, Ohta N. Fluorescence lifetime images of green fluorescent protein in HeLa cells during TNF-alpha induced apoptosis. Photochem Photobiol Sci 2009; 8:763-7. [PMID: 19492103 DOI: 10.1039/b902341k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence lifetime images of HeLa cells expressing enhanced green fluorescent protein (EGFP) have been measured as apoptosis is induced by tumor necrosis factor-alpha (TNF-alpha) in combination with cycloheximide. The fluorescence lifetime of EGFP is found to decrease after the induction of apoptosis, indicating that the change in environment occurs around the chromophore of EGFP with the apoptosis process. The fluorescence lifetime imaging technique can be used to perform in vivo observation of cell death processes. Fluorescence lifetime measurements are useful to examine the induction of the apoptosis process, even when a morphological change of each cell cannot be observed because of a low spatial resolution.
Collapse
Affiliation(s)
- Toshiyuki Ito
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Nakabayashi T, Ohta N. Studies on Microenvironment in a Single Cell Using Fluorescence Lifetime Imaging Microscopy. BUNSEKI KAGAKU 2009. [DOI: 10.2116/bunsekikagaku.58.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Nobuhiro Ohta
- Research Institute for Electronic Science (RIES), Hokkaido University
| |
Collapse
|