1
|
Wang S, Zhang Z, Ma X, Yue Y, Li K, Meng Y, Wu Y. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes. BIOSENSORS 2024; 14:112. [PMID: 38534219 PMCID: PMC10968096 DOI: 10.3390/bios14030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
The rotation of cells is of significant importance in various applications including bioimaging, biophysical analysis and microsurgery. Current methods usually require complicated fabrication processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manipulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes formed above the electrode surface can be used to trap and rotate cells. We have discussed the impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a controllable manner. By adjusting the position of cells, the rotation direction can be changed based on the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of the sample.
Collapse
Affiliation(s)
- Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518000, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China
| |
Collapse
|
2
|
Raj A, Schaich WL, Dragnea B. Orbital dynamics at atmospheric pressure in a lensed dual-beam optical trap. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1468-1478. [PMID: 36215592 DOI: 10.1364/josaa.459301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
Orbital dynamics of a dielectric microparticle in air using a lensed counter-propagating dual-beam trap was studied experimentally and by numerical simulations. Relationships between the dynamic parameters, trap geometry, and optical power were examined both experimentally and computationally. We found that this scheme can provide narrow bandwidth (δν/ν≈10-3) detection that is at least two orders of magnitude below typical values attainable with previously studied geometries. We predict that this characteristic makes the approach suitable for ultrasensitive in-situ detection of particle mass changes. In our experimental conditions, silica microspheres orbited on trajectories spanning tens of µm, at frequencies of up to ∼2kHz, at atmospheric pressure. With the help of simulations, we briefly discuss how the dual-beam lensed orbital trap approach can be further enhanced to gain unmatched capabilities to measure changes in the physical parameters associated with a particle interacting with its surrounding medium.
Collapse
|
3
|
Optical manipulation of a dielectric particle along polygonal closed-loop geometries within a single water droplet. Sci Rep 2021; 11:12690. [PMID: 34135451 PMCID: PMC8209137 DOI: 10.1038/s41598-021-92209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
We report a new method to optically manipulate a single dielectric particle along closed-loop polygonal trajectories by crossing a suite of all-fiber Bessel-like beams within a single water droplet. Exploiting optical radiation pressure, this method demonstrates the circulation of a single polystyrene bead in both a triangular and a rectangle geometry enabling the trapped particle to undergo multiple circulations successfully. The crossing of the Bessel-like beams creates polygonal corners where the trapped particles successfully make abrupt turns with acute angles, which is a novel capability in microfluidics. This offers an optofluidic paradigm for particle transport overcoming turbulences in conventional microfluidic chips.
Collapse
|
4
|
Zhan W, Wu R, Gao K, Zheng J, Song W. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection. LAB ON A CHIP 2020; 20:4063-4070. [PMID: 33021302 DOI: 10.1039/d0lc00787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a thermal convection-based optofluidic conveyor has been introduced, which can flexibly capture and manipulate multiple 20-120 μm silica particles with utmost accuracy. Near the end face, a fiber-based light source can confine 100 μm silica particles within 100 microns. By switching the light source of the fiber array, centimeter-range transportation of 100 μm SiO2 particles has been successfully achieved, which was not possible in optical trapping devices as we know. Through the comparative experiment with silica, polystyrene, and zirconium dioxide particles, the presented conveyor system is proved to be independent of the particles' dielectric properties. Moreover, sorting of silica and polystyrene particles based on the difference of mass densities has also been achieved. Additionally, the components of this conveyor (fiber array) and chip parts (microfluidic chamber) are freely detachable. Here, instead of expensive laser systems, a non-coherent light source has been utilized, which eventually eliminates the use of optical lens assemblies. All these features lead to making the equipment extremely simple in structure and low in cost. Besides, this optofluidic conveyor can be applied to transmit and sort various objects such as blood/cancer cells and microorganisms.
Collapse
Affiliation(s)
- Wei Zhan
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rongyao Wu
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kui Gao
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junjie Zheng
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wuzhou Song
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Li W, Li N, Shen Y, Fu Z, Su H, Hu H. Dynamic analysis and rotation experiment of an optical-trapped microsphere in air. APPLIED OPTICS 2018; 57:823-828. [PMID: 29400746 DOI: 10.1364/ao.57.000823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
A dual-fiber optical trap system to trap and rotate a borosilicate microsphere has been proposed and experimentally demonstrated. The trapping system can be used as a probe to measure environmental parameters, such as torque, force, and viscosity of the surrounding medium. Under various conditions with different fiber misalignments, optical power, and fiber separation, the trapped sphere will exhibit three motion profiles including random oscillation, round rotation, and abnormal rotation. The power spectrum analysis method is used to measure rotation rates up to 385 Hz, which can be further increased by increasing laser power. In addition, simulation and experiment show consistent results in rotation rates and motion trajectory, which verifies the validity and accuracy of dynamic analysis.
Collapse
|
6
|
Liu X, Huang J, Li Y, Zhang Y, Li B. Optofluidic organization and transport of cell chain. JOURNAL OF BIOPHOTONICS 2017; 10:1627-1635. [PMID: 28464453 DOI: 10.1002/jbio.201600306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 05/17/2023]
Abstract
Controllable organization and transport of cell chain in a fluid, which is of great importance in biological and medical fields, have attracted increasing attentions in recent years. Here we demonstrate an optofluidic strategy, by implanting the microfluidic technique with a large-tapered-angle fiber probe (LTAP), to organize and transport a cell chain in a noncontact and noninvasive manner. After a laser beam at 980-nm wavelength launched into LTAP, the E. coli cells were continuously trapped and then arranged into a cell chain one after another. The chain can be transported by adjusting the magnitudes of optical force and flow drag force. The proposed technique can also be applied for the eukaryotic cells (e. g., yeast cell) and human red blood cells (RBCs). Experiment results were interpreted by the numerical simulation, and the stiffness of cell chain was also discussed.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianbin Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
7
|
Chen X, Xiao G, Yang K, Xiong W, Luo H. Characteristics of the orbital rotation in dual-beam fiber-optic trap with transverse offset. OPTICS EXPRESS 2016; 24:16952-60. [PMID: 27464147 DOI: 10.1364/oe.24.016952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The orbital rotation is an important type of motion of trapped particles apart from translation and spin rotation. It could be realized by introducing a transverse offset to the dual-beam fiber-optic trap. The characteristics (e.g. rotation perimeter and frequency) of the orbital rotation have been analyzed in this article. We demonstrate the influences of offset distance, beam waist separation distance, light power, and radius of the microsphere by both experimental and numerical work. The experiment results, i.e. orbital rotation perimeter and frequency as functions of these parameters, are consistent with the theoretical model in the present work. The orbital rotation amplitude and frequency could be exactly controlled by varying these parameters. This controllable orbital rotation can be easily applied to the area where microfluidic mixing is required.
Collapse
|
8
|
Chen X, Xiao G, Luo H, Xiong W, Yang K. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset. OPTICS EXPRESS 2016; 24:7575-84. [PMID: 27137046 DOI: 10.1364/oe.24.007575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.
Collapse
|
9
|
Kolb T, Albert S, Haug M, Whyte G. Dynamically reconfigurable fibre optical spanner. LAB ON A CHIP 2014; 14:1186-90. [PMID: 24493284 DOI: 10.1039/c3lc51277k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this paper we describe a pneumatically actuated fibre-optic spanner integrated into a microfluidic Lab-on-a-Chip device for the controlled trapping and rotation of living cells. The dynamic nature of the system allows interactive control over the rotation speed with the same optical power. The use of a multi-layer device makes it possible to rotate a cell both in the imaging plane and also in a perpendicular plane allowing tomographic imaging of the trapped living cell. The integrated device allows easy operation and by combining it with high-resolution confocal microscopy we show for the first time that the pattern of rotation can give information regarding the sub-cellular composition of a rotated cell.
Collapse
Affiliation(s)
- Thorsten Kolb
- Biophysics Group, Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestrasse 91, 91052 Erlangen, Germany.
| | | | | | | |
Collapse
|
10
|
Mao X, Stratton ZI, Nawaz AA, Lin SCS, Huang TJ. Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure. BIOMICROFLUIDICS 2010; 4:43007. [PMID: 21267439 PMCID: PMC3026029 DOI: 10.1063/1.3497934] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/17/2010] [Indexed: 05/05/2023]
Abstract
We have designed, demonstrated, and characterized a simple, novel in-plane tunable optofluidic microlens. The microlens is realized by utilizing the interface properties between two different fluids: CaCl(2)solution and air. A constant contact angle of ∼90° is the pivotal factor resulting in the outward bowing and convex shape of the CaCl(2) solution-air interface. The contact angle at the CaCl(2) solution-air interface is maintained by a flared structure in the polydimethylsiloxane channel. The resulting bowing interface, coupled with the refractive index difference between the two fluids, results in effective in-plane focusing. The versatility of such a design is confirmed by characterizing the intensity of a traced beam experimentally and comparing the observed focal points with those obtained via ray-tracing simulations. With the radius of curvature conveniently controlled via fluid injection, the resulting microlens has a readily tunable focal length. This ease of operation, outstandingly low fluid usage, large range tunable focal length, and in-plane focusing ability make this lens suitable for many potential lab-on-a-chip applications such as particle manipulation, flow cytometry, and in-plane optical trapping.
Collapse
|
11
|
Huang H, Mao X, Lin SCS, Kiraly B, Huang Y, Huang TJ. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. LAB ON A CHIP 2010; 10:2387-93. [PMID: 20697662 DOI: 10.1039/c005071g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report a two-dimensional (2D) tunable liquid gradient refractive index (L-GRIN) lens for variable focusing of light in the out-of-plane direction. This lens focuses a light beam through a liquid medium with a 2D hyperbolic secant (HS) refractive index gradient. The refractive index gradient is established in a microfluidic chamber through the diffusion between two fluids with different refractive indices, i.e. CaCl(2) solution and deionized (DI) water. The 2D HS refractive index profile and subsequently the focal length of the L-GRIN lens can be tuned by changing the ratio of the flow rates of the CaCl(2) solution and DI water. The focusing effect is experimentally characterized through side-view and top-view image analysis, and the experimental data match well with the results from ray-tracing optical simulations. Advantages of the 2D L-GRIN lens include simple device fabrication procedure, low fluid consumption rate, convenient lens-tuning mechanism, and compatibility with existing microfluidic devices. We expect that with further optimizations, this 2D L-GRIN lens can be used in many optics-based lab-on-a-chip applications.
Collapse
Affiliation(s)
- Hua Huang
- Department of Microelectronics, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Mao X, Lin SCS, Lapsley MI, Shi J, Juluri BK, Huang TJ. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. LAB ON A CHIP 2009; 9:2050-8. [PMID: 19568674 DOI: 10.1039/b822982a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a tunable optofluidic microlens configuration named the Liquid Gradient Refractive Index (L-GRIN) lens for focusing light within a microfluidic device. The focusing of light was achieved through the gradient refractive index (GRIN) within the liquid medium, rather than via curved refractive lens surfaces. The diffusion of solute (CaCl(2)) between side-by-side co-injected microfluidic laminar flows was utilized to establish a hyperbolic secant (HS) refractive index profile to focus light. Tailoring the refractive index profile by adjusting the flow conditions enables not only tuning of the focal distance (translation mode), but also shifting of the output light direction (swing mode), a second degree of freedom that to our knowledge has yet to be accomplished for in-plane tunable microlenses. Advantages of the L-GRIN lens also include a low fluid consumption rate, competitive focusing performance, and high compatibility with existing microfluidic devices. This work provides a new strategy for developing integrative tunable microlenses for a variety of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Xiaole Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|